
REGULAR PAIRINGS OF FUNCTORS AND WEAK (CO)MONADS

ROBERT WISBAUER

Abstract. For functors L : A→ B and R : B→ A between any categories A and B, a
pairing is defined by maps, natural in A ∈ A and B ∈ B,

MorB(L(A), B)
α // MorA(A,R(B))
β

oo .

(L,R) is an adjoint pair provided α (or β) is a bijection. In this case the composition

RL defines a monad on the category A, LR defines a comonad on the category B, and

there is a well-known correspondence between monads (or comonads) and adjoint pairs
of functors.

For various applications it was observed that the conditions for a unit of a monad was

too restrictive and weakening it still allowed for a useful generalised notion of a monad.
This led to the introduction of weak monads and weak comonads and the definitions

needed were made without referring to this kind of adjunction. The motivation for the

present paper is to show that these notions can be naturally derived from pairings of
functors (L,R, α, β) with α = α·β·α and β = β·α·β. Following closely the constructions

known for monads (and unital modules) and comonads (and counital comodules), we
show that any weak (co)monad on A gives rise to a regular pairing between A and the

category of compatible (co)modules.
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1. Introduction

Similar to the unit of an algebra, the existence of a unit of a monad is essential for
(most of) the interesting properties of the related structures. Yet, there are numerous
applications for which the request for a unit of a monad is too restrictive. Dropping the
unit completely makes the theory fairly poor and the question was how to weaken the
conditions on a unit such that still an effective theory can be developped. The interest in
these questions was revived, for example, by the study of weak Hopf algebras by G. Böhm
et al. in [6] and weak entwining structures by S. Caenepeel et al. in [9] (see also [1], [8]).
To handle this situation the theory of weak monads and comonads was developped and we
refer to [3] for a recent account on this theory.

On any category, monads are induced by a pair of adjoint functors and, on the other
hand, any monad (F, µ, η) induces an adjoint pair of functors, the free functor φF : A→ AF
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and the forgetful functor UF : AF → A, where AF denotes the catgeory of unital F -
modules. This is all shown in Eilenberg-Moore [10].

In this correspondence the unitality of the monad is substantial and the purpose of the
present paper is to exhibit a similar relationship between weak (co)monads and generalised
forms of adjunctions. To this end, for functors L : A→ B and R : B→ A between categories
A and B, we consider maps

MorB(L(A), B)
α // MorA(A,R(B))
β
oo ,

required to be natural in A ∈ A and B ∈ B. We call this a pairing of functors, or a full
pairing if we want to stress that we have maps in both directions. Such a pairing is said
to be regular provided α and β are regular maps, more precisely,

α = α · β · α and β = β · α · β.

In Section 2, regular pairings of functors are defined and some of their general properties
are described.

Motivated by substructures showing up in pairings of funcoter, in Section 3.1, q-unital
monads (F, µ, η) on A are defined as endofunctors F : A→ A with natural transformations
µ : FF → F and η : IA → F (quasi-unit) and the sole condition that µ is associative.
(Non-unital) F -modules are defined by morphisms % : F (A)→ A satisfying % ◦ µ = % ◦F%,
and the category of all F -modules is denoted by A−→F . For these data the free and forgetful

functors,

φF : A→ A−→F and UF : A−→F → A.

give rise to a full pairing. From this we define regularity of η and compatibility for the
F -modules. The q-unital monad (F, µ, η) is said to be r-unital (short for regular-unital)
provided η is regular and µ is compatible as an F -module. Now the free functor φF : A→
AF with the forgetful functor UF : AF → A form a regular pairing, where AF denotes the
(sub)category of compatible F -modules.

The dual notions for (non-counital) comonads are outlined in Section 4 and at the end
of the section the comparison functors for a regular pairing (L,R, α, β) are considered (see
4.10).

In Section 5 we study the lifting of functors between categories to the corresponding
categories of compatible modules or compatible comodules, respectively. This is described
by generalising Beck’s distributive laws (see [2]), also called entwinings, and it turns out
that most of the diagrams are the same as for the lifting to unital modules (e.g. [22])
but to compensate the missing unitality extra conditions are imposed on the entwining
natural transformation (e.g. Proposition 5.2). In this context we obtain a generalisation
of Applegate’s lifting theorem for (co)monads to weak (co)monads (Theorem 5.4, 5.8).

Lifting an endofunctor T of A to an endofunctor T of AF leads to the question when
T is a weak monad (TF allows for the structure of a weak monad) and in Section 6 we
provide conditions to make this happen.

The final Section 7 is concerned with weak monads (F, µ, η) and weak comonads (G, δ, ε)
on any category A and the interplay between the respective lifting properties. Hereby

properties of the lifting G to AF and the lifting F̂ to AG are investigated (see Theorems
7.9 and 7.10) which generalise observations known for weak bi-algebras (and weak Hopf
algebras).

In our setting, notions like pre-units, pre-monads, weak monads, demi-monads, pre-A-
corings, weak corings, weak Hopf algebras from the literature (e.g. [1], [3], [7], [4], [21]) find
their natural environment.

In the framework of 2-categories weak structures are investigated by Böhm et al. in [3],
[4] and an extensive list of examples of weak structures is given there.
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2. Pairings of functors

Throughout A and B will denote arbitrary categories. By IA, A or just by I, we
denote the identity morphism of an object A ∈ A, IF or F stands for the identity natural
transformation on the functor F , and IA means the identity functor of a category A. We
write F−,− for the natural transformation of bifunctors determined by the maps FA,A′ :
MorA(A,A′)→ MorB(F (A), F (A′)) for A,A′ ∈ A.

Before considering regularity for natural transformations we recall basic properties of

2.1. Regular morphisms. Let A,A′ be any objects in a category A. Then a morphism
f : A → A′ is called regular provided there is a morphism g : A′ → A with fgf = f .
Clearly, in this case gf : A→ A and fg : A′ → A′ are idempotent endomorphisms.

Such a morphism g is not necessarily unique. In particular, for gfg we also have
f(gfg)f = fgf = f , and the identity (gfg)f(gfg) = gfg shows that gfg is again a
regular morphism.

If idempotents split in A, then every idempotent morphism e : A → A determines a
subobject of A, we denote it by eA.

