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Basic techniq;es in the classical theory of commutative associative
rings A with unity are:
(i) The homological characterization of A in the category of A-modules.
(ii) The rings of quotients of prime or semiprime rings A.

(iii) The localization AP at a prime jdeal P and the structure
sheaf on the prime spectrum of A.

All these parts of structure theory are closely related to each other in
this case.

While technique (i) was successfully applied to non-commutative rings,
the parts (ii)} and (iii) do not alleow a satisfying extension to this more
general situation. Moreover, in the special cases which admit cofresponding
constructions, the interplay between the different points usually gets lost.

Replacing the category of left A-modules by a suitable subcategory a[A]

of bimodules over an arbitary (non-associative) ring A we get a natural

‘extension of all three techniques under consideration which preserves relation-

ships known from the classical situation.
Part (i) and (ii) of the resulting theory can be found in the author's

papers [9] - [13].




§ I of this paper recalls some topics in the theory of associative commuta-
tive rings. In the subsequent §§ II, III, IV we look at these topics in dif-

ferent extensions of the classical theory (left modules, bimodules, o[A]).

This is an extended version of talks given at Beijing Normal
University and Fudan University in autumn 1989,

I. Associative Commutative Rings

Assume A to be an associative, commutative ring with unit.
(I.i) The category A=~MOD of (left) A~modules has kernmels and cokernels,
infinite direct sums and direct limits. This type of category is called

Grothendieck category. In addition, A-MOD has a finitely generated, projective

generator AA. let us quote elementary examples of homological classification

for A:

THEOREM For the ring A the following assertions are equivalent:
(13(a) A is a field;

(b)

AA is a simple module;

(A)

{c} every A-module is isomorphic to A for suitable A (i.e.
every A;module is free).

(2)(a) A is a finite direct product of fields;

(b) AA is a semisimple module;

(¢) every module is projective (injective) in A-MOD.
(3)(a) AA is hereditary;

(b} every factor module of an injectivg modulg_is injeqtiye ;n Aqupf
(4)(a) AI is (von Néumaﬁn) reguiar;

(b) every module is flat in A-MOD;

(c) every simple module is injective in A-MOD.




(I.4i41) Let A -be semiprime.

First we can build the classical ring of quotients AS with respect to the
(multiplicative) subset S < A of all non-zero divisors,

On tﬁe other hand, leok at the‘torsion theory which is defined by the
injective hull A of A in A-MOD. The quotient module of A with respect

to this torsion theory is actually a ring and is called the complete ring of

quotients Q(A)}. Since A is semiprimé, the singular submodule of A 1is
zero, which is in this case equivalent to the fact that HomA{A/I,A) =0
for every essential ideal I din A (i.e. I is a rational ideal). This
implies that Q(A) 1is a (von Neumann) regular ring which is injective as
A-module and as Q(A)-module. Moreover, Q(A) = A as A-module and

Q(a) = AS. These facts can be found in Lambek [6].

Now, if A 1is prime, in the above setting Q(A) becomes the guotient

field of A.

(I.iii) For a prime ideal P in A we have the equivalent characteriza-
tions
() if for ideals I,J in A IJCP, then I CP or J CP.
(Bj if for elements a,b in A ab€ P, then a€ P or b € P.

It follows from (B) that A\P is a multiplicative subset of A and one
can form the ring of fractions AP with respect to A\P. Also, to every
A-module M one associates a module of fractions M which is an AP—module

P

P
The set of all prime ideals of A endowed with the Zariski topology 1is

and M_ = M& A,
p

called the spectrum of A, Spec(d). In this topology the closed sets are
the sets

V(I) = {P € Spec(d) / I < P}, I C A,




and the special epen-sets

D(c) = {P ¢ Spec{a) / ¢ ¢ P}, c € A,
form a basis for the open sets.

Assigning for every D{(c}) to A the ring of fractions Ac and to an
A-module the module of fractions Mc (with respect to {1,c,c2, ...}) one
obtains a sheaf of rings and modules over Spec(A). Hereby to every P € Spec(A)
the ring AP is associated.

There is a different approach to the same structure sheaf: For a prime
ideal P in A consider the torsion theory cogenerated by the injective hull
N
AP of A/P in A-MOD. The quotient module of A with respect to this torsion
theory is a ring and is equal to AP as considered above.

For an open subset X C Spec(A) we take the torsion theory defined by

-y s : .
I A/P. Associating to every A-module the quotient module with respect to
PEX
this torsion theory we end up with the same structure sheaf as above.

