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A Structure Theorem for SI-Modules

Dinh van Huynh and Robert Wisbauer

An associative ring R is called a left SI-ring if every singular left R-module
is injective. In Goodearl [4] it is shown that these rings have a finite ring
decomposition into a ting K with K/Soc K left