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Given a finite automorphism group G of a field extension E ⊃ K, E can be

considered as module over the group algebra K[G]. Moreover, E can also be

viewed as a comodule over the bialgebra K[G]∗ and here a canonical isomorphism

involving the subfield fixed under the action of G arises. This isomorphism and its

consequences were extended and studied for group actions on commutative rings,

for actions of Hopf algebras on noncommutative algebras, then for corings with

grouplike elements and eventually to comodules over corings. The purpose of this

note is to report about this development and to give the reader some idea about the

notions and results involved in this theory (without claiming to be comprehensive).

1. Preliminaries

To begin with we recall the algebraic structures for which Galois type condi-
tions are applied. We follow the notation in [9]. Throughout R will denote
a commutative associative ring with unit.

1.1. Algebras and modules. A, or more precisely (A,µ, 1A), stands
for an associative R-algebra with multiplication µ : A ⊗R A → A and
unit 1A. Right A-modules are defined as R-modules M with an action
%M : M ⊗R A→M .

For the category of right A-modules we write MA and denote the mor-
phisms between M,N ∈ MA by HomA(M,N). It is well known that A is
a projective generator in MA.

1.2. Coalgebras and comodules. An R-coalgebra is a triple (C,∆, ε)
where C is an R-module, ∆ : C → C ⊗R C is the coproduct and ε : C → R
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is the counit. Right C-comodules are R-modules M with a coaction %M :
M →M ⊗R C.

The category of right C-comodules is denoted by MC and the mor-
phisms between M,N ∈ MC are written as HomC(M,N). As a right
comodule, C is a subgenerator in MC , that is, every right C-comodule is
a subcomodule of a C-generated comodule. Note that MC need not have
projectives even if R is a field.

Left (co)modules and their categories are defined and denoted in an
obvious way.

1.3. Bialgebras and Hopf modules. An R-bialgebra is a quintuple
(B,∆, ε, µ, 1B) where (B,∆, ε) is an R-coalgebra and (B,µ, 1B) is an R-
algebra such that ∆ is an algebra morphism (equivalently µ is a coalgebra
morphism).

An R-module M that is a right B-module by %M : M ⊗R B → M and
a right B-comodule by %M : M →M ⊗RB is called a right B-Hopf module
provided for any m ∈M and b ∈ B, %M (mb) = %M (m)∆(b). The category
of all right B-Hopf modules is denoted by MB

B . The module B⊗RB allows
for a right B-Hopf module structure and with this it is a subgenerator in
MB

B . For M ∈ MB
B the coinvariants are defined as

M coB = {m ∈M | %M (m) = m⊗R 1B} ' HomB
B(A,M).

An R-bialgebra B is called a Hopf algebra if there is an antipode, that
is, an R-linear map S : B → B which is the inverse of the identity of B
with respect to the convolution product in EndR(B) (see also 2.5).

For any R-algebra A which is finitely generated and projective as R-
module, the dual A∗ = HomR(A,R) can be considered as an R-coalgebra
with natural comultiplication and counit. Here we are interested in the
following special case.

1.4. Group algebras and their dual. Let G be a finite group of or-
der n ∈ N and R[G] the group algebra, that is, R[G] is a free R-module
with basis the group elements {g1, . . . , gn} and the product given by the
group multiplication. Furthermore, R[G] is an R-coalgebra with coproduct
induced by ∆(g) = g ⊗ g and counit ε(g) = 1R, for g ∈ G. With these
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structures R[G] is an R-bialgebra, and even a Hopf algebra with antipode
S induced by S(g) = g−1 for g ∈ G.

The R-dual R[G]∗ = HomR(R[G], R) is also a Hopf algebra. The mul-
tiplication of f, g ∈ R[G]∗ is given by f ∗ g(x) = f(x)g(x) for x ∈ G. To
describe the coalgebra structure let {pg}g∈G ⊂ R[G]∗ be the dual basis to
{g}g∈G. Then coproduct and counit are defined by

∆(pg) =
∑

kh=g

pk ⊗ ph, ε(Pg) = δ1,g.

The antipode S of R[G]∗ is induced by S(pg) = pg−1 for g ∈ G.