If f is regular with fgf = f , then the restriction of fg is the identity morphism on fgA′

and gf is the identity on gfA.
Examples for regular morphisms are retractions, coretractions, and isomorphisms. For

modules M,N over any ring, a morphism f : M → N is regular if and only if the image
and the kernel of f are direct summands in N and M , respectively.

This notion of regularity is derived from von Neumann regularity of rings. For modules
(and in preadditive categories) it was considered by Nicholson, Kasch, Mader and others
(see [14]). We use the terminology also for natural transformations and functors with
obvious interpretations.

2.2. Pairing of functors. (e.g. [19, 2.1]) Let L : A → B and R : B → A be covariant
functors. Assume there are morphisms, natural in A ∈ A and B ∈ B,

α : MorB(L(A), B)→ MorA(A,R(B)),

β : MorA(A,R(B))→ MorB(L(A), B).

These maps correspond to natural transformations between functors Aop × B→ Set. The
quadruple (L,R, α, β) is called a (full) pairing (of functors).

Given such a pairing, the morphisms, for A ∈ A, B ∈ B,

ηA := αA,L(A)(I) : A→ RL(A) and εB := βR(B),B(I) : LR(B)→ B

correspond to natural transformations

η : IA → RL, ε : LR→ IB,

which we call quasi-unit and quasi-counit of (L,R, α, β), respectively.
From these the transformations α and β are obtained by

αA,B : L(A)
f−→ B 7−→ A

ηA−→ RL(A)
R(f)−→ R(B),

βA,B : A
g−→ R(B) 7−→ L(A)

L(g)−→ LR(B)
εB−→ B.

Thus the pairing (L,R, α, β) is also described by the quadruple (L,R, η, ε).

Naturality of ε and η induces an associative product and a quasi-unit for the endofunctor
RL : A→ A,

RεL : RLRL→ RL, η : IA → RL,

and a coassociative coproduct and a quasi-counit for the endofunctor LR : B→ B,

LηR : LR→ LRLR, ε : LR→ IB.

By the Yoneda Lemma we can describe compositions of α and β by the images of the
identity transformations of the respective functors.
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2.3. Composing α and β. Let (L,R, α, β) be a pairing with quasi-unit η and quasi-counit
ε. The descriptions of α and β in 2.2 yield, for the identity transformations IL : L → L,
IR : R→ R,

α(IL) = IA
η−→ RL,

β · α(IL) = L
Lη−→ LRL

εL−→ L,

α · β · α(IL) = IA
η−→ RL

RLη−→ RLRL
RεL−→ RL,

β(IR) = LR
ε−→ IB,

α · β(IR) = R
ηR−→ RLR

Rε−→ R,

β · α · β(IR) = LR
LηR−→ LRLR

LRε−→ LR
ε−→ IB.

The following morphisms will play a special role in what follows.

2.4. Natural endomorphisms. With the notions from 2.2, we define the natural trans-
formations

ϑ := R(βα(IL)) : RL
RLη // RLRL

RεL // RL,

ϑ := αβ(R(IL)) : RL
ηRL // RLRL

RεL // RL,

γ := L(αβ(IR)) : LR
LηR // LRLR

LRε // LR,

γ := βα(L(IR)) : LR
LηR // LRLR

εLR // LR,

which have the properties

RεL ·RLϑ = ϑ ·RεL, RεL · ϑRL = ϑ ·RεL, ϑ · ϑ = ϑ · ϑ;

LRγ · LηR = LηR · γ, γLR · LηR = LηR · γ, γ · γ = γ · γ.

2.5. Definitions. Let (L,R, α, β) be a pairing (see 2.2). We call

α regular if α · β · α = α;
α symmetric if ϑ = ϑ.

β regular if β · α · β = β;

β symmetric if γ = γ;
(L,R, α, β) regular if α = α · β · α and β = β · α · β.

The following properties are easy to verify:

(i) If α is regular, then β · α(IL), ϑ and ϑ are idempotent and ϑ · η = η = ϑ · η;
furthermore, for β′ := β · α · β, (L,R, α, β′) is a regular pairing.

(ii) If β is regular, then α · β(IR), γ and γ are idempotent and ε · γ = ε = ε · γ;
furthermore, for α′ := α · β · α, (L,R, α′, β) is a regular pairing.

Any pairing (L,R, α, β) with β · α = I or α · β = I is regular. The second condition
defines the semiadjoint functors in Medvedev [16].

With manipulations known from ring theory one can show how pairings with regular
components can be related with adjunctions provided idempotents split.

2.6. Related adjunctions. Let (L,R, α, β) be a pairing (with quasi-unit η, quasi-counit
ε) and assume α to be regular.

If the idempotent h := β · α(IL) : L
Lη−→ LRL

εL−→ L splits, that is, there are a functor
L : A→ B and natural transformations

p : L→ L, i : L→ L with i · p = h and p · i = IL,
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then the natural transformations

η : IA
η // RL

Rp // RL , ε : LR
iR // LR

ε // IB ,

as quasi-unit and quasi-counit, define a pairing (L,R, α, β) with β · α = I.

If α · β = I, then (L̂, R, α, β) is an adjunction.

In case the natural transformation β is regular, similar constructions apply if we assume

that the idempotent α · β(IR) : R
ηR−→ RLR

Rε−→ R splits.

The properties of the (RL,RεRη) and (LR,LηR, ε) mentioned in 2.2 motivate the defi-
nitions in the next section.

3. Monads and modules

3.1. q-unital monads and their modules. We call (F, µ) a functor with product (or
non-unital monad) provided F : A→ A is an endofunctor on a category A and µ : FF → F
is a natural transformation satisfying the associativity condition µ · Fµ = µ · µF .

For (F, µ), a (non-unital) F -module is defined as an object A ∈ A with a morphism
% : F (A)→ A in A satisfying % · F% = % · µA.

Morphisms between F -modules (A, %), (A′, %′) are morphisms f : A → A′ in A with
%′ · F (f) = f · %. The set of all these is denoted by MorF (A,A′). With these morphisms,
(non-unital) F -modules form a category which we denote by A−→F .

