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Abstract

A unitary strongly prime ring is defined as a prime ring whose cen-
tral closure is simple with identity element. The class of unitary strongly
prime rings is a special class of rings and the corresponding radical is
called the unitary strongly prime radical. In this paper we prove some
results on unitary strongly prime rings. The results are applied to study
the unitary strongly prime radical of a polynomial ring and also R-disjoint
maximal ideals of polynomial rings over R in a finite number of indetermi-
nates. From this we get relations between the Brown-McCoy radical and
the unitary strongly prime radical of polynomial rings. In particular, the
Brown-McCoy radical of R[X] is equal to the unitary strongly prime rad-
ical of R[X] and also equal to S(R)[X], where S(R) denotes the unitary
strongly prime radical of R, when X is an infinite set of either commuting
or non-commuting indeterminates. For a PI ring R this holds for any set
X.

Introduction

Throughout this paper rings are associative but do not necessarily have an iden-
tity element. Recall that the Brown-McCoy radical U(R) of a ring R is defined
as the intersection of all the ideals M of R such that R/M is a simple ring with
identity. In [14] Krempa proved that the Brown-McCoy radical of a polynomial
ring R[x] in one indeterminate x is equal to I(R)[x], where I(R) = U(R[x])∩R.

A description of the ideal I(R) was given by Puczy lowski and Smoktunowicz
([19], Corollary 4). Namely, let P be the class of all prime rings with large center,
i.e., prime rings R such that for every non-zero ideal I of R, I ∩Z(R) 6= 0, where
Z(R) denotes the center of R. Then for every ring R, I(R) is equal to the
intersection of all the ideals I of R such that R/I ∈ P .
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Köthe’s problem [13] (is the sum of two nil left ideals nil?) is an outstanding
open problem in basic ring theory. There are several equivalent formulations of
this problem. In particular, Krempa proved that the problem is equivalent to
asking whether the polynomial ring R[x] in one indeterminate x over a nil ring
R must be Jacobson radical. An interesting discussion on approximations of
solutions of the problem is given in the introduction of [1]. In particular, in [19,
Corollary 3(ii)] the authors proved that for any nil ring R, R[x] is a Brown-McCoy
radical ring, i.e., R[x] cannot be mapped onto a ring with identity element. This
result has been improved in [1], where the authors showed: if R is nil, then R[x]
cannot be mapped onto a ring with an idempotent element. It remains as an open
problem whether a polynomial ring in two or more commuting indeterminates
over a nil ring must be Brown-McCoy radical ([19], Question 1, (a)).

Symmetric strongly prime rings are defined as prime rings with simple central
closures ([20], Chap. 35). For rings with identities this notion and the related
radical have been studied in [12]. Here we adapt this definition to rings without
identity element in such a way that the corresponding radical will be a special
radical which is very useful in our context. We say that a ring R is unitary
strongly prime (u-strongly prime, for short) if R is prime and the central closure
RC of R is a simple ring with unit. Of course, if R itself has an identity then
this is equivalent to the definition used in [12].

In this paper we study u-strongly prime rings, and the u-strongly prime and
Brown-McCoy radicals of polynomial rings. In particular, a good part is devoted
to study maximal ideals of polynomial rings in several indeterminates.

In Section 1 we recall some prerequisites. In Section 2 basic properties of
u-strongly prime rings, mainly concerning centred extensions of rings, are given.
In Section 3 we introduce the u-strongly prime radical of a ring. The main result
of this section states that the u-strongly prime radical S(R[X]) of a polynomial
ring in any set of either commuting or non-commuting indeterminates X is equal
to S(R)[X], where S denotes the u-strongly prime radical.

As mentioned before, we have some information about factor rings of polyno-
mial rings in one indeterminate (see also [4, 6, 7]). However, not much is known
about factor rings of polynomial rings in several indeterminates. In Section 4 we
consider the question whether there exists an integer n and an R-disjoint ideal M
of a polynomial ring in n indeterminates R[x1, ..., xn], such that R[x1, ..., xn]/M
is a simple ring with identity. The main result states that this is the case if and
only if R is a u-strongly prime ring with non-zero pseudo-radical.

In the last Section 5 we consider the Brown-McCoy radical of a polynomial
ring. We show that for any infinite set of either commuting or non-commuting
indeterminates X we have U(R[X]) = S(R)[X]. This is also true for a finite set
X, provided R is a PI ring. Finally, we raise some open questions related with
our investigations.
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1 Prerequisites

Let R be a semiprime ring. The self-injective hull of R considered as (R,R)-
bimodule, endowed with a canonical ring structure, is called the central closure of
R (see [20], Sect. 32). Equivalently, the central closure of R may be considered
as the subring of the Martindale right (left) ring of quotients Q = Qr(R) (or
Ql(R)) of R generated by R and the center C(R) of Q, which is called the
extended centroid of R.

The symmetric ring of quotients of R is the subring of Q defined as

Qs = {q ∈ Q | qJ ∪ Jq ⊆ R for some 0 6= J �R}.

Clearly C(R) ⊆ Qs and hence the central closure of R is also a subring of Qs

([2], Chap. 2).
Throughout this paper, for a prime ring R we denote by C(R) (or just C) the

extended centroid of R and by RC the central closure of R. As a basic property
we recall that for any ideal I of R we have C(R) = C(I) ([2], Corollary 2.1.12
and Proposition 2.2.2).

Assume that φ : R → S is a monomorphism of rings. Then S becomes a
canonical R-bimodule. In this paper we say that φ is a centred monomorphism if
there exists a surjective ring homomorphism Φ : R<X>→ S such that Φ |R= φ,
where R<X> denotes a free ring over R in X, a set of indeterminates.

If R has an identity element, then the definition agrees with the usual defini-
tion: we may consider Φ((X)) ⊆ S as a set of R-centralizing generators, where
(X) denotes the monoid generated by the set X (cf. [5], [12]).

For basic notions and terminology on radicals we refer the reader to [3].
Let A be a class of rings such that every non-zero ideal of a ring in A can

be homomorphically mapped onto some non-zero ring of A. Then A determines
a so called upper radical property, which we denote by A again. Thus the rings
in A are all semi-simple rings with respect to this upper radical, and A is the
largest radical for which this happens.