References for most of these results are the books of Stenstrém [8], or

Lafon [5].




II. Non-Commutative Rings and left Modules

Now let A be an associative ring with unity.

(IT1.1) The category A-MOD of left A-modules is again a Grothendieck
category with a finitely generated projegtive generator AA. However, while the
kernels of ring homomorphisms are two sided ideals, the kernels of morphisms in
A-MOD are only left ideals.

Nevertheless, the homological classification of rings is very effective and
is one of the major tools in non~commutative ring theory.

Locking at the Theorem in (I.i) we see that (1) remains valid if we replace
"field" by 'skew field" in (a). The equivalences in (2) are still true if we‘
replace "fields" by "matrix rings" over skew-fields in (a). (3) is literally
correct in the non-commutative case. In (4) (a) and (b) remain equivalent
while {(c¢) characterizes a different class of rings (V-rings).

It should be pointed out that there is no counterpart to (1) for the
characterization of simple rings (rings without non-trivial ideals) by properties

of A-MOD.

{(II.1ii} In contrast to the well-behaved non-commutative module theory
the theory of quotients of semiprime commutative rings does noﬁ allow a
straightforward generalization to non-commutativé rings. None of the techmigues
given in (I.ii) lead to satisfying results for a general non-commutative A:

The construction of the ring of fractions with respect to a multiplicative
subset of A is only possible under additional assumptions (Ore conditions,
e.g. [8]).

The complete ring of quotients has no longer such nice properties (e.g.

needs net to be regular), since the essential left ideals need not to be




rational in A, i.e. A may have a non-zero singular left ideal. Only
for certain classes of rings the two constructions coincide and have nice

properties, e.g. for Goldie rings (see [8]).

(II.iii) A prime ideal P 1in a non-commutative A is defined by property
{¢) din (¥.iii). Since this is no longer equivalent to (B),‘ A\P 1is not
multiplicative and -the construction of a ring of fraction AP as considered
in (I.1ii) is not possible (see also (II.ii)).

Of course, one can use the torsion theory defined by the injective hull
g?f in A-MOD to get a rimg of quotients with respect to P. However, K?F
is not even indecomposable and the outcoming theory seems to be of little use.

The spectrum of A with the Zariski topology can be defined as in the
commutative case but the special open sets D(c) (in (I.1ii)) no longer form
a basis for the open sets. For the reasons just mentioned we do not get a
structure sheaf on Spec(A) in the general case with the techniqueé considered

so far.

ITT. Non-Commutative Rings and Bimodules

Let A be again an associative ring with'unity and center C. Connected
to the ring A we also have the category of (A,A)-bimodules which can be
presented as left A‘@CA°-modules. AJQCA°~MOD obviously is a candidate for
generalizing commutative module theory. Observe that the endomorphisms ring

of A as an AtgcA°-bimodule is isomorphic to the center C.




(II1.1i) Homological characterization of A in A:@CA°~MOD in the sense
of the theorem in (I.i) is hardly possible. For example, if A is a simple
ring ar even a skew-field, the modules in A@>CA°~MOD need not to be isomorphic

to A(A).

An interxesting property of A with respect to this category is
THEOREM TYor the ring A the following properties are equivalent:

(a) A is projective in A‘SCA°-MOD;

(b} A is a genmerator in Ai@CA°~MOD;

(e) A is a finitely generated projective C-module and AQ?CA° = End (CA);

(d) A is an Azumaya algebra (central and separable).

For an Azumaya algebra A@JCA°—MOD is equivalent to C-MOD and the

homological characterization of A as bimodule can be done in C-MOD.

(III.ii) The properties of a semiprime ring A as bimodule are closer
to the commutative situation than its properties as left modules. Martindale's

construction of the central closure of an arbitary (non-associative) semiprime

ring can be seenr in this context. We shall give this interpretation in (IV.ii).
There we also will see the connection to the technigques used by Delale [2] for

localization of bimodules and rings.

(IITI.iii) Delale's ideas were extended by F. Ostaeyen and A. Verschoren.
Using the relation AASCA°~%OD < A-MOD they studied the interplay between

localizations in both categories and introduced relative localization.

With their structure sheaf over certain non-commutative rings (e.g.
noetherian PI-rings) they obtained deeper results for an algebraic geometry
over these rings (see [7])}. Some of their basic definitions are special

instances of the situation presented in (IV.iii).