By the associativity condition on µ, for every A ∈ A, (F (A), µA) is an F -module and
this leads to the free functor and the forgetful functor,

φF : A→ A−→F , A 7→ (F (A), µA), UF : A−→F → A, (A, %) 7→ A.

A triple (F, µ, η) is said to be a q-unital monad on A provided (F, µ) is a functor with
product and η : IA → F is any natural transformation, called a quasi-unit (no additional
properties are required). One always can define natural transformations

ϑ : F
Fη−→ FF

µ−→ F, ϑ : F
ηF−→ FF

µ−→ F.

Note that for any A ∈ A, ϑA is in AF and ϑA is not necessarily so.
Given q-unital monads (F, µ, η), (F ′, µ′, η′) on A, a natural transformation h : F → F ′

is called a morphism of q-unital monads if

µ′ · hh = h · µ and η′ = h · η.

The existence of a quasi-unit allows the following generalisation of the Eilenberg-Moore
construction for (unital) monads.

3.2. q-unital monads and pairings. For a q-unital monad (F, µ, η) we obtain a pairing
(φF , UF , αF , βF ) with the maps, for A ∈ A, (B, %) ∈ A−→F ,

αF : MorF (φF (A), B)→ MorA(A,UF (B)), f 7→ f · ηA,
βF : MorA(A,UF (B))→ MorF (φF (A), B), g 7→ % · F (g).

The quasi-unit η is called regular if αF is regular, that is,

IA
η−→ F = IA

η−→ F
Fη−→ FF

µ−→ F,

and we say η is symmetric if αF is so, that is, ϑ = ϑ.

An F -module % : F (A)→ A in A−→F is said to be compatible if βFαF (%) = %, that is

F (A)
%−→ A = F (A)

FηA−→ FF (A)
µA−→ F (A)

%−→ A.

In particular, the natural transformation µ : FF → F is compatible if

FF
µ−→ F = FF

FηF−→ FFF
µF−→ FF

µ−→ F.
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It is easy to see that this implies

FF
ϑϑ−→ FF

µ−→ F = FF
µ−→ F.

Let AF denote the full subcategory of A−→F made up by the compatible F -modules. If µ is

compatible, the image of the free functor φF lies in AF and (by restriction or corestriction)
we get the functor pair (keeping the notation for the functors)

φF : A→ AF , UF : AF → A,

and a pairing (φF , UF , αF , βF ) between A and AF .
Since for (A, %) in A−→F , βF (IUF (A)) = %, the compatibility condition on % implies that

β · α · β(%) = β(%), i.e., β is regular in (φF , UF , αF , βF ) when restricted to AF .

3.3. Definition. A q-unital monad (F, η, µ) is called

r-unital if η is regular and µ is compatible;
weak monad if (F, η, µ) is r-unital and η is symmetric.

Summarising the observations from 3.2 we have:

3.4. Proposition. Let (F, µ, η) be a q-unital monad.

(1) The following are equivalent:

(a) (F, µ, η) is an r-unital monad;

(b) (φF , UF , αF , βF ) is a regular pairing of functors between A and AF .

(2) The following are equivalent:

(a) (F, µ, η) is weak monad;

(b) (φF , UF , αF , βF ) is a regular pairing between A and AF with αF symmetric.

A quasi-unit η that is regular and symmetric is named pre-unit in the literature (e.g.
[11, Definition 2.3]); for the notion of a weak monad (also called demimonad) see e.g. [3],
[4]. In case η is a unit, q-unital monads, r-unital monads and weak monads all are (unital)
monads. In (non-unital) algebras over commutative rings, r-unital monads are obtained
from idempotents while weak monads correspond to central idempotents (see 3.7).

3.5. Properties of weak monads. Let (F, µ, η) be a weak monad.

(i) ϑ : F → F is a morphism of q-unital monads;

(ii) for any (A,ϕ) ∈ AF ,

F (A)
ϕ−→ A = F (A)

ϕ−→ A
ηA−→ F (A)

ϕ−→ A

and A
ηA−→ F (A)

ϕ−→ A is an idempotent F -morphism.

In a q-unital monad (F, µ, η), if η is regular, a compatible multiplication for F can be
found. More precisely one can easily show:

3.6. Proposition. Let (F, µ, η) be a q-unital monad.

(1) If η is regular, then, for µ̃ := µ ·Fµ ·µFηF : FF → F , (F, µ̃, η) is an r-unital monad.

(2) If µ is compatible, then, for η̃ := µ · Fη · η : IA → F , (F, µ, η̃) is an r-unital monad.

(3) If (F, µ, η) is an r-unital monad, then for

µ̂ : FF
ηFFη−→ FFFF

µFF−→ FFF
µF−→ FF

µ−→ F,

(F, µ̂, η) is a weak monad.

As a special case, we consider q-unital monads on the category RM of modules over a
commutative ring R with unit. In the terminology used here this comes out as follows.
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3.7. Non-unital algebras. A q-unital R-algebra (A,m, u) is a non-unital R-algebra
(A,m) with some R-linear map u : R→ A. Put e := u(1R) ∈ A. Then:

(1) u is regular if and only if e is an idempotent in A.

(2) u is regular and symmetric if and only if e is a central idempotent (then Ae is a unital
R-subalgebra of A).

(3) µ is compatible if and only if ab = aeb for all a, b ∈ A.

(4) If u is regular, then m̃(a⊗b) := aeb, for a, b ∈ A, defines an r-unital algebra (A, m̃, u)
(m̃ and u are regular).

(5) If u is regular, then m̂(a ⊗ b) := eaebe, for a, b ∈ A, defines an r-unital algebra
(A, m̂, u) with u symmetric.

Clearly, the q-unital algebras (A,m, u) over R correspond to the q-unital monads given
by (A⊗R −,m⊗−, u⊗−) on RM.

For an A-module % : A ⊗M → M , writing as usual %(a ⊗m) = am, the compatibiliy
condition comes out as am = aem for all a ∈ A, m ∈M .

3.8. Monads acting on functors. Let T : A→ B be a functor and (G,µ′, η′) a q-unital
monad on B. We call T a left G-module if there exists a natural transformation % : GT → T
such that

GGT
G%−→ GT

%−→ T = GGT
µ′T−→ GT

%−→ T,

and we call it a compatible G-module if in addition

GT
%−→ T = GT

Gη′−→ GGT
µ′T−→ GT

%−→ T.