1.5. Comodule algebras and relative Hopf modules. Let B be an R-
bialgebra. An R-algebra A is called right B-comodule algebra if A is a right
B-comodule by %A : A→ A⊗R B such that %A is an algebra morphisms.

A right (A,B)-Hopf module is an R-moduleM which is a right A-module
and a right B-comodule by %M : M → M ⊗R B such that for all m ∈ M

and a ∈ A, %M (ma) = %M (m)%A(a). The category of these modules is
denoted by MH

A and it has A ⊗R H as a subgenerator. For M ∈ MH
A the

coinvariants are defined as

M coB = {m ∈M | %M (m) = m⊗R 1B} ' HomB
A(A,M).

Note that in the above construction the right (A,B)-Hopf modules may
be replaced by the category M(B)D

A of right (A,D)-Hopf modules where
D is a right B-module coalgebra and the objects are right D-comodules
which are also right A-modules satisfying some compatibility condition.
Then A⊗R D is a subgenerator M(B)D

A (see [13], [18]).

Under weak (projectivity) conditions, for all the structures considered
above the related (co)module categories can be understood as module cat-
egories over some algebra subgenerated by a suitable module. We refer to
[24] for more details. All this settings are subsumed as special cases of

1.6. Corings and comodules. An A-coring is a triple (C,∆, ε) where C is
an (A,A)-bimodule with coproduct ∆ : C → C ⊗A C and counit ε : C → A.
Associated to this there are the right and left dual rings C∗ = HomA(C, A)
and ∗C = AHom(C, A) with the convolution products.

A right C-comodule is a right A-module M together with an A-linear
C-coaction %M : M →M ⊗A C. These comodules form a category which we
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denote by MC . It is an additive category with coproducts and cokernels,
and C is a subgenerator in it. The functor − ⊗A C : MA → MC is right
adjoint to the forgetful functor by the isomorphisms, for M ∈ MC and
X ∈ MA,

HomC(M,X ⊗A C) → HomA(M,X), f 7→ (IX ⊗ ε) ◦ f,

with inverse map h 7→ (h⊗ IC) ◦ %M .
Notice that for any monomorphism (injective map) f : X → Y in MA,

the colinear map f ⊗ IC : X ⊗A C → Y ⊗A C is a monomorphism in MC

but need not be injective. In case AC is flat, monomorphisms in MC are
injective maps and in this case MC is a Grothendieck category (see 18.14
in [9]).

Any right C-comodule (M,%M ) allows for a left ∗C-module structure by
putting f⇀m = (IM ⊗ f) ◦ %M (m), for any f ∈ ∗C, m ∈ M . This yields a
faithful functor Φ : MC → ∗CM which is a full embedding if and only if the
map

αK : K ⊗A C → HomA(∗C,K), n⊗ c 7→ [f 7→ nf(c)],

is injective for any K ∈ MA. This is called the left α-condition on C and it
holds if and only if AC is locally projective. In this case MC can be identified
with σ[∗CC], the full subcategory of ∗CM whose objects are subgenerated
by C.

1.7. A as a C-comodule. An element g of an A-coring C is called a
grouplike element if ∆(g) = g⊗ g and ε(g) = 1A. Such a grouplike element
g exists if and only if A is a right or left C-comodule, by the coactions

%A : A→ C, a 7→ ga, A% : A→ C, a 7→ ag.

Write Ag or gA to consider A with the right or left comodule structure
induced by g. Given an A-coring C with a grouplike element g andM ∈ MC ,
the g-coinvariants of M are defined as the R-module

M coC
g = {m ∈M | %M (m) = m⊗ g} = Ke (%M − (−⊗ g)),

and there is an isomorphism

HomC(Ag,M) →M coC
g , f 7→ f(1A).
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The bijectivity of this map is clear by the fact that any A-linear map with
source A is uniquely determined by the image of 1A. As special cases we
have the coinvariants

(1) EndC(Ag) ' AcoC
g = {a ∈ Ag | ga = ag}, the centraliser of g in A.

(2) For any X ∈ MA, (X ⊗A C)coC ' HomC(Ag, X ⊗A C) ' X,

and for X = A,

CcoC ' HomC(Ag, C) ' HomA(Ag, A) ' A,

which is a left A- and right EndC(Ag)-morphism.