Recall that a class of prime rings A is said to be a special class if for any
essential ideal I of a ring R, I belongs to A if and only if R is in A.

Any special class of ringsA determines an upper radical. This radical contains
the prime radical and is hereditary, i.e., for any ring R and ideal I of R, the
A-radical of I is equal to the intersection A(R) ∩ I, where A(R) denotes the
A-radical of R. Moreover, A(R) is equal to the intersection of all ideals P of R
such that R/P ∈ A ([3], Ch. 7).

Assume that R is prime. We will consider the ring obtained from R by
adjoining an identity, defined as usual in the following way ([10], 2.17, Ex. 5):
Consider R as an algebra over the ring of integers ZZ and put T = R ⊕ ZZ with
the operations:

(a, n) + (b,m) = (a+ b, n+m) and (a, n)(b,m) = (ab+ma+ nb, nm),
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for (a, n), (b,m) ∈ T . The natural extension of R to a ring with identity R# is
defined as the ring T/AnnT (R), where AnnT (R) = {t ∈ T |Rt = 0} is an ideal
of T . Since R is prime, AnnT (R) ∩ R = 0 and hence we may consider R ⊆ R#.
It follows that R# is prime with unit and R is an essential ideal of R#.

The multiplication ring M(R) of R is defined as the subring of EndZZR, acting
from the left on R, generated as a ring by all the left and right multiplications la
and rb, where a, b ∈ R#, and lax = ax, rbx = xb, for x ∈ R. So each λ ∈ M(R)
is of the form λ =

∑
k lakrbk , where ak, bk ∈ R#, and λx =

∑
k akxbk, x ∈ R.

A finite subset A = {a1, ..., an} ⊆ R is called an insulator, if

AnnM(R){a1, ..., an} ⊆ AnnM(R){1R#},

i.e., if λa1 = ... = λan = 0, implies λ1 = 0. By Proposition 2.6 of [12], a
finite subset A = {a1, ..., an} of a prime ring R is an insulator if and only if
1 ∈ AC, where C = C(R#) = C(R), i.e., there exist c1, ..., cn ∈ C such that
a1c1 + ...+ ancn = 1.

Recall that a ring R is said to be right strongly prime if, for any non-zero ideal
I of R, there exists a finite set F ⊆ I such that Annr(F ) = {r ∈ R |Fr = 0} is
zero [9]. This set F is called a right insulator. It is well-known that the class of
all right strongly prime rings is a special class of rings [8] and the upper radical
determined by this class is called the right strongly prime radical. It is also known
that this notion is not symmetric, i.e., the right and left strongly prime radicals
do not coincide (see 5.4 of [16]).

On the other hand, the notion of symmetric strongly prime rings mentioned
in the introduction is left-right symmetric.

We point out that the definition which will be used here in general does not
coincide with any of the above notions. We will slightly modify the definition of
the symmetric case such that the resulting class of prime rings will be a special
class which is not the case for the class of all symmetric strongly prime rings.

2 U-strongly Prime Rings

Basic to our investigations is the following

2.1 Definition. A prime ring R is said to be unitary strongly prime (u-strongly
prime, for short) if RC is a simple ring with identity element.

Note that the definition is an extension of the one used in [12] for rings with
identity element. Thus a ring R with identity is symmetric strongly prime if and
only if R is u-strongly prime.

We denote by S the class of all u-strongly prime rings and by S ′ the class of
all symmetric strongly prime rings. We have the following.
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2.2 Proposition. The class S is a special class of rings and the class S ′ is
not special.

Proof. Every ring in S is prime. If R ∈ S and I is a non-zero ideal of R,
then I is prime and RC is a simple ring with identity. Also IC(I) = IC(R) is
an ideal of RC and hence IC(I) = RC is simple with identity. This shows that
I is u-strongly prime.

Now, assume that I is u-strongly prime and an essential ideal of some ring
R. Then R is a prime ring, IC(I) is a simple ring with identity and an essential
ideal of the ring RC(R) = RC(I). Since the class of simple rings with identity
is a special class of rings ([3], Theorem 62) it follows that RC is also simple with
identity. This proves the first part.

Assume that S ′ is a special class of rings and let R be any prime simple
ring without identity element. Then R = RC is a strongly prime ring and the
symmetric Martindale ring of quotients Qs of R is a prime ring. For any q ∈ Qs

there exists a non-zero ideal H of R with qH ∪ Hq ⊆ R. Since R is simple,
H = R and it follows that R is an ideal of Qs. Consequently Qs is strongly
prime since S ′ is (assumed to be) special and R is the minimal ideal of Qs.

Take an element c ∈ C(Qs), the extended centroid of Qs. Then there exists
a non-zero ideal J of Qs with cJ ∪ Jc ⊆ Qs. Since R ⊆ J and R = R2 we can
easily see that cR ∪ Rc ⊆ R. Hence c ∈ C(R) and consequently R = RC(R) =
RC(Qs) = QsC(Qs), because QsC(Qs) is a simple ring. This contradicts the
fact that Qs has an identity element. The proof is complete.

2.3 Corollary. The class S is the largest special class of rings A which is
contained in S ′ and satisfies the property: if R ∈ A, then RC ∈ A.

Proof. Assume that A ⊆ S ′ is a special class of rings and satisfies the above
property. If there exists R ∈ A\S, then RC ∈ A is a prime simple ring without
identity element. Using the same arguments as in the proof of the second part
of Proposition 2.2 starting with RC we reach a contradiction.

Now we partially extend Theorem 2.1 of [12] to rings without identity element.

2.4 Proposition. For any ring R the following conditions are equivalent:
(1) R is u-strongly prime.
(2) R is prime and R# is strongly prime.
(3) There exists a centred monomorphism φ : R → S, where S is a simple

ring with identity.
(4) There exists a centred monomorphism φ : R→ S, where S is a ring with

identity, with the property: for each non-zero ideal I of R, its extension in S,
Ie = SIS, is equal to S.