3.9. Proposition. Let T : A→ B be a functor and (G,µ′, η′) a weak monad on B. Then
the following are equivalent:

(a) there is a functor T : A→ BG with T = UGT ;

(b) T is a compatible G-module.

Proof. (b)⇒(a) Given T as a compatible G-module with % : GT → T , a functor with
the required properties is

T : A→ BG, A 7→ (T (A), %A : GT (A)→ T (A)).

(a)⇒(b) For any A ∈ A, there are morphisms ρA : GT (A) → T (A) and we claim that
these define a natural transformation ρ : GT → T . For this we have to show that, for any

morphism f : A→ Â, the middle rectangle is commutative in the diagram

GGT (A)
µ′T (A) // GT (A)

GT (f)

��

ρA

zzuuuuuuuuu

GT (A)

Gη′TA

OO

GT (f)

��

ρA // T (A)

T (f)

��
GT (Â)

Gη′TÂ

��

ρÂ // T (Â)

GGT (Â)
µ′
T (Â) // GT (Â).

ρÂ

ccHHHHHHHHH

The top and bottom diagrams are commutative by compatibility of the G-modules, the
right trapezium is commutative since T (f) is a G-morphism, and the outer paths commute
by symmetry of η′. Thus the inner diagram is commutative showing naturality of ρ. tu
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4. Comonads and comodules

In this section we sketch the transfer of the constructions for monads to comonads.

4.1. q-counital comonads and their comodules. A functor with coproduct (or non-
counital comonad) is a pair (G, δ) where G : A→ A is an endofunctor and δ : G→ GG is
a natural transformation subject to the coassociativity condition Gδ · δ = δG · δ.

For (G, δ), a (non-counital) G-comodule is defined as an object A ∈ A with a morphism
υ : A→ G(A) in A such that Gυ · υ = δA · υ.

Morphisms between G-comodules (A, υ), (A′, υ′) are morphisms g : A→ A′ in A satis-

fying υ′ · g = G(g) · υ, and the set of all these is denoted by MorG(A,A′). With these
morphisms, (non-counital) G-comodules form a category which we denote by A−→

G. For this

there are the obvious free and forgetful functors

φG : A→ A−→
G, UG : A−→

G → A.

A triple (G, δ, ε) is said to be a q-counital comonad provided (G, δ) is a functor with
coproduct and ε : G → IA is any natural transformation, called a quasi-counit. One can
always define natural transformations

γ : G
δ−→ GG

Gε−→ G, γ : G
δ−→ GG

εG−→ G.

Morphisms of q-counital comonads are defined in an obvious way (dual to 3.1).

4.2. q-counital comonads and pairings. For (G, δ, ε), the functors φG and UG allow
for a pairing (UG, φG, αG, βG) where, for A ∈ A and (B, υ) ∈ A−→

G,

αG : MorA(UG(B), A)→ MorG(B,φG(A)), f 7→ G(f) · υ,
βG : MorG(B,φG(A))→ MorA(UG(B), A), g 7→ εA · g.

The quasi-counit ε is called regular if βG is regular, that is,

G
ε−→ IA = G

δ−→ GG
Gε−→ G

ε−→ IA,

and we say η is symmetric provided φG is so, that is γ = γ.

A (non-counital) G-comodule (B, υ) is said to be compatible provided αGβG(υ) = υ,
that is

B
υ−→ G(B) = B

υ−→ G(B)
δB−→ GG(B)

GεB−→ G(B).

In particular, δ is compatible if

G
δ−→ GG = G

δ−→ GG
δG−→ GGG

GεG−→ GG.

This obviously implies

G
δ−→ GG = G

δ−→ GG
γγ
−→ GG.

By AG we denote the full subcategory of A−→
G whose objects are compatible G-comodules.

If δ is compatible, the image of the free functor φG lies in AG and (by restriction and
corestriction) we obtain the functor pairing (keeping the notation for the functors)

φG : A→ AG, UG : AG → A,
leading to a pairing (UG, φG, αG, βG) between A and AG.

Since for (B, υ) in A−→
G, αG(IUG(B)) = υ, the compatibility condition on υ implies that

αG · βG · αG(υ) = αG(υ), i.e., α is regular in (UG, φG, αG, βG) when restricted to AG.

4.3. Definition. A q-counital comonad (G, δ, ε) is called

r-counital if ε is regular and δ is compatible;
weak comonad if it is r-counital and ε is symmetric.

From the constructions above we obtain:
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4.4. Proposition. Let (G, δ, ε) be a q-counital comonad.

(1) The following are equivalent:

(a) (G, δ, ε) is an r-counital comonad;

(b) (UG, φG, αG, βG) is a regular pairing of functors between A and AG.

(2) The following are equivalent:

(a) (G, δ, ε) is weak comonad;

(b) (UG, φG, αG, βG) is a regular pairing of functors between A and AG with βG

symmetric.

Similar to the situation for modules, for any (counital) comonad (G, δ, ε), all non-counital

G-comodules are compatible (i.e., A−→
G = AG).

4.5. Properties of weak comonads. Let (G, δ, ε) be a weak comonad.

(i) γ : G→ G is an idempotent morphism of q-counital comonads;

(ii) for any (B, υ) ∈ AG,

B
υ−→ G(B) = B

υ−→ G(B)
εB−→ B

υ−→ G(B)

and B
υ−→ G(B)

εB−→ B is an idempotent G-morphism.

Properties of pairings can improved in the following sense.

4.6. Proposition. Let (G, δ, ε) be a q-counital comonad.

(1) If ε is regular, then, for δ̃ : G
δ−→ GG

Gδ−→ GGG
GεG−→ GG, (G, δ̃, ε) is an r-counital

comonad.

(2) If δ is compatible, then, for ε̃ : G
δ−→ GG

Gε−→ G
ε−→ IA, (G, δ, ε̃) is an r-counital

comonad.

(3) If (G, δ, ε) is a regular quasi-comonad, then, for

δ̂ : G
δ−→ GG

Gδ−→ GGG
GGδ−→ GGGG

εGGε−→ GG,

(G, δ̂, ε) is a weak comonad.