IV, General Riﬁgs and Bimodules

In the attempt to find modules or bimodules for arbitary rings one usually
tried to imitate the commutative case in the sense that one expected the out-
coming module category to be a Grothendieck category with a finitely generated
projective generator. For example, for alternative or Jordan algebras A the
modules over the enveloping Algebra U(A) were studied (e.g. Jacobson [4]).
However, the relation between A and U(A) is not very strong and U(A)-MOD
is not suitable for an embracing homological characterization of A. As
indicated in (III.i) one has the same problem for associative rings and
bimodules.

We know from category theory that Grothendieck categoeries (even without
a projective generator!) have many of the properties we need for our purposes,
€.g. injective hulls and localization techniques (Gabriel [3]). So our
suggestion is to attach to every ring A the smallest (sub-) category of
bimodules which still is z Grothendieck category.

For assaciative riﬁgs A this would be a Subcategory of A@DCAO_MOD, for
alternative rings A a subcategory of ﬁtA)—MOD. Since A usually is not a
faithful module over A‘@CA° (resp. U(A)) we coinsider A as a module over
the factor ring of A®_A° (resp. U(A)) by the ideal amnihilating A, which

is just the multiplication ring (algebra) of A:

For an arbitrary ring A the left and.right multiplication with a € A,
La ! X 2 oax, Ra !t x > xa for x € A, are elements of EndZ(A). The multiplica-
tion ring M(A) of A 1is the subring of Endz(A) generated by the set
{L,, R_, id la €aj.

A is a faithful M(A)-module and End is called the centroid c(A)

b(a) &)

of A. If A contains a unit element then c(A) is isomorphic to the center C

of A,




Let o[A] denote the full subcategory of M(A)-MOD whose objects are sub-
modules of A-generated modules.

If A is finitely generated as module over its centroid by Ays cees By,

then the map & : M(A) » Ak, Ho> p(al,.ﬂ., ak) is monomorphic, hence

M(A) € o[A] and o[A] = M(A)-MOD.

(IV.i.) The category o[A] is a Grothendieck category. The homological
characterization of A in this category extends the commutative case in an
interesting way. Some differences in the formulations arise from the fact
that in general A is not projective and not a generator in ofa].

A ring A with unity is projective in o[A] if and only if for every
ideal I ©A the center of the ring A/I is isomorphic to C/C NI. It is

a self generator, if for every ideal I C A we have (INC)A =1. In case

A is projective and self generator then A 1is a projective generator in

o[A] and the category o[A] is equivalent to C-MOD. If, ip additiomn, A

is a finitely generated module over C, then A 1is a (non-associative)
Azumaya algebra (see {9}, also Azumaya [1] and Delale {2} for the associative
case). With results from [10] and [12] we now get the following generalization

¢f the theorem in (I.i):

THEOREM For an arbitrary ring A the following assertations are equivalent:
(1)(a) A is a simple ring;
(b} M(A)A is a simple module;
(c) every module in o[A] is isomorphic to a direct sum A(A).
(2){a) A is a direct sum of simple rings;

(b) M(A)A is a semisimple module;

(c) every module is projective (injective) in o[A].
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(3){a) A is herediﬁary in ofA] (evefy ideal of A is projective in o[Al);
(b) A is projective in o¢[A] and every factor module of an injective
module is injective in «[A].
(4)(a) A is a biregular ring and finitely presented in ofA];
(b) A is finitely presented and the finitely presented modules are
projective in o[A];
{c) A 1is finitely presented and every module is flat in ofA].
(d) A is finitely generated and projective in o¢[A] and every simple

module is injective in ofA].

(IV.ii) Let A be an arbitrary semiprime ring. Consider the injective
hull A of A in ofA] and the torsion theory cogenerated by A in o[A].
It is immediately seen that for every essential ideal I < A HomH(A)(A/I, A = 0,
i.e. every essential ideal is "rational" in A. Hence the quotient module of
A ditself with respect to this forsion theory is equal to A. As an injective
module in o{A] A& 1is generated by A and we have
A = Trace(A,A) = A HomM(A)(A,ﬁ) = A EndM(A)(A).