(5) R is prime and any non-zero ideal of R contains an insulator.
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Proof. (3)⇒(4) is a tautology and (2)⇒ (1) holds by Proposition 2.2.
(1) ⇒ (3). If R is prime and RC is simple with identity we have an obvious

centred monomorphism R→ RC as in (3).
(4) ⇒ (2). Assume that φ : R → S is a centred monomorphism as in

(4). Note that if I is an ideal of R, then using the above notation we have
Ie = Φ(I<X>) = IS = SI. Then for non-zero ideals I and J of R we must
have IJ 6= 0 and so R is prime. Now we consider the natural extension of R to
a prime ring with identity R#, as above.

We extend φ to a homomorphism ψ : T → S by ψ(a, k) = φ(a) + k1S, for
(a, k) ∈ R ⊕ ZZ = T , and Kerψ ∩ R = Kerφ = 0. Thus Kerψ ⊆ AnnT (R).
Conversely, if (a, k) ∈ AnnT (R) we have that R(a, k) = 0. It follows that
Sφ(R)(φ(a) + k1S) = 0 and since Sφ(R) = S we obtain ψ(a, k) = 0. Conse-
quently Kerψ = AnnT (R). Thus ψ induces a monomorphism of rings from R#

into S which we denote by φ again.
Also, the identity of S can be written as 1 =

∑
i Φ(wiri), where ri ∈ R and

wi ∈ (X), i = 1, ..., n. For any element w ∈ (X) we can define a mapping

w′ : R⊕ ZZ → S by w′(r, k) = Φ(wr) + k
∑
i

Φ(wwiri).

It can easily be seen that if (r, k) ∈ AnnR(T ), then φ(R)(Φ(wr)+k
∑
i Φ(wwiri)) =

0 and since 1 ∈ SR = Sφ(R) it follows that Φ(wr) + k
∑
i Φ(wwiri) = 0. Hence

w′ can be considered as a bimodule homomorphism from R# into S which we
denote by w again. Thus {w(1R#) |w ∈ (X)} is a set of R#-centralizing gener-
ators of S in the usual sense. Consequently R# is u-strongly prime by Theorem
2.1 of [12].

(1) ⇒ (5). If RC is a simple ring with identity and I is a non-zero ideal of
R, then IC = RC and so 1 ∈ IC. Hence I contains an insulator.

(5)⇒ (1). If H is a non-zero ideal of RC, then I = H ∩R is a non-zero ideal
of R. Thus I contains an insulator and consequently 1 ∈ IC. This shows that
H = RC has an identity element. Consequently, R is u-strongly prime.

The following is an easy consequence.

2.5 Corollary. Assume that φ : R→ S is a centred monomorphism, where S
is a u-strongly prime ring. Then R is u-strongly prime.

Proof. By assumption there exists a centred monomorphism ρ : S → S ′,
where S ′ is a simple ring with identity. Then it is easy to see that the composition
ρ ◦ φ : R → S ′ is a centred monomorphism. The result follows by Proposition
2.4.

If R is prime and has an identity element, there is a one-to-one correspondence
between the set of all R-disjoint prime ideals of R<X> and the set of all RC-
disjoint prime ideals of RC<X> ([5], Theorems 2.15 and 5.3). In the proof of
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the next lemma we will use similar arguments as in [5] for rings without identity
element.

An ideal P of a ring R is said to be u-strongly prime if the factor ring R/P
is a u-strongly prime ring [12]. U-strongly prime ideals have a nice behaviour
concernig centred extensions. In fact, we have the following.

2.6 Lemma. For a centred monomorphism φ : R→ S of rings we have:
(i) If P is a u-strongly prime ideal of S, then φ−1(P ) is a u-strongly prime

ideal of R.
(ii) If I is a u-strongly prime ideal of R and P is an ideal of S which is

maximal with respect to the condition φ−1(P ) = I, then P is a u-strongly prime
ideal of S.

Proof. (i) By factoring out the ideals P and φ−1(P ) ∩ R from S and R,
respectively, the statement (i) can easily be reduced to Corollary 2.5.

(ii) By factoring out the ideals I and P from R and S, respectively, we may
assume that P = 0, φ−1(J) 6= 0 for any non-zero ideal of J of S, R is u-strongly
prime and S is prime. We have to show that S is u-strongly prime.

By assumption, there exists a surjective ring homomorphism R<X>→ S, for
some X. Thus S ' R<X> /M , for some ideal M of R<X> which is maximal
with respect to the property M ∩R = 0.

The ideal M can be extended to an ideal M∗ of RC<X> which is a maximal
RC-disjoint ideal. It is not hard to check that

M∗ = {f ∈ RC<X> | there exist 0 6= F,H �R with FfH ⊆M},

gives the required extension (see [5]). To show that M∗ is an ideal of RC<X>
with M∗ ∩R<X>= M we have only to prove that for any w ∈ (X) and f ∈M∗

we have wf, fw ∈ M∗, since the rest is clear. Assume that FfH ⊆ M , for
0 6= F,H �R. Write the identity of RC as 1 =

∑
i rici, ri ∈ R, ci ∈ C, and take

a non-zero ideal I of R with ciI ⊆ R, for all i. Then

FfwIH2 ⊆
∑
i

FfwriciIH
2 ⊆ FfwH2 ⊆ FfHwH ⊆MwH ⊆M.

This shows that fw ∈M∗ and similarly we obtain wf ∈M∗.
Since RC is simple with identity, M∗ is a maximal ideal. Also we have

a natural inclusion R<X >/M → RC <X >/M∗ which is clearly a centred
monomorphism. Consequently R<X>/M is a u-strongly prime ring.

3 The U-strongly Prime Radical

For the rest of the paper S denotes the class of all u-strongly prime rings
as well as the upper radical determined by the class S [3]. By Proposition 2.2,
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the radical S is a special radical and for every ring R, S(R) is equal to the
intersection of all ideals P of R such that R/P ∈ S. This radical is called the
u-strongly prime radical of R and was introduced in [12] for rings with identity
elements. Since every simple ring with identity is in S, the u-strongly prime
radical is contained in the Brown-McCoy radical.