Given any right B-module M , M ⊗B A is a right C-comodule via the
coaction

%M⊗BA : M ⊗B A→M ⊗B A⊗A C ∼= M ⊗B C, m⊗ a 7→ m⊗ ga.

This yields a functor − ⊗B A : MB → MC . Right adjoint to this is the
g-coinvariants functor HomC(Ag,−) : MC → MB .

For N ∈ MB the unit of the adjunction is given by

N → (N ⊗B A)coC , n 7→ n⊗ 1A,

and for M ∈ MC , the counit reads

M coC ⊗B A→M, m⊗ a 7→ ma.

1.8. Coring of a projective module. For R-algebras A,B, let P be
a (B,A)-bimodule that is finitely generated and projective as a right A-
module. Let p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗ = HomA(P,A) be a dual
basis for PA. Then the (B,B)-bimodule P ⊗A P ∗ is an algebra by the
isomorphism

P ⊗A P ∗ → EndA(P ), p⊗ f 7→ [q 7→ pf(q)],

and the (A,A)-bimodule P ∗⊗BP is an A-coring with coproduct and counit

∆ : P ∗ ⊗B P → (P ∗ ⊗B P )⊗A (P ∗ ⊗B P ), f ⊗ p 7→
∑

i f ⊗ pi ⊗ πi ⊗ p,

ε : P ∗ ⊗B P → A, f ⊗ p 7→ f(p).

As a special case, for the (A,A)-bimodule P = An, n ∈ N, P ∗⊗A P can be
identified with the n×n-matrices Mn(A) over A, endowed with an A-coring
structure (matrix coring).
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1.9. The Sweedler coring. Given an R-algebra morphism φ : B → A,
the tensor product C = A⊗B A is an A-coring with coproduct

∆ : C → C ⊗A C ' A⊗B A⊗B A, a⊗ a′ 7→ a⊗ 1A ⊗ a′,

and counit ε(a⊗ a′) = aa′. C is called the Sweedler A-coring associated to
the algebra (or ring) morphism φ : B → A. Clearly 1A ⊗ 1A is a grouplike
element in C.

Since A is finitely generated and projective as right A-module, in view
of 1.7 this is a special case of 1.8.

1.10. Entwining structures. Given an R-algebra A and an R-coalgebra
C one may think about compatibility conditions between these two struc-
tures. This led to the notion of a (right-right) entwining structure which is
given by an entwining map, that is, an R-module map ψ : C⊗RA→ A⊗RC

satisfying the conditions

(1) ψ ◦ (IC ⊗ µ) = (µ⊗ IC) ◦ (IA ⊗ ψ) ◦ (ψ ⊗ IA),

(2) (IA ⊗∆) ◦ ψ = (ψ ⊗ IC) ◦ (IC ⊗ ψ) ◦ (∆⊗ IA),

(3) ψ ◦ (IC ⊗ ι) = ι⊗ IC ,

(4) (IA ⊗ ε) ◦ ψ = ε⊗ IA.

Associated to any entwining structure (A,C, ψ) is the category of (right-
right) (A,C, ψ)-entwined modules denoted by MC

A(ψ). An object M ∈
MC

A(ψ) is a right A-module with multiplication %M and a right C-comodule
with coaction %M satisfying

%M ◦ %M = (%M ⊗ IC) ◦ (IM ⊗ ψ) ◦ (%M ⊗ IA),

and morphisms in MC
A(ψ) are maps which are right A-module as well as

right C-comodule morphisms.

Entwining structures were introduced in [7] in the context of gauge the-
ory on noncommutatice spaces. It then turned out that they are instances
of corings since - with the data given above - A ⊗R C is an A-coring with
(A,A)-bimodule struture

b(a′ ⊗ c)a = ba′ψ(c⊗ a), for a, a′, b ∈ A, c ∈ C,

coproduct ∆ = IA ⊗∆ and counit ε = IA ⊗ ε (see 32.6 in [9]). With this
correspondence the category MC

A(ψ) can be identified with the comodule
category MA⊗RC .
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1.11. Bialgebras and corings (see 33.1 in [9]). Let (B,∆B , εB) be an
R-bialgebra. Then B ⊗R B is a B-coring by the coproduct ∆ : IB ⊗ ∆B ,
the counit ε = IB ⊗ εB , and the (B,B)-bimodule structure

a(c⊗ d)b = (ac⊗ d)∆B(b) where a, b, c, d ∈ B.