Since AZ(uB-Ba) = 0 for every «o,B € End )(A) and (the ideal generated by)

M(A
A? is essential in A, we get aff - Ba =0, i.e. EudM(A)(R) is a commutative
ring. This gives us a chance to make A into a ring: For ag, bB € A with
a,b € A, o, € End(A) we define

(ac) (bf) := (ablup.
To extend this to a multiplication in A (by linearity) we have.to show that
Zaw, =20 (ai € A, ai € EndM(A)(ﬁ)) implies (Z aidi}(bﬁ) = 0 and

(bB)(Eaiai} = 0. While the first property follows immediately from the

egualities
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(zaiﬂi)(bﬂ) = X(aib)diﬁ = ((Zaiai)b)ﬂ =0,
we need the commutativity of EndM(A)(ﬁ) to show
= = = = 0,
(bB)(Zaiui) z(bai)ﬁdi E(bai)uiB b(Zaiui)B
So our multiplication im A is well-defined and & is a semi-prime ring
which is injective in ofA] by construction and is also injective in the new

category o[A]. It is equal to Martindale's central closure of A. The

centroid of the ring A is isomorphic to EndM(A)(A) and module theory tells
us that this is a (von Neumann) regular, self-injective (and commutative!) ring
which contains the centroid of A.

For a prime ring A with unity the comstruction above leads to a prime
ring A whose center is a (possibly transcendental) extension field of the
center of A,

If A is an associative prime PI-;ing with unity the central closure &
becomes a simple algebra which has finite dimension over ité center. The
simplicity of A 1is a consequence of the fact that in the rings considered
every non-zero ideal has non-zerco intersection with the center. This also
implies that the center of A is just the quotient field of thg centeyr of
A and thus A& can be obtained by constructing the riﬁg of fractions of A
with fespect to all non-zero central elements. Similar phenomenos also occur

in other classes of rings, e.g. for alternative, non-associative prime rings

A with 3A # 0. More details about this theory can be found in [13].

(IV.iii) The definition of a prime ideal P in an arbitrary ring A is
the same as (&) in (I.iii). The spectrum Spec(A) with the Zariski topology
can be introduced as in the classical case. If A is a self generator as
M(A)-module the special open sets D(c) form a basis for the open sets in the

Zariski topology.
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We now can imitate the second approach to a structure sheaf for commutative
rings (see (I.iii)): For a prime ideal P in A the module A/P is uniform

- Il /\ ]
and its injective hull A/P in o[A} is indecomposable. Let T denote the

AN .
torsion class defimed by A/P in ¢[A] and T(N) the torsion-submodule of

N € ola].

The T-injective hull ET(N) of N is an essential, T-injective extension
of N such that ET(N)/N ¢ T. " The T-injective hull of N/T(N) usually is

called the quotient module of N (with respect to T). For our purposes we

need a slight variation of this concept: For every A-generated module N in
ag[A] set

QP(N) := Trace(A, ET(N/T(N)).
Now abstract torsion theory gives us for A-generated modules N,U the funda-
mental identification

HomM(A)(U, QP(N)) = HomM(A)(QP(U), QP(N})'

it

Setting U A we obtain the relations

Qp(A) = Trace(4, Qu(a)) = A HomM(A) (4, Qp(a)) = A EndM(A)(QP(A))-
N
Using the special form A/P of the module defining our torsion theory ome can
show that EndM(A)(QP(A)) is a commutatiwve r1ngi Hence, similar to the
construction of the central closure in (IV.ii), we may define a ring structure
on QP(A). Again from the above equality we obtain for an A-generated
N € ofa]:
QM) = A HomM(A)(A, Qp (M) = A HQ“’M(A) (QP(A), Qp (N} .
Consequently, the elements in QP(N) are sums of elements dY with d € A
and § ¢ HomH(A)(QP(A), QP{N)). We can (try to) multiply it with aq € QP(A),
a g€ A, oc¢ EndM(A)(QP(A)) by setting
(ac) () : = (ad)ay, (dP)(ac): = (da)ays.

N
As before, we have to refer to the special type of our defining module A/P
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to proo# that these bpérations are well-defined and QP(N) becomes a
QP(A)—generated bimodule over QP(A).

Thus, for every P € Spec(A) we can associate to A a quotient ring
QP(A) and to every A-generated modulé N a gquotient module QP(N) which is
generated by QP(A) as QP(A)-bimodule.

AN
For an open set X < Spec(4) we take the product N A/P in ofA].

PEX
The torsion theory defined by this module provides a quotient ring of A and
a quotient module for every A-generated module with the desired properties to
lead to a presheaf of rings and modules aver Spec(A).

These constructions generalize ideas in Delale [2] and result from

cocperation with P. Jara Martinez.
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