Let P be the class of all non-zero prime rings with large center. The class
P is also a special class of rings [19]. For any ring R the Brown-McCoy radical,
U(R[x]), of a polynomial ring in one indeterminate x, is equal to I(R)[x], where
I denotes the upper radical determined by the class P ([19], Corollary 4). We
have the following.

3.1 Lemma P ⊆ S. In particular, for any ring R we have S(R) ⊆ I(R).

Proof. If R is in P , then R is prime and for any non-zero ideal H of RC we
have H ∩R 6= 0. Thus there exists an element c in H ∩Z(R) and this element is
invertible in C. Hence 1 = c−1c ∈ H, consequently RC is simple with identity.

To prove the next theorem we need the following.

3.2 Remark The result proved by Krempa and mentioned in the introduction
holds in general: if X is a set of either commuting or non-commuting indetermi-
nates, then U(R[X]) = (U(R[X]) ∩R)[X] ([18], 1.6 and [11], Corollary 13).

3.3 Theorem Let R be a ring and X any set of either commuting or non-
commuting indeterminates. Then S(R[X]) = S(R)[X].

Proof. Let P be any u-strongly prime ideal of R[X]. By (i) of Lemma 2.6,
S(R) ⊆ P∩R. Also, for any w ∈ (X) we have (P∩R)wR[X] ⊆ (P∩R)R[X] ⊆ P
and so S(R)[X] ⊆ (P ∩R)[X] ⊆ P . Hence S(R)[X] ⊆ S(R[X]).

Conversely, take a u-strongly prime ideal P of R. Then P [X] is an ideal
of R[X] with P [X] ∩ R = P . Factoring out P and P [X] from R and R[X],
respectively, we may assume that P = 0 and R is u-strongly prime.

Since RC is simple with identity, Remark 3.2 implies that the intersection of
all maximal ideals of RC[X] is zero. Also, for any maximal ideal M of RC[X],
M∩R[X] is a u-strongly prime ideal of R[X], since R[X]/M∩R[X]→ RC[X]/M
is a centred monomorphism. This proves that S(R[X]) = 0.

The argument shows that, in general, S(R[X]) ⊆ P [X], for any u-strongly
prime ideal P of R. Consequently S(R[X]) ⊆ S(R)[X], and the proof is com-
plete.

Lemma 2.6 has another application. Recall that given a class of prime rings
A, a ring R is said to be an A-Jacobson ring if every prime ideal of R is an
intersection of ideals P with R/P ∈ A [7]. If R is a ring with identity which is
an A-Jacobson ring, then the polynomial ring R[x] is also an A-Jacobson ring,
provided the class A satisfies the following condition: if a ring R is in A and P is
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an ideal of R[x] which is maximal with respect to the condition P ∩R = 0, then
R[x]/P ∈ A ([7], Theorem 5). Thus condition (ii) of Lemma 2.6 immediately
gives the following.

3.4 Corollary Let R be a ring with identity. If R if an S-Jacobson ring, then
so is the polynomial ring R[x].

4 Maximal Ideals of Polynomial Rings

For any ring R and cardinal number α we denote by R[Xα] the polynomial
ring over R in a set Xα of α commuting indeterminates.

Given a ring R, the pseudo-radical ps(R) of R is defined as the intersection
of all non-zero prime ideals of R. It was proved in [6], Corollary 2.2 that if R is
a ring with identity and there exists a maximal ideal of R[x] which is R-disjoint,
then ps(R) is non-zero. More generally, for rings with identity it was proved in
Corollary 2 of [19] that R[x] contains a maximal ideal which is R-disjoint if and
only if R ∈ P and ps(R) is non-zero, where P is the class of prime rings with
large center, as in Section 3.

Now we extend Corollary 2.2 of [6]. For this we use the following result that
has been proved in [7], Lemma 3, for rings with identity element. The proof in
the general case is the same.

Given a non-zero R-disjoint ideal I of the polynomial ring R[x], we denote
by τ(I) the ideal of R consisting of all the leading coefficients of all polynomials
of minimal degree in I, including zero. Of course, if I 6= 0 then τ(I) 6= 0.

4.1 Lemma Assume that P is a non-zero R-disjoint prime ideal of R[x] and
Q 6= 0 is a prime ideal of R. If τ(P ) 6⊆ Q, then (P +Q[x]) ∩R = Q.

Proof. See Lemma 3 of [7].

The following observation will be helpful.

4.2 Lemma Assume that P is a prime ideal of the polynomial ring R[x] and
ps(R[x]/P ) 6= 0. Then ps(R/P ∩R) 6= 0.

Proof. By factoring out convenient ideals we may assume that P ∩ R = 0
and we have to prove that ps(R) 6= 0. By the way of contradiction, suppose there
exists a family F = (Pi)i∈Λ of non-zero prime ideals of R such that

⋂
i Pi = 0.

If P = 0 we immediately obtain the contradiction
⋂
i Pi[x] = 0. So we also may

assume that P is maximal among R-disjoint ideals (Corollary 2.13 of [17]).
It follows that there is a subfamily (Pj)j∈Γ ⊆ F such that τ(P ) 6⊆ Pj, for

every j ∈ Γ, and
⋂
j∈Γ Pj = 0. For any j ∈ Γ we have that (P + Pj[x])∩R = Pj,

by Lemma 4.1. Take an ideal Lj of R[x] which contains P +Pj[x] and is maximal
with respect to the property Lj ∩R = Pj. Then Lj is prime and (

⋂
j∈Γ Lj)∩R =
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⋂
j∈Γ Pj = 0, consequently

⋂
j∈Γ Lj = P , by maximality of P . This gives the

contradiction ps(R[x]/P ) = 0. The proof is complete.

Now we are in a position to prove an extension of Corollary 2.2 of [6].

4.3 Corollary Assume that n ≥ 1 is a natural number and there exists a
maximal ideal M of R[Xn] which is R-disjoint. Then ps(R) 6= 0.

Proof. The proof for a single indeterminate is the same as given in Corol-
lary 2.2 of [6]. This implies that the pseudo-radical of R[Xn−1]/M ∩ R[Xn−1] is
non-zero, where R[Xn−1] is the ring of polynomials obtained by forgetting one
indeterminate from Xn. Now we apply Lemma 4.2 repeatedly to complete the
proof.