As a special case, consider non-counital comonads on the category RM of modules over
a commutative ring R with unit. In our terminology this comes out as follows.

4.7. Non-counital coalgebras. A q-counital coalgebra (C,∆, ε) is a non-counital R-
coalgebra (C,∆) with some R-linear map ε : C → R. Writing ∆(c) =

∑
c1 ⊗ c2 for c ∈ C,

we have:

(1) ε is regular if and only if for any c ∈ C, ε(c) =
∑
ε(c1)ε(c2).

(2) ε is symmetric if and only if
∑
c1ε(c2) =

∑
ε(c1)c2.

(3) ∆ is compatible if and only if ∆(c) =
∑
c1 ⊗ c2ε(c3).

(4) If ε is regular, then ∆̃(c) :=
∑
c1 ⊗ ε(c2)c3 defines an r-counital coalgebra (C, ∆̃, ε).

(5) If (C,∆, ε) is an r-counital comonad, then ∆̂(c) :=
∑
ε(c1)c2 ⊗ c3ε(c4) defines an

r-counital coalgebra (C, ∆̂, ε) with ε symmetric.

Clearly, the q-counital coalgebras (C,∆, ε) over R correspond to the q-counital comonads
given by (C ⊗R −,∆ ⊗ −, ε ⊗ −) on RM. From this the compatibility conditions for C-
comodules are derived (see 4.2).

4.8. Weak corings and pre-A-corings. Let A be a ring with unit 1A and C a non-unital
(A,A)-bimodule which is unital as right A-module. Assume there are (A,A)-bilinear maps

∆ : C → C ⊗A C, ε : C → A,
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where ∆ is coassociative.
(C,∆, ε) is called a right unital weak A-coring in [21], provided for all c ∈ C,

(ε⊗ IC) ·∆(c) = 1A · c = (IC ⊗ ε) ·∆(c),

which reads in (obvious) Sweedler notation as
∑
ε(c1)c2 = 1A · c =

∑
c1ε(c2).

From the equations

(IC ⊗ ε⊗ IC) · (IC ⊗∆) ·∆(c) =
∑
c1 ⊗ 1A · c2 =

∑
c1 ⊗ c2 = ∆(c),

(IC ⊗ ε⊗ IC) · (∆⊗ IC) ·∆(c) =
∑

1A · c1 ⊗ c2 = 1A ·∆(c),

it follows by coassociativity that 1A ·∆(c) = ∆(c). Summarising we see that, in this case,
(C,∆, ε) induces a weak comonad on the category AM−→ of left non-unital A-modules (=AM
since A has a unit).

(C,∆, ε) is called an A-pre-coring in [7, Section 6], if

(ε⊗ IC) ·∆(c) = c, (IC ⊗ ε) ·∆(c) = 1A · c,
which reads (in Sweedler notation) as c =

∑
ε(c1)c2, 1A · c =

∑
c1ε(c2).

Similar to the computation above we obtain that 1A ·∆(c) = ∆(c). Now (C,∆, ε) induces
an r-counital comonad on AM−→ but ε is not symmetric.

Notice that in both cases considered above, restriction and corestriction of ∆ and ε yield
an A-coring (AC,∆, ε) (e.g. [21, Proposition 1.3]).

4.9. Comonads acting on functors. Let T : A → B be a functor and (G, δ, ε) a
weak comonad on B. We call T a left (non-counital) G-comodule if there exists a natural
transformation υ : T → GT such that

T
υ−→ GT

υG−→ GGT = T
υT−→ GT

δ−→ GGT,

and we call it a compatible G-comodule if, in addition,

T
υ−→ GT = T

υ−→ GT
δ−→ GGT

Gε−→ GT.

Dual to Proposition 3.9, given a weak comonad (G, δ, ε) on B, a functor T : A→ B is a

compatible G-comodule if and only if there is a functor T : A→ BG with T = UGT .

The motivation for considering generalised monads and comonads came from structures
observed while handling full pairings of functors (see end of Section 2). Now we want to
reconsider the pairings in view of these constructions.

For any pairing (L,R, α, β) between the categories A and B, (RL,RεL, η) is a q-unital
monad and (LR,LηR, ε) is a q-counital comonad. It is easy to see that

(i) if β is regular, then for any B ∈ B, Rε : RLR(B)→ R(B) is a compatible RL-module.

(ii) if α is regular, then for any A ∈ A, L(A), Lη : L(A) → LRL(A) is a compatible
LR-comodules.

4.10. Comparison functors. For a regular pairing (L,R, α, β) between A and B,

(RL,RεL, η) is an r-unital monad on A with a (comparison) functor

R̂ : B→ ARL, B 7→ (R(B), Rε : RLR(B)→ R(B)),

(LR,LηR, ε) is an r-counital comonad on B with a (comparison) functor

L̃ : A→ B−→
LR, A 7→ (L(A), Lη : L(A)→ LRL(A)),

inducing commutativity of the diagrams

A L //

φRL !!C
CC

CC
CC

C B

R̂
��

R // A

ARL
URL

=={{{{{{{{
,

B R //

φLR   B
BB

BB
BB

B A

L̃
��

L // B

BLR
ULR

>>||||||||
.
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It follows from 3.2 that for the r-unital monad (RL,RεL, η), (φRL, URL, αRL, βRL) is
a regular pairing between A and ARL. Similarly, by 4.2, for the R-countial comonad

(LR,LηR, ε), (ULR, φLR, αLR, βLR) is a regular pairing between B and BLR.

4.11. Relating (L,R) with (φRL, URL) and (ULR, φLR). With the above notions we
form the diagram

MorB(L(A), B)

R̂−,−

��

α // MorA(A,R(B))
β // MorB(L(A), B)

R̂−,−

��
MorRL(φRL(A), R(B))

αRL // MorA(A,URLR(B))
βRL // MorRL(φRL(A), R(B)).

This diagram is commutative if and only if α is symmetric (see Definitions 2.5).

Similar constructions apply for (L,R), (ULR, φLR) and L̃−,−. and β is symmetric if and

only if K̃−,− · α · β = αLR · βLR · L̃−,−.

4.12. Corollary. Consider a pairing (L,R, α, β) (see 2.2).

(1) The following are equivalent:

(a) (L,R, α, β) is a regular pairing;

(b) (RL,RεL, η) is an r-unital monad on A and
(LR,LηR, ε) is an r-counital comonad on B.