With this structure the right B-Hopf modules can be identified with the
right B ⊗R B-comodules, that is, MB

B = MB⊗RB . Clearly 1B ⊗ 1B is a
grouplike element in B ⊗R B and the ring of B ⊗R B-covariants of B is
isomorphic to R.

1.12. Comodule algebras and corings (see 33.2 in [9]). Let (B,∆B , εB)
be an R-bialgebra. Then for a right B-comodule algebra A, A⊗R B is an
A-coring with coproduct ∆ = IA ⊗ ∆B , counit ε = IA ⊗ εB , and (A,A)-
bimodule structure

a(c⊗ b)d = (ac⊗ b)%A(d), for a, c, d ∈ A and b ∈ B.

Here the right relative (A,B)-Hopf modules are just the right A ⊗R B-
comodules, that is, MB

A = MA⊗RB .

1.13. Cointegrals. An (A,A)-bilinear map δ : C ⊗A C → C is called a
cointegral in C if

(IC ⊗ δ) ◦ (∆⊗ IC) = (δ ⊗ IC) ◦ (IC ⊗∆).

Cointegrals are characterised by the fact that for any M ∈ MC , the map

(IM ⊗ δ) ◦ (%M ⊗ IC) : M ⊗A C →M

is a comodule morphism (or by the corresponding property for left C-
comodules).

In [10], Section 5, these maps are related to the counit for the adjoint
pair of functors −⊗A C and the forgetful functor. For R-coalgebras C over
a commutative ring R with CR locally projective, a cointegral is precisely
a C∗-balanced R-linear map C ⊗R C → R (e.g., 6.4 in[9]).

Recall some properties of relative injectivity from [27], Section 2:

1.14. Relative injectivity. Let M ∈ MC and S = EndC(M).
M is (C, A)-injective provided the structure map %M : M →M ⊗A C is

split by a C-morphism λ : M ⊗A C →M .
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M is called strongly (C, A)-injective if this λ is C-colinear and S-linear.
Given a subring B ⊆ S, M is said to be B-strongly (C, A)-injective if λ is
C-colinear and B-linear.

M is called fully (C, A)-injective if there is a cointegral δM : C ⊗A C → C
such that %M is split by (IM ⊗ δM ) ◦ (%M ⊗ IC).

The notions for left C-comodules are defined symmetrically.

For R-coalgebras C, B-strongly (C,R)-injective comodules are named
B-equivariantly C-injective (see Definition 5.1 in [20]).

1.15. Fully (C, A)-injective comodules. Let M ∈ MC with S =
EndC(M).

(1) M is fully (C, A)-injective if and only if

(IM ⊗ δ̃M ) ◦ %M = IM where δ̃M = δM ◦∆ : C → A.

(2) C is a fully (C, A)-injective right (left) comodule if and only if C is a
coseparable coring.

(3) Let M be fully (C, A)-injective. Then:

(i) Every comodule in σ[M ] is fully (C, A)-injective.

(ii) If M is a subgenerator in MC then C is a coseparable coring.

(iii) For any subring B ⊂ S and X ∈ MB, X ⊗B M is fully (C, A)-
injective.

(iv) If MA is finitely generated and projective, then M∗ is a fully
(C, A)-injective left C-comodule.

2. Galois extensions and comodules

Classical Galois theory studies the action of a finite automorphism group G
on a field E and then considers E as extension of the subfield of the elements
which are left unchanged by the action of G. This can be understood as a
comodule situation (compare [19], Chapter 8).

2.1. Galois field extension. Let G be a finite automorphism group of
a field extension E ⊃ K and let F = EG be the fixed field of G. Thus
the group algebra K[G] acts on E and so its dual, the Hopf algebra H =
HomK(K[G],K) = K[G]∗ coacts on E.
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To describe this let G = {g1, . . . , gn} and choose {b1, . . . , bn} ⊂ E as
a basis of the F -vectorspace E. Denote by {p1, . . . , pn} ⊂ K[G]∗ the dual
basis to {g1, . . . , gn} ⊂ K[G]. Then E is a right K[G]∗-comodule by the
coaction

%E : E → E ⊗K K[G]∗, a 7→
n∑

i=1

(gi · a)⊗ pi,

and we can define the Galois map

γ : E ⊗F E → E ⊗K K[G]∗, a⊗ b 7→
n∑

i=1

a(gi · b)⊗ pi.