Next we need the following.

4.4 Lemma Assume that R is a prime ring and I is a non-zero ideal of R.
Then ps(R) 6= 0 if and only if ps(I) 6= 0.

Proof. Suppose that ps(R) 6= 0. If Q is a non-zero prime ideal of I, then
J = (R#QR#)3 is a non-zero ideal of R with J ⊆ Q. Take an ideal L ⊇ J of R
which is maximal with respect to the condition L∩ I ⊆ Q. Then L is prime and
consequently L ⊇ ps(R). Hence Q ⊇ ps(R) ∩ I 6= 0. This shows that ps(I) 6= 0.

Conversely, by the way of contradiction, suppose that ps(I) 6= 0 and there
exists a family (Pi)i∈Λ of non-zero prime ideals of R with

⋂
i Pi = 0. Then there

exists a subfamily (Pj)j∈Γ of the above such that I 6⊆ Pj, for any j ∈ Γ, and⋂
j∈Γ Pj = 0. Since R is prime, Pj ∩ I is a non-zero prime ideal of I and so

Pj ∩ I ⊇ ps(I) 6= 0, for all j ∈ Γ. This contradiction completes the proof.

4.5 Remark If there exists an ideal M of R[Xn] such that R[Xn]/M is a simple
ring with identity and M ∩ R = 0, then R is u-strongly prime and ps(R) 6= 0
(Proposition 2.4 and Corollary 4.3). This type of u-strongly prime rings are very
important in our study.

The subclass of S consisting of all u-strongly prime rings R with ps(R) 6= 0
will be denoted by S1 and we put S2 = S\S1. Using Lemma 4.4 it is easy to show
that both classes S1 and S2 are special classes of rings. However, while the class
S1 is relevant in the computation of the u-strongly prime radical and the Brown-
McCoy radical of polynomial rings, the class S2 can be ignored. Concerning the
last one we have the following.

4.6 Proposition Assume that R ∈ S2. Then for any 0 6= a ∈ R there exists
a natural number n and an ideal M of R[Xn] such that R[Xn]/M is simple with
identity and a 6∈M ∩R.
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Proof. Since 0 6= a ∈ R# and S(R#) = 0, by Theorem 3.2 of [12] there
exists a natural number n and elements a1, ..., an ∈ (a) such that the ideal of
R#[x1, ..., xn] generated by the polynomial f = a1x1 + ...+ anxn − 1 is a proper
ideal, where (a) denotes the ideal of R# generated by a. Take a maximal ideal
N of R#[x1, ..., xn] containing f . If a ∈ N , then a1, ..., an ∈ N and so 1 ∈ N , a
contradiction. Thus a 6∈ N .

Now R[x1, ..., xn] is an ideal of R#[x1, ..., xn] and hence R[x1, ..., xn]/M is
a non-zero ideal of R#[x1, ..., xn]/N , where M = N ∩ R[x1, ..., xn]. Therefore
R[x1, ..., xn]/M = R#[x1, ..., xn]/N is simple with identity and a 6∈M ∩R.

Note that in Proposition 4.6 the ring R/M ∩ R ∈ S1, by Remark 4.5. This
immediately gives the following.

4.7 Corollary Any ring in S2 is a sub-direct product of rings from S1. In
particular, the u-strongly prime radical of any ring R is equal to the intersection
of all ideals P of R with R/P ∈ S1.

The classification of u-strongly prime rings induces a partition of P into
subclasses P1 and P2 in an obvious way, i.e., R ∈ P1 if and only if R ∈ P ∩ S1.
Now we prove the following extension of Corollary 2 of [19].

4.8 Theorem For any ring R, the following conditions are equivalent:
(i) There exists an R-disjoint ideal M of R[x] such that R[x]/M is simple

with identity.
(ii) R ∈ P1.
(iii) R is prime and ps(R) ∩ Z(R) 6= 0.
(iv) R ∈ S and there exists c ∈ C such that RC = R[c].

Proof. (i) ⇒ (ii) follows from Corollary 4.3 and ([19], Corollary 1, (ii)).
Also (ii)⇒ (iii) is clear by definition of P1.

(iii) ⇒ (i), (iv). Take a non-zero element d ∈ ps(R) ∩ Z(R). Then c =
d−1 ∈ C and so 1 ∈ RC. We define a ring homomorphism φ : R#[x] → RC by
φ(r) = r1, r ∈ R#, and φ(x) = c. Hence f = dx − 1 ∈ Ker(φ) and Ker(φ) is
an R#-disjoint ideal which is (essentially) closed (in the sense of [4], Sect. 1): in
fact, if g ∈ R[x] and gH ⊆ Ker(φ), 0 6= H�R#, then φ(g)H = 0 and since RC is
prime and 0 6= HC�RC we obtain g ∈ Ker(φ). Consequently Ker(φ) = [f ] is a
maximal ideal of R#[x], by Proposition 2.3 of [6], where [f ] denotes the smallest
closed ideal of R#[x] containing f (the principal closed ideal determined by f ,
according to [4]).

Thus R[c] = Im(φ) ' R#[x]/[f ] is a simple ring with identity. Now we show
that Im(φ) = RC. In fact, if a ∈ C there exists a non-zero ideal H of R such
that aH ⊆ R. Note that H � R# and H[c] is a non-zero ideal of Im(φ). Then
there exist h0, ..., hn ∈ H such that 1 =

∑
i hic

i. Take b =
∑
i ahic

i ∈ Im(φ). It
is easy to check that for any h ∈ H we have bh = ah. Therefore a = b ∈ Im(φ)
and so RC = R[c] is simple with identity.
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Finally, note that R[x]/[f ] ∩ R[x] is a non-zero ideal of R#[x]/[f ]. Conse-
quently R[x]/[f ] ∩R[x] = R#[x]/[f ] is simple with identity. Thus (i) holds.

(iv) ⇒ (i). Define φ : R#[x] → RC by φ(r) = r1, r ∈ R#, and φ(x) = c.
ThenKer(φ) is an ideal of R#[x] such that R#[x]/Ker(φ) ' Im(φ) = R[c] = RC
is simple with identity. Thus M = Ker(φ) ∩ R[x] is an R-disjoint ideal of R[x]
as required in (i). The proof is complete.