(2) The following are equivalent:

(a) (L,R, α, β) is a regular pairing with α and β symmetric;

(b) (RL,RεL, η) is a weak monad on A and
(LR,LηR, ε) is a weak comonad on B.

5. Entwining monads and comonads

5.1. Lifting of functors to module categories. Let (F, µ, η) and (L, µ′, η′) be r-
unital monads on the categories A and B, respectively, and AF , BL the categories of the
corresponding compatible modules (see 3.2). Given functors T : A→ B and T : AF → BL,
we say that T is a lifting of T provided the diagram

(5.1) AF
T //

UF

��

BL
UL

��
A T // B

is commutative, where the U ’s denote the forgetful functors.

5.2. Proposition. With the data given in 5.1, consider the functors TF, LT : A → B
and a natural transformation λ : LT → TF . The non-unital F -module (F, µ) induces an
L-action on TF ,

χ : LTF
λF−→ TFF

Tµ−→ TF.

(1) If (TF, χ) is a (non-unital) L-module, then we get the commutative diagram

(5.2) LLT
Lλ //

µ′T

��

LTF
LTϑ // LTF

λF // TFF

Tµ

��
LT

λ // TF
Tϑ // TF.

(2) If (TF, χ) is a compatible L-module, then (with ϑ′ = µ′ · Fη′)

(5.3) LT
ϑ′T // LT

λ // TF
Tϑ // TF = LT

λ // TF
Tϑ // TF.
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(3) If η is symmetric in (F, µ, η) and (A,ϕ) is a compatible F -module, then

(5.4) Tϕ · λA = Tϕ · λA · LTϕ · LTηA.

Proof. The proof follows essentially as in the monad case replacing the identity on F
at some places by ϑ = µ · Fη (see 3.1).

To show (3), Proposition 3.5 is needed. tu

5.3. Proposition. Let (F, µ, η) and (L, µ′, η′) be r-unital monads on A and B, respectively,
and T : A→ B any functor. Then a natural transformation λ : LT → TF induces a lifting
to the compatible modules,

T : AF → BL, (A,ϕ) 7→ (T (A), Tϕ · λA : LT (A)→ T (A)),

if and only if the diagram (5.2) is commutative and equation (5.3) holds.

Proof. One direction follows from Proposition 5.2, the other one by a slight modifica-
tion of the proof in the monad case. tu

To show that the lifting property implies the existence of a natural transformation
λ : LT → TF we need the symmetry of the units, that is, we require the r-unital monads
to be weak monads. Then we can extend Applegate’s lifting theorem for monads (and
unital modules) (e.g. [13, Lemma 1], [22, 3.3]) to weak monads (and compatible modules).

5.4. Theorem. Let (F, µ, η) and (L, µ′, η′) be weak monads on A and B, respectively. For
any functor T : A→ B, there are bijective correspondences between

(i) liftings of T to T : AF → BL;

(ii) compatible L-module structures % on TUF : AF → B;

(iii) natural transformations λ : LT → TF with commuting diagrams

(5.5) LLT
Lλ //

µ′T

��

LTF
λF // TFF

Tµ

��
LT

λ // TF,

LT
ϑ′T //

λ

��

λ

""E
EE

EE
EE

E LT

λ

��
TF

Tϑ
// TF.

Proof. (i)⇔(ii) follows by Proposition 3.9.

(ii)⇒(iii) Given the compatible L-module structure map %, put

λ := %F · LTη : LT
LTη−→ LTF

%F−→ TF.

Notice that for λ we can take Tϑ · λ from Proposition 5.2.
(iii)⇒(i) Given λ with the commutative diagram in (iii), it follows by Propositions 5.3

that %A := Tϕ · λA induces a lifting. tu

5.5. Lifting of functors to comodules. Let (G, δ, ε) and (H, δ′, ε′) be r-unital comonads

on the categories A and B, respectively, and AG, BH the corresponding categories of the

compatible comodules (see 4.2). Given a functor T : A → B, a functor T̂ : AG → BH , is
said to be is a lifting of T if the diagram

(5.6) AG T̂ //

UG

��

BH

UH

��
A T // B

is commutative where the U ’s denote the forgetful functors.
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5.6. Proposition. With the data given in 5.5, consider the functors TG, HT : A→ B and
a natural transformation ψ : TG → HT . The (non-counital) G-comodule (G, δ) induces
an H-coaction on TG,

ζ : TG
Tδ−→ TGG

ψG−→ HTG.

(1) If (TG, ζ) is a (non-counital) H-comodule, we get the commutative diagram

(5.7) TG
Tγ //

Tδ

��

TG
ψ // HT

δ′T

��
TGG

ψG // HTG
HTγ // HTG

Hψ // HHT.

(2) If H (TG, ζ) is a compatible H-module, then

(5.8) TG
Tγ // TG

ψ // HT
γ′T // HT = TG

Tγ // TG
ψ // HT.

(3) If ε is symmetric and (A, υ) is a compatible G-comodule, then

ψ · Tυ = HTε ·HTυ · ψ · Tυ.

Proof. The situation is dual to that of Proposition 5.2. tu

5.7. Proposition. Let (G, δ, ε) and (H, δ′, ε′) be r-counital comonads on the categories A
and B, respectively, and T : A→ B any functor. A natural transformation ψ : TG→ HT
induces a lifting

T̂ : AG → BH , (A, υ) 7→ (T (A), ψ · Tυ : T (A)→ HT (A)),

if and only if the diagram (5.7) is commutative and equation (5.8) holds.

Proof. The proof is dual to that of Proposition 5.3. tu
Dualising Theorem 5.4, we obtain an extension of Applegate’s lifting theorem for comon-

ads (and comodules) (e.g. [22, 3.5]) to weak comonads (and compatible comodules).

5.8. Theorem. Let (G, δ, ε) and (H, δ′, ε′) be weak comonads on A and B, respectively.
For any functor T : A→ B, there are bijective correspondences between

(i) liftings of T to T̂ : AG → BH ;

(ii) compatible H-comodule structures υ : TUG → HTUG;

(iii) natural transformations ψ : TG→ HT with commutative diagrams

TG

Tδ

��

ψ // HT

δ′T
��

TGG
ψG // HTG

Hψ // HHT,

TG
Tγ //

ψ

��

ψ

##F
FFFFFFF TG

ψ

��
HT

γ′T

// HT.