For any w =
∑

j aj ⊗ bj ∈ Ke γ, we have
∑

j,i aj(gi · bj) ⊗ pi = 0 and
by the independence of the p1, . . . , pn,

∑
j aj(gi · bj) = 0 for all i. Now

Dedekind’s lemma on the independence of automorphisms implies that all
aj = 0 and thus w = 0. This shows that γ is injective and for dimension
reasons it is in fact bijective.

Notice that the coinvariants of the K[G]∗-comodule E are

{a ∈ E |
n∑

i=1

(gi · a)⊗ pi = a⊗ ε} = EG,

since for each such a ∈ E and gi ∈ G, gi · a = (gi · a)pi(gi) = aε(gi) = a.

The definition of Hopf Galois extensions goes back to Chase-Harrison-
Rosenberg [11] where the classical Galois theory of fields was extended
to groups acting on commutative rings. This was generalised in Chase-
Sweedler [12] to coactions of Hopf algebras on commutative R-algebras
and then, in Kreimer-Takeuchi [17], to coactions on noncommutative R-
algebras.

2.2. Comodule algebras. Let H be a Hopf R-algebra and A a right
H-comodule algebra with structure map %A : A→ A⊗R H and B = AcoH .
Then B ⊂ A is called right H-Galois if the following map is bijective:

γ : A⊗B A→ A⊗H, a⊗ b 7→ (a⊗ 1)%A(b).

For examples and more information about such extensions we refer to
[19], Section 8. Further investigation on such structures were done in par-
ticular by Doi, Takeuchi and Schneider [14], [15], [21], [22], [23].
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Generalising results about the action of an affine algebraic group scheme
on an affine scheme the following theorem was proved in [21]. This shows
(again) that H-Galois extensions are closely related to modules inducing
equivalences.

Schneider’s Theorem. Let H be a Hopf algebra over a field R with
bijective antipode. Then for a right H-comodule algebra A and B = AcoH

the following are equivalent:

(a) B ⊂ A is a H-Galois extension and A is faithfully flat as a left
B-module;

(b) B ⊂ A is a H-Galois extension and A is faithfully flat as a right
B-module;

(c) −⊗B A : MB → MH
A is an equivalence;

(d) A⊗B − : BM → AMH is an equivalence.

Notice that the above theorem shows a left right symmetry which will
not be maintained in (most of) the subsequent generalisations.

As mentioned in 1.5, the (A,H)-Hopf modules can be generalised to
(A,D)-Hopf modules where D is a right H-module coalgebra yielding
the category M(H)D

A . If there is a grouplike element x ∈ D, then A

is in M(H)D
A and for any M ∈ M(H)D

A coinvariants can be defined as
HomD

A (A,M). Then B = HomD
A (A,A) is a subring of A and the inclusion

B ↪→ A is called a right Hopf-Galois extension provided the canonical map

A⊗B A→ A⊗R D, a⊗ b 7→ (a⊗ x)%A(b)

is bijective. For this setting an extension of Schneider’s Theorem is proved
by Menini and Zuccoli (see Theorem 3.29 in [18]).

2.3. Coalgebra-Galois extensions. Let C be an R-coalgebra and A an
R-algebra and a right C-comodule with coaction %A : A→ A⊗R C. Define
the coinvariants of A as

B = {b∈A | for all a∈A, %A(ba) = b%A(a)}.

The extension B ↪→ A is called a coalgebra-Galois extension (or a C-Galois
extension) if the following left A-module, right C-comodule map is bijective:

γ : A⊗B A→ A⊗R C, a⊗ a′ 7→ a%A(a′).



March 14, 2005 18:40 Proceedings Trim Size: 9in x 6in Nanjing˙proc

11

Notice that here the definition of covariants does not require the ex-
istence of a grouplike element in C and thus coalgebra-Galois extensions
are defined for arbitrary coalgebras. This notion was introduced in [6], fol-
lowing their appearance as generalised principal bundles in [7]. The main
geometric motivation for this was the need for principal bundles with coal-
gebras playing the role of a structure group. The main result Theorem
2.7 in [6] shows how coalgebra Galois extensions are related to entwining
structures.