If R ∈ P2, then I(R) = 0. However there is no R-disjoint maximal ideal of
R[x] and so the intersection of all the ideals P of R with R/P ∈ P1 must be
zero. Hence, as in Corollary 4.7 we have the following.

4.9 Corollary Any ring in P2 is a sub-direct product of rings from P1. In
particular, for any ring R the ideal I(R) is equal to the intersection of all the
ideals P of R with R/P ∈ P1.

To prove an extension of Theorem 4.8 to polynomial rings in several indeter-
minates we first show two lemmas.

If an ideal I of a prime ring R contains an insulator {a1, ..., an}, then we have
a1c1 + ...+ ancn = 1, for some ci ∈ C. If {a1, ..., an} is not a C-independent set,
then some ai is a linear combination of the others with coefficients in C. Thus
the relation above can always be reduced to a relation, a1c

′
1 + ...+ asc

′
s = 1 say,

where {a1, ..., as} is linearly independent over C.

4.10 Lemma Let R be a prime ring and assume that ps(R) contains an
insulator {a1, ..., an} which is linearly independent over C. Then there exists
a maximal ideal M of R#[x1, ..., xn] which is R#-disjoint. Moreover, M is
the smallest (essentially) closed ideal of R#[x1, ..., xn] containing the polynomial
f = a1x1 + ...+ anxn − 1. In particular, R[x1, ..., xn]/M ∩R[x1, ..., xn] is simple
with identity.

Proof. By assumption there exist c1, ..., cn ∈ C such that
∑n
i=1 aici = 1.

We define φ : R#[x1, ..., xn] → RC by φ(r) = r1, r ∈ R#, and φ(xi) = ci,
i = 1, ..., n. Put M = Ker(φ), which is clearly R#-disjoint and contains (f), the
ideal generated by f . Also, the same argument used in Theorem 4.8 shows that
M is an R#-closed ideal.

Put Pi = M ∩ R#[x1, ..., xi], 1 ≤ i ≤ n. By Theorem 2.3.3 of [2] there
exists λ ∈ M(R) such that λ(a1) 6= 0 and λ(ai) = 0, for i ≥ 2. Thus we have
g = λ(a1)x1 − λ(1) ∈ P1. Also, P1 is an R#-closed ideal of R#[x1] since it
is an intersection of a closed ideal with R#[x1]. It follows from Corollary 1.7
and 1.9, (ii), of [4] that P1 is prime and maximal with respect to the condition
P1 ∩R# = 0. Furthermore, since g ∈ (f) and is a polynomial of minimal degree
in P1 we have P1 = [g]R#[x1] ⊆ [f ], where [g]R#[x1] denotes the closure of (g) in
R#[x1] and [f ] the R#-closure of (f) in R#[x1, ..., xn].

12



By induction we assume that Pl is maximal with respect to the condition
Pl ∩R# = 0 (so it is prime) and Pl ⊆ [f ], and put T = R#[x1, ..., xl]/Pl.

Using the same argument as above we can show that there exists a polynomial
µ(al+1)xl+1 − µ(1) ∈ Pl+1, where µ(al+1) 6= 0, for some µ ∈ M(R). Hence
Pl+1 ⊃ Pl[xl+1], because µ(al+1) 6∈ Pl, and so K = Pl+1/Pl[xl+1] is a non-zero
ideal of T [xl+1] which is T -disjoint. Take a polynomial h ∈ R#[x1, ..., xl+1] and
suppose that F is a non-zero ideal of T such that h̄F ⊆ K, where h̄ is the coset
h+Pl[xl+1] ∈ T [xl+1]. Note that J = F ∩R# 6= 0 and hJ ⊆ Pl+1 ⊆M . Since M
is closed it follows that h ∈ Pl+1 and hence h̄ ∈ K. The argument shows that K
is a T -closed ideal of T [xl+1]. Again the above quoted results of [4] imply that
K is maximal with respect to K ∩ T = 0. Therefore Pl+1 is prime and maximal
with respect to Pl+1 ∩R#[x1, ..., xl] = Pl.

Consequently, Pl+1 is maximal with respect to Pl+1∩R# = 0. Also, we obtain
again as above that Pl+1 ⊆ [f ], since Pl+1 contains a linear polynomial in xl+1

with coefficients in T which is contained in (f).
The inductive argument shows that M is maximal with respect to M∩R# = 0

and that M ⊆ [f ]. Also, M is closed and f ∈M , so M = [f ]. If N is a maximal
ideal of R#[x1, ..., xn] such that N ⊃ M we have N ′ = N ∩ R# 6= 0 and, since
N ′ is prime, ai ∈ N ′ for all i. Hence 1 =

∑
i aixi − f ∈ N , a contradiction.

Consequently M is a maximal ideal, as required.
Finally, S = R[x1, ..., xn]/M ∩ R[x1, ..., xn] is a non-zero ideal of - hence

equal to - R#[x1, ..., xn]/M and therefore S is simple with identity. The proof is
complete.

4.11 Lemma Under the assumptions of Lemma 4.10, there exist c1, ..., cn ∈ C
such that RC = R[c1, ..., cn] is simple with identity.

Proof. Using the same notation as above we have R#[x1, ..., xn]/M '
Im(φ) ⊆ RC. Thus Im(φ) = R[c1, ..., cn] is simple with identity. So it is enough
to show that C ⊆ Im(φ). The proof is done as in Theorem 4.8: take any c ∈ C
and let H be a non-zero ideal of R with cH ⊆ R. Then H[c1, ..., cn] = Im(φ)
and so we can write the identity as 1 =

∑
j hjdj, for some hj ∈ H and dj ∈ C

which are products of the above ci, i = 1, ..., n. Put l =
∑
j chjdj ∈ Im(φ). It is

easy to check that lh = ch for every h ∈ H. Consequently c = l ∈ Im(φ).

Corresponding to Theorem 4.8 we obtain the following characterization for
rings in S1.