Proof. In view of 5.6 and 5.7, the proof is dual to that of Theorem 5.4. Here we take
ψ as the composition ψ · Tγ (with ψ from 5.6). tu

6. Lifting of endofunctors to modules and comodules

Given a weak monad (F, µ, η), or a weak comonad (Gδ, ε), and any endofunctor T on
the category A, we have learned in the preceding sections when T can be lifted to an
endofunctor of the compatible modules or comodules, respectively. Now, one may also ask
if the lifting is again a weak monad or a weak comonad, respectively.

6.1. Entwining r-unital monads. For weak monads (F, µ, η) and (T, µ̌, η̌) on A and a
natural transformation λ : FT → TF , the following are equivalent:
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(a) defining product and quasi-unit on TF by

µ : TFTF
TλF−→ TTFF

TTµ−→ TTF
µ̌F−→ TF, η : IA

η−→ F
F η̌−→ FT

λ−→ TF,

yields a weak monad (TF, µ, η) on A;

(b) λ induces commutativity of the diagrams

(6.1) FFT
Fλ //

µT

��

FTF
λF // TFF

Tµ

��
FT

λ // TF,

FT
ϑT //

λ

��

λ

""E
EE

EE
EE

E FT

λ

��
TF

Tϑ
// TF,

(6.2) FTT

Fµ̌

��

λT // TFT
Tλ // TTF

µ̌F

��
FT

λ // TF,

FT
Fϑ̌ //

λ

��

λ

""E
EE

EE
EE

E FT

λ

��
TF

ϑ̌F

// TF ;

(c) λ induces commutativity of the diagrams in (6.1) and the square in (6.2), and there
are natural transformations

µ̌F : TTF → TF and λ · F η̌ : F → TF

where µ̌F is a left and right F -module morphism and λ·F η̌ is an F -module morphism.

If these conditions hold, we obtain morphisms of q-unital monads,

λ · F η̌ : F → TF and λ · ηT : T → TF .

Proof. The assertions follow from the general results in Section 5 and some routine
computations. tu

6.2. Weak crossed products. Given (F, µ, η) and T : A → A, the composition TF
may have a weak monad structure without requiring such a structure on T . For example,
replacing the natural transformations µ̌F and λ ·F η̌ in 6.1(c) by some natural transforma-
tions

ν : TTF → TF, ξ : F → TF,

similar to 6.1(a), a multiplication and a quasi-unit can be defined on TF . To make this a
weak monad on A, special conditions are to be imposed on ν and ξ which can be obtained
by routine computations.

Having ν and ξ, one also has natural transformations

ν̄ : TT
TTη // TTF

ν // TF, η : IA
η // F

ξ // TF,

and it is easy to see that ν̄ leads to the same product on TF as ν does. Thus ν̄ and η may
be used to define a weak monad structure on TF and the conditions required come out as
cocycle and twisted conditions. For more details we refer, e.g., to [1], [11, Section 3].

For a weak comonad (G, δ, ε) and an endofunctor T : A → A, we now consider liftings

to the category of compatible G-comodules, T̂ : AG → AG. The case when T has a weak
comonad structure is dual to 6.1:

6.3. Entwining weak comonads. For weak comonads (F, δ, ε), (T, δ̌, ε̌), and a natural
transformation ψ : TG→ GT , the following are equivalent:

(a) defining a coproduct and quasi-counit on TG by

δ̂ : TG
δ̌G−→ TTG

TTδ−→ TTGG
TψG−→ TGTG, ε̂ : TG

ψ−→ GT
Gε̌−→ G

ε−→ IA,

yields a weak comonad (TG, δ̂, ε̂) on A;
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(b) ψ induces commutativity of the diagrams, where γ = Tε · δ, γ̌ = T ε̌ · δ̌,

(6.3) TG

Tδ

��

ψ // GT

δT

��
TGG

ψG // GTG
Gψ // GGT,

TG
Tγ //

ψ

��

ψ

""E
EE

EE
EE

E TG

ψ

��
GT

γT
// GT,

(6.4) TG
ψ //

δ̌G

��

GT

Gδ̌
��

TTG
Tψ // TGT

ψT // GTT,

TG
γ̌G //

ψ

��

ψ

""E
EE

EE
EE

E TG

ψ

��
GT

Gγ̌
// GT,

(c) ψ induces commutativity of the diagrams (6.3) and the square in (6.4) and we have
natural transformations

δ̌G : TG→ TTG, Gε̌ · ψ : TG→ G,

where δ̌G is a left and right G-comodule morphism and Gε̌ · ψ is a left G-comodule
morphism.

If these conditions hold, we obtain morphisms of q-unital comonads,

Gε̌ · ψ : TG→ G and εT · ψ : TG→ T .

6.4. Weak crossed coproducts. In the situation of 6.3, the coproduct on TG can
also be expressed by replacing the natural transformations δ̌G and Gε̌ · ψ by any natural
transformations

ν : TG→ TTG and ζ : TG→ G,

subject to certain conditions to obtain a weak comonad structure on TG.
Given ν and ζ as above, one may form

ν̂ : TG
ν // TTG

TTε // TT , ζ̂ : TG
ζ // G

ε // IA ,

and it is easy to see that these induce a weak comonad structure on TG. This leads to the
weak crossed coproduct as considered (for coalgebras) in [11] and [12], for example.

7. Mixed entwinings and liftings

Throughout this section let (F, µ, η) denote a weak monad and (G, δ, ε) a weak comonad
on any category A. In this section we investigate the lifting properties to compatible
F -modules and compatible G-comodules, respectively.

7.1. Liftings of monads and comonads. Consider the diagrams

AF
G //

UF

��

AF

UF

��
A G // A,

AG F̂ //

UG

��

AG

UG

��
A F // A.