Theorem. Let R be a field and A a C-Galois extension of B (as defined
above). Then there exists a unique entwining map ψ : C ⊗R A → A ⊗R C

such that A ∈ MC
A(ψ) with structure map %A.

2.4. Galois corings. Let C be an A-coring with a grouplike element g and
B = AcoC

g . Following Definition 5.3 in [4], (C, g) is called a Galois coring if
the canonical map

χ : A⊗S A→ C, a⊗ a′ 7→ aga′,

is an isomorphism (of corings). It was pointed out in [26] that this can be
seen as the evaluation map

HomC(Ag, C)⊗S A→ C, f ⊗ a 7→ f(a).

The following assertions are equivalent (4.6 in [26]):

(a) (C, g) is a Galois coring;

(b) for every (C, A)-injective comodule N ∈ MC, the evaluation

HomC(Ag, N)⊗B A→ N, f ⊗ a 7→ f(a),

is an isomorphism.

Notice that here the canonical isomorphism can be extended to related
isomorphisms for the class of all relative injective comodules.

The following is a one-sided generalization of Schneider’s theorem (see
4.8 in [26]).

The Galois Coring Structure Theorem.

(1) The following are equivalent:

(a) (C, g) is a Galois coring and BA is flat;

(b) AC is flat and Ag is a generator in MC.
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(2) The following are equivalent:

(a) (C, g) is a Galois coring and BA is faithfully flat;

(b) AC is flat and Ag is a projective generator in MC;

(c) AC is flat and HomC(Ag,−) : MC → MB is an equivalence
with inverse −⊗B A : MB → MC (cf. 1.7).

If the base ring A is injective as right A-module, then C is injective as
right C-comodule and thus (see 4.9 in [26]) we obtain the

Corollary. Assume A to be a right self-injective ring and let C be an
A-coring with grouplike element g.

(1) The following are equivalent:

(a) (C, g) is a Galois coring;

(b) for every injective comodule N ∈ MC, the evaluation

HomC(Ag, N)⊗B A→ N, f ⊗ a 7→ f(a),

is an isomorphism.

(2) The following are equivalent:

(a) (C, g) is a Galois coring and BA is (faithfully) flat;

(b) BA is (faithfully) flat and for every injective comodule N ∈ MC,
the following evaluation map is an isomorphism:

HomC(Ag, N)⊗B A→ N, f ⊗ a 7→ f(a).

2.5. Hopf algebras. Given an R-bialgebra B, by definition the B-coring
B ⊗R B is Galois provided the canonical map

γ : B ⊗R B → B ⊗R B, a⊗ b 7→ (a⊗ 1)∆(b)

is an isomorphism. Since bijectivity of this map is equivalent to the exis-
tence of an antipode (see 15.2 in [9]) we have:

For a bialgebra B the following are equivalent:

(a) B ⊗R B is a Galois B-coring;

(b) B is a Hopf algebra (has an antipode);

(c) HomB
B(B,−) : MB

B → MR is an equivalence (with inverse −⊗R B).

If (any of) these conditions hold, B is a projective generator in MB
B.
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The notion of Galois corings was extended to comodules by El Kaoutit
and Gómez-Torrecillas in [16], where to any bimodule SPA with PA finitely
generated and projective, a coring P ∗ ⊗S P was associated (see 1.8) and it
was shown that the map

ϕ : HomA(P,A)⊗S P ' HomC(P, C)⊗S P → C

is a coring morphism provided P is also a right C-comodule and S =
EndC(P ).

In [9], 18.25, such comodules P are termed Galois comodules provided
ϕ is bijective, and it is proved in [9], 18.26, that this condition implies that
the functors HomA(P,−)⊗SP and −⊗AC from MA to MC are isomorphic.

2.6. Galois comodules. Let P be a right C-comodule such that PA is
finitely generated and projective and let S = EndC(P ). Then P is called a
Galois comodule if the evaluation map

HomC(P, C)⊗S P → C, f ⊗m 7→ f(m),

is an isomorphism of right C-comodules.