4.12 Theorem For any ring R the following conditions are equivalent:
(i) There exists n ≥ 1 and an R-disjoint ideal M of R[Xn] such that R[Xn]/M

is simple with identity.
(ii) R ∈ S1.
(iii) R is prime and ps(R) contains an insulator.
(iv) R ∈ S and for some n ≥ 1, there exist c1, ..., cn ∈ C such that RC =

R[c1, ..., cn].
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Proof. (i)⇒ (ii) is already known (Remark 4.5).
(ii)⇒ (iii) is a consequence of Proposition 2.4.
(iii)⇒ (i), (iv) follow by Lemmas 4.10 and 4.11.
(iv)⇒ (i) Assume that (iv) holds. Then φ : R#[x1, ..., xn]→ RC defined by

φ(r) = r1, r ∈ R#, and φ(xi) = ci, for i = 1, ..., n, is a surjective homomorphism
and so N = Ker(φ) is a maximal ideal of R#[x1, ..., xn] with N ∩R# = 0. Thus
(i) follows by taking M = N ∩R[x1, ..., xn].

If R is a simple ring without identity element, then R[x] is a Brown-McCoy
radical ring ([19], Corollary 3, (i)). The following extends this result.

4.13 Corollary If R is simple without identity element, then R[Xn] is Brown-
McCoy radical, for any n ≥ 1.

Proof. If, for some n, R[Xn] is not Brown-McCoy radical, then by Theorem
4.12, R ∈ S1 and so RC = R is simple with identity, a contradiction.

Example 4.2 of [6] gives a subdirectly irreducible ringR with idempotent heart
(the intersection of all non-zero two-sided ideals of R) such that R[x] cannot be
mapped onto a simple ring with identity. We can give here the following more
general example.

4.14 Example Let R be any subdirectly irreducible ring with idempotent
heart H. Then R is prime and ps(R) = H 6= 0. But R[Xn] does not have an
R-disjoint ideal M such that R[Xn]/M is simple with identity, for any n.

In fact, if there exists an R-disjoint ideal M of R[Xn] such that R[Xn]/M is
simple with identity, then H[Xn]/M ∩H[Xn] is also simple with identity. This
contradicts Corollary 4.13 since H is a simple ring.

5 Brown-McCoy radical of polynomial rings

For any cardinal α there exists an ideal Iα = Iα(R) of R such that the
Brown-McCoy radical U(R[Xα]) is equal to Iα[Xα] (Remark 3.2). If we consider
a single indeterminate x, then the ideal I1 defined here coincides with the ideal
I defined in [19] and already mentioned before.

For β ≥ α we have Iβ ⊆ Iα since every ideal M of R[Xα] such that R[Xα]/M
is a simple ring with identity can easily be extended to an ideal M ′ of R[Xβ] such
that the factor ring R[Xβ]/M ′ is also a simple ring with identity. Also, since the
Brown-McCoy radical of any ring contains the u-strongly prime radical, it follows
from Theorem 3.3 that S(R) ⊆ Iα, for any cardinal α.

Now we prove the following.

5.1 Theorem For any ring R and infinite set X of either commuting or non-
commuting indeterminates we have U(R[X]) = S(R[X])(= S(R)[X]).
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Proof. One inclusion is clear. To prove the other inclusion take an ideal
P of R such that R/P ∈ S1 and consider the ideal I = U((R/P )[X]) ∩ R/P .
By Remark 3.2 U((R/P )[X]) = I[X], and we show that I = 0. This gives
U(R[X]) ⊆ P [X] and so U(R[X]) ⊆ S(R)[X] by Corollary 4.7.

For the rest of the proof we may assume P = 0. If X is a commuting set we
have that I ⊆ In(R), for every finite cardinal n, and it follows by Theorem 4.12
that Im(R) = 0, for some m. The result follows in this case.

Now assume that X is any set of indeterminates and denote by R[Y ] the
factor ring of R[X] by the ideal generated by all the elements of the type xy−yx,
for x, y ∈ X. Thus R[Y ] is a polynomial ring in an infinite set of commuting
indeterminates. Since I[X] is a Brown-McCoy radical ring its image I[Y ] in R[Y ]
is also Brown-McCoy radical and an ideal of R[Y ]. Consequently I = 0 by the
commuting case.

There are some interesting open problems related with the questions consid-
ered in this paper. By Theorem 5.1, for a ring R and any infinite cardinal α, we
have a chain I1(R) ⊇ I2(R) ⊇ ... ⊇ Iα(R) = S(R). We could not find an answer
to

Question 1 Is there a ring R for which the above sequence is not constant?

In the remaining part we make some remarks concerning this and other re-
lated questions.

For n ≥ 1, let Mn be the class of all rings R such that there exists an
R-disjoint ideal M of R[Xn] such that R[Xn]/M is simple with identity.

5.2 Proposition For any natural number n, Mn is an special class of rings
with P1 =M1 ⊆M2 ⊆M3 ⊆ ... ⊆ S1 =

⋃
nMn.

Proof. Every ring in Mn is clearly prime. If R ∈ Mn and 0 6= I � R, then
R[Xn]/M is simple with identity, for some R-disjoint ideal M of R[Xn]. Also
I[Xn]/M ∩ I[Xn] is a non-zero ideal of R[Xn]/M . It follows that I ∈Mn.

Now, assume I is an essential ideal of R and I ∈ Mn. Thus there exists an
I-disjoint ideal N of I[Xn] such that I[Xn]/N is simple with identity. Note that
N is an ideal of I#[Xn]. In fact, let f ∈ I[Xn] denote an element such that the
coset f̄ ∈ I[Xn]/N is the identity element. If g ∈ N and w is any monomial in
the indeterminates from Xn, we have gwf−gw ∈ N and gwf ∈ N , consequently
gw ∈ N .

Note that I is prime. So we can extend N to an ideal of R[Xn] by defining

M = {h ∈ R[Xn] | FhH ⊆ N, for some 0 6= F,H � I}.