In both cases the lifting properties are related to a natural transformation

ω : FG→ GF.
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The lifting in the left hand case requires commutativity of the diagrams (Proposition 5.3)

(7.1) FFG
Fω //

µG

��

FGF
ωF // GFF

Gµ

��
FG

ω // GF,

FG
ω //

ϑG

��

ω

""E
EE

EE
EE

E GF

Gϑ

��
FG

ω // GF,

whereas the lifting to AG needs commutativity of the diagrams (Proposition 5.7)

(7.2) FG

Fδ

��

ω // GF

δF

��
FGG

ωG // GFG
Gω // GGF,

FG
ω //

Fγ

��

ω

""F
FFFFFFF GF

γF

��
FG

ω // GF.

To make G a non-counital comonad with coproduct δ, the latter has to be an F -module
morphism, in particular, δF : GF → GGF has to be an F -morphism and this follows by
commutativity of the rectangle in (7.2) provided the square in (7.1) is commutative.

To make the lifting F̂ a non-unital monad with multiplication µ, the latter has to be a
G-comodule morphism, in particular, µG : FFG → FG has to be a G-module morphism
and this follows by commutativity of the rectangle in (7.1) provided the square in (7.2) is
commutative.

7.2. Natural transformations. The data given in 7.1 allow for natural transformations

ξ : G
ηG // FG

ω // GF
εF // F ,

κ̂ : GF
ηGF // FGF

ωF // GFF
Gµ // GF ,

τ̂ : FG
Fδ // FGG

ωG // GFG
εFG // FG,

with the properties

Gµ · κ̂F = κ̂ ·Gµ, τ̂G · Fδ = Fδ · τ̂ ,
µ · ξF = εF · κ̂, ξG · δ = τ̂ · ηG.

(i) If the rectangle in (7.1) is commutative, then κ̂ is idempotent.

(ii) If the rectangle in (7.2) is commutative, then τ̂ is idempotent.

To make the liftings weak comonads or weak monads, respectively, we have to find
pre-units or pre-counits, respectively. In what follows we consider these questions.

7.3. Lemma. (Pre-counits for G) Assume the diagrams in (7.1) to be commutative. Then
the following are equivalent:

(a) for any (A,ϕ) ∈ AF , εA : G(A)→ A is an F -module morphism;

(b) εF : GF → F is an F -morphism;

(c) ϑ = µ · Fη induces commutativity of the diagram

(7.3) FG
Fε //

ω

��

F

ϑ

��
GF

εF // F.

If these conditions are satisfied, then (with γ = Gε · ϑ)

µG · F τ̂ = τ̂ · µG and τ̂ = ϑγ.

Proof. This is shown by straightforward verification. tu



REGULAR PAIRINGS 17

7.4. Proposition. Assume the diagrams in (7.1), (7.2) and (7.3) to be commutative. Then
(G, δ, ε) is a weak comonad on AF .

Proof. This follows from the preceding observations. tu

Dual to Lemma 7.3 and 7.4 we obtain for the quasi-units for F̂ :

7.5. Lemma. (Pre-units for F̂ ) Assume the diagrams in (7.2) to be commutative. Then
the following are equivalent:

(a) for any (A, υ) ∈ AG, ηA : A→ F (A) is a G-comodule morphism;

(b) ηG : G→ FG is G-colinear;

(c) γ = Gε · δ induces commutativity of the diagram

(7.4) G

γ

��

ηG // FG

ω

��
G

Gη // GF.

If these conditions are satisfied, then

Gκ̂ · δF = δF · κ̂ and κ̂ = γϑ.

Summing up the above observations yields the

7.6. Proposition. Assume the diagrams in (7.1), (7.2) and (7.4) to be commutative. Then

(F̂ , µ, η) is a weak monad on AG.

One may consider alternative choices for a pre-counit for G or a pre-unit for F̂ .

7.7. Lemma. Assume the diagrams in (7.1) to be commutative. With the notations from
7.2, the following are equivalent:

(a) for any (A,ϕ) ∈ AF , εA : G(A)
ξA // F (A)

ϕ // A is an F -module morphism;

(b) εF : GF
ξF // FF

µ // F (= GF
κ̂ // GF

εF // F ) is an F -morphism;

(c) commutativity of the diagram

(7.5) FFG
Fω // FGF

FεF // FF

µ

��
FG

FηG

OO

ω // GF
εF // F.

If these conditions are satisfied, then

τ̂ = µG · F τ̂ · FηG.

Proof. The proof can be obtained by some diagram constructions. tu

Notice that commutativity of (7.3) implies commutativity of (7.5).

7.8. Lemma. Assume the diagrams in (7.2) to be commutative. Then the following are
equivalent:

(a) for any (A, υ) ∈ AG, η̂ : A
υ // G(A)

ξA // F (A) is a G-comodule morphism;

(b) η̂G : G
ηG // FG

τ̂ // FG (= G
δ // GG

ξG // FG ) is G-colinear;
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(c) commutativity of the diagram

(7.6) G

δ

��

ηG // FG
ω // GF

GG
GηG // GFG

Gω // GGF.

GεF

OO

If these conditions are satisfied, then

κ̂ = GεF ·Gκ̂ · δF.

Proof. The situation is dual to Lemma 7.7. tu
Notice that commutativity of (7.4) implies commutativity of (7.6).

7.9. Proposition. With the data given in 7.1, assume the diagrams in (7.1), (7.2) and
(7.5) to be commutative.

(1) If (7.6) is commutative, then ε from 7.7 is regular for δ, and for δ : G→ GG with

δF : GF
δF // GGF

Gκ̂ // GGF,

(G, δ, ε) is an r-counital comonad on AF .

(2) If (7.4) is commutative, then δF = δF · κ̂ and (G, δ, ε) is a weak comonad on AF .

Proof. This can be shown by suitable diagram constructions. tu

7.10. Proposition. With the data given in 7.1, assume the diagrams in (7.1), (7.2), and
(7.6) to be commutative.

(1) If (7.5) is commutative, then η̂ in 7.8 is regular for µ, and for µ̂ : FF → F with

µ̂G : FFG
F τ̂ // FFG

µG // FG,

(F̂ , µ̂, η̂) is an r-unital monad on AG.

(2) If (7.3) is commutative, then µ̂G = τ̂ · µG and (F̂ , µ̂, η̂) is a weak monad on AG.

Proof. This is dual to Proposition 7.9. tu
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