Considering P ∗ ⊗S P as an A-coring (via 1.8), the following are equiv-
alent:

(a) P is a Galois comodule;

(b) there is a (coring) isomorphism

P ∗ ⊗S P → C, ξ ⊗m 7→
∑

(ξ ⊗ IC) %P (m);

(c) for every (C, A)-injective comodule N ∈ MC, the evaluation

HomC(P,N)⊗S P → N, f ⊗m 7→ f(m),

is a (comodule) isomorphism;

(d) for every right A-module X, the map

HomA(P,X)⊗S P → X ⊗A C, g ⊗m 7→ (g ⊗ IC) %P (m),

is a (comodule) isomorphism.

The next theorem - partially proved in [16] - shows which additional
conditions on a Galois comodule are sufficient to make it a (projective)
generator in MC (see 18.27 in [9]).
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The Galois comodule structure theorem.

(1) The following are equivalent:

(a) P is a Galois comodule and SP is flat;

(b) AC is flat and P is a generator in MC.

(2) The following are equivalent:

(a) M is a Galois comodule and SP is faithfully flat;

(b) AC is flat and P is a projective generator in MC;

(c) AC is flat and HomC(P,−) : MC → MS is an equivalence with
the inverse −⊗S P : MS → MC.

These Galois comodules are further investigated in Brzeziński [5] and
their relevance for descent theory, vector bundles, and non-commutative
geometry is pointed out there. In particular principal comodules are con-
sidered, that is, Galois comodules in the above sense which are projective
as modules over their endomorphism rings. Related questions are, for ex-
ample, also considered by Caenepeel, De Groot and Vercruysse in [10].

3. General Galois comodules

Recall that for a Galois C-comodule P in the sense of 2.6 (where PA is
finitely generated and projective) the functors −⊗AC and HomA(P,−)⊗SP

are isomorphic. In [27] it is suggested to take this property as definition
without further condition on the A-module structure of P .

Throughout this section let C be an A-coring, P ∈ MC and S =
EndC(P ), T = EndA(P ).

3.1. Galois comodules. We call P a Galois comodule if

−⊗A C ' HomA(P,−)⊗S P as functors : MA → MC .

The following are equivalent ([27], 2.1):

(a) P is a Galois comodule;

(b) HomA(P,−) ⊗S P is right adjoint to the forgetful functor MC →
MA, that is, for K ∈ MA and M ∈ MC, there is a (bifunctorial)
isomorphism

HomC(M,HomA(P,K)⊗S P ) → HomA(M,K);
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(c) for any K ∈ MA there is a functorial isomorphism of comodules

HomA(P,K)⊗S P → K ⊗A C, g ⊗ p 7→ (g ⊗ IC)%P (p);

(d) for every (C, A)-injective N ∈ MC,

HomC(P,N)⊗S P → N, f ⊗ p 7→ f(p),

is an isomorphism (in MC).

These comodules have good properties (see 2.2 in [27]):

3.2. Isomorphisms for Galois comodules. Let P ∈ MC be a Galois
comodule.

(1) For any (C, A)-injective N ∈ MC, there is a canonical isomorphism

HomC(P,N) → HomC(P,HomC(P,N)⊗S P ).

(2) For any K ∈ MA, there is a canonical isomorphism

HomA(P,K) → HomC(P,HomA(P,K)⊗S P ).

(3) There are right C-comodule isomorphisms

HomC(P, C)⊗S P ' C ' HomA(P,A)⊗S P.

(4) There is a T -linear isomorphism

T ⊗S P → P ⊗A C, t⊗ p 7→ (t⊗ IC)%P (p).

(5) For any K ∈ MA and index set Λ,

HomC(P, (K ⊗A C)Λ)⊗S P ' HomA(P,K)Λ ⊗S P ' KΛ ⊗A C.

It is clear from the definition that (C, A)-injective modules are of par-
ticular interest in this setting (see 2.3 in [27]):

3.3. (C, A)-injective modules. Let P be a Galois comodule.

(1) For N ∈ MC the following are equivalent:

(a) N is (C, A)-injective;

(b) HomC(P, %N ) : HomC(P,N) → HomC(P,N ⊗A C) is a coretrac-
tion in MS.

(2) For P the following are equivalent:

(a) P is (C, A)-injective;
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(b) the inclusion S ↪→ T is split by a right S-linear map.

(3) For P the following are equivalent:

(a) P is strongly (C, A)-injective;

(b) the inclusion S ↪→ T is split by an (S, S)-bilinear map.

(4) For P the following are equivalent:

(a) P is fully (C, A)-injective;

(b) C is a coseparable A-coring.

Notice that so far we did not make any assumptions neither on the A-
module nor on the S-module structure of P . Of course special properties
of this type influence the behaviour of Galois comodules. For the S-module
structure we get (see 4.8 in [27]):

3.4. Module properties of SP . Let P ∈ MC be a Galois comodule.

(1) If SP is finitely generated, then AC is finitely generated.

(2) If SP is finitely presented, then AC is finitely presented.

(3) If SP is projective, then AC is projective.

(4) If TP is finitely generated and SP is locally projective, then AC is
locally projective.

(5) If SP is flat, then AC is flat and P is a generator in MC.

(6) If SP is faithfully flat, then AC is flat and P is a projective generator
in MC.

If AC is flat as an A-module then MC is a Grothendieck category (see
18.14 in [9]) and the endomorphism ring of any semisimple right C-comodule
is a (von Neumann) regular ring. This implies part of the next proposition
(see 4.11 in [27]).

3.5. Semisimple Galois comodules. Assume AC to be flat. For a
semisimple right C-comodule P , the following are equivalent:

(a) P is a Galois comodule;

(b) P is a generator in MC;

(c) µC : HomC(P, C)⊗S P → C is surjective.

In this case C is a right semisimple coring (and AC is projective).
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Recall that P ∗ ⊗S P has a coring structure provided PA is finitely gen-
erated and projective (see 1.8). Moreover, P ∗ = HomA(P,A) is a left
C-comodule canonically and we have a left-right symmetry for Galois co-
modules (see 5.3 in [27]):

3.6. Galois comodules with PA f.g. projective. Assume PA to be
finitely generated and projective. Then the following are equivalent:

(a) P is a Galois right C-comodule;

(b) HomC(P, C)⊗R P ' C as right C-comodule;

(c) P ∗ is a Galois left C-comodule;

(d) CHom(P ∗, C)⊗ P ∗ ' C as left C-comodule;

(e) P ∗ ⊗S P ' C as A-corings.

In case A is a C-comodule, that is, there is a grouplike element g ∈ C,
and S = EndC(A), it is a Galois (right) comodule ((C, g) is a Galois coring)
if and only if the map

A⊗S A→ C, a⊗ a′ 7→ aga′,

is an isomorphism. Under the given conditions, A⊗S A has a canonical co-
ring structure (Sweedler coring, 1.9) and the map is a coring isomorphisms
(see 28.18 in [9]).

At various places we have observed a nice behaviour of strongly (C, A)-
injective comodules. For Galois comodules this property is symmetric in
the following sense - an observation also proved in [5], Theorem 7.2.

3.7. Strongly (C, A)-injective Galois comodules. Let P be a Galois
comodule with PA finitely generated and projective. Then the following are
equivalent:

(a) P is strongly (C, A)-injective;

(b) P ∗ is strongly (C, A)-injective;

(c) the inclusion S ↪→ T is split by an (S, S)-bilinear map.

Proof. This follows from 3.3 and symmetry.

Finally we consider various conditions which imply that a Galois co-
module induces an equivalence (see 5.7 in [27]).
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3.8. Equivalences. Let P ∈ MC be a Galois comodule with PA finitely
generated and projective. Then

HomC(P,−) : MC → MS

is an equivalence with inverse functor −⊗S P provided that

(i) P is strongly (C, A)-injective, or

(ii) P ∗ is (C, A)-injective and SP is flat, or

(iii) P ∗ is coflat and SP is flat, or

(iv) C is a coseparable coring.

3.9. Remarks. (1) Entwining structures can be considered as corings and
hence the assertions in 3.3 may be compared with Lemma 4.1 and Remarks
4.2 and 5.3 in Schauenburg and Schneider [20].

(2) Weak Galois corings are considered in [25], 2.4. For such corings the
action of A on C is not required to be unital.

(3) For a deeper study of weak entwining and weak coalgebra-Galois
extensions the reader may consult Brzeziński, Turner and Wrightson [8].

(4) For recent investigation of the Galois theory for Hopf algebroids we
refer to Böhm [1].

Acknowledgement. The author appreciates useful remarks on the
manuscript by Tomasz Brzeziński.
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