Using the fact that N is an ideal of I#[Xn] it is easy to see that M is an R-
disjoint ideal of R[Xn] such that M ∩ I[Xn] ⊇ N and, by maximality of N we
have M ∩ I[Xn] = N . Also, if K ⊇ M is an ideal of R[Xn] which is maximal
with respect to the condition K∩I[Xn] = N , then K is prime and for any g ∈ K

15



we have IgI ⊆ K ∩ I[Xn] = N . Hence g ∈ M and so K = M . It follows that
I[Xn]/N is an ideal of the prime ring R[Xn]/M and consequently R[Xn]/M is
simple with identity, because the class of simple rings with identity is a special
class of rings. This gives R ∈Mn.

By Theorem 4.8, P1 = M1. Also, by an easy argument already used in the
beginning of this section, if m ≥ n we have Mn ⊆ Mm. Finally, Theorem 4.12
completes the proof.

The upper radical determined by the classMn is a special radical and clearly
equal to In. Actually we do not know whether (all) the classes Mi, i = 1, 2, ...,
defined above are different, and this question is obviously connected with Ques-
tion 1.

If for any ideal P of a ring R, R/P ∈ Mn implies that R/P ∈ Mn−1, then
In(R) = In−1(R). In particular, we have the following extension of a result which
is well-known for commutative rings.

5.3 Corollary Assume that R is a PI ring. Then for every n ≥ 1, we have
In(R) = S(R) coincides with the intersection of all ideals P of R such that R/P
is a prime ring with non-zero pseudo-radical.

In particular, for any (possible finite) set X of, either commuting or non-
commuting, indeterminates we have U(R[X]) = S(R)[X].

Proof. The first part follows from the well-known fact that a prime PI ring
ring has always large center. The second part follows by Theorem 5.1, when X is
an infinite set, and from the first part when X is a finite commuting set. Finally,
if X is any finite set the proof can be completed using a similar argument as in
the last part of the proof of Theorem 5.1.

Any prime PI ring has large center and is always u-strongly prime. The
question of whether a u-strongly prime ring has always large center was raised
by K. Beidar (private communication). It seems that this question is still open
for u-strongly prime rings with non-zero pseudo-radical. Of course, a positive
answer to this question would imply that Corollary 5.3 will be true for any ring,
and our Question 1 will have a negative answer. Moreover, in this case we will
have In(R) = S(R), for any ring R.

To prove that the last relation holds it would be enough to give a positive
answer to the following

Question 2 Is it true that if R ∈ S1, then ps(R) contains a non-zero central
element?

Now we prove the following result concernig these questions.

5.4 Proposition Assume that A is a class of rings which is closed under
taking homomorphic images. Then the following conditions are equivalent:

(i) For any ring R ∈ A we have I1(R) = S(R).
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(ii) For any ring R ∈ A and any set X of either commuting or non-commuting
indeterminates we have U(R[X]) = S(R)[X].

(iii) Question 2 has a positive answer for any ring R ∈ A.
If the equivalent conditions above are satified, then the following condition

(iv) also holds, and the converse is true provided that A is closed under taking
polynomial extensions.

(iv) If R ∈ A ∩M2, then R ∈M1.

Proof. The equivalence between (i) and (ii) is easy to prove.
(i) ⇒ (iii). Assume R ∈ A ∩ S1. Then I1(R) = S(R) = 0 and ps(R) 6= 0.

Hence there exists an R-disjoint ideal M of R[x] such that R[x]/M is simple with
identity and so, by Theorem 4.8, ps(R) contains a central element.

(iii) ⇒ (i), (iv). Assume R ∈ A and let P be an ideal of R such that
R/P ∈ S1. Then ps(R/P ) contains a central element, and by Theorem 4.8
R/P ∈ P1. Hence (i) follows from Corollaries 4.7 and 4.9. The argument also
shows that if R ∈ A ∩ S1, then R ∈M1 and so (iv) holds.

Finally, we prove (iv) ⇒ (iii), provided that A is closed under taking poly-
nomial extensions. Let R ∈ A and assume that R ∈ S1. Then there exists n ≥ 1
such that R ∈ Mn. For n = 1, 2 there is nothing to show, so consider the case
n ≥ 3. Now for some R-disjoint ideal M of R[x1, ..., xn], R[x1, ..., xn]/M is simple
with identity. This shows that

T = R[x1, ..., xn−2]/M ∩R[x1, ..., xn−2] ∈M2 =M1.

Repeating the same argument we obtain R ∈M1 = P1. Theorem 4.8 completes
the proof.

It is not known whether a polynomial ring in two or more indeterminates
over a nil ring R must be Brown-McCoy radical [19], Question 1(a). On the
other hand, it is also an open problem whether the upper nil radical of a ring is
contained in the strongly prime radical ([12], Problem). These two questions are
related:

5.5 Proposition The following conditions are equivalent:
(i) For any ring R, the upper nil radical is contained in the u-strongly prime

radical of R.
(ii) If R is a nil ring, then a polynomial ring over R in any finite number of

commuting indeterminates is a Brown-McCoy radical ring.

Proof. (i) ⇒ (ii) Assume that R is a nil ring and for some n ≥ 1, there
exists an ideal M of R[Xn] such that R[Xn]/M is simple with identity. Then
M ∩ R is a strongly prime ideal of R and so the upper nil radical Nil(R) of R
must be contained in M ∩ R. This is a contradiction to Nil(R) = R. Hence
R[Xn] is Brown-McCoy radical for any n.
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(ii)⇒ (i) Assume that there exists an ideal P of R such that R/P ∈ S1 and
Nil(R) 6⊆ P . Then the factor ring R/P is strongly prime and has a non-zero nil
ideal I/P . We may assume that P = 0. Hence I is a nil ring which belongs to
S1. Thus, by Theorem 4.12, there exist an integer n and an ideal M of I[Xn]
such that I[Xn]/M is simple with identity. This contradicts the fact that I[Xn]
must be Brown-McCoy radical by (ii).

If R is a prime ring and ps(R) contains an insulator of cardinality n which is a
linearly independent set over C, then, by Lemma 4.10, there exists an R-disjoint
ideal M of R[Xn] such that R[Xn]/M is simple with identity, i.e., R ∈ Mn. We
end the paper with the following question which has an affirmative answer when
n = 1.

Question 3 Is it true that if R ∈Mn, then there exists an insulator in ps(R)
of cardinality n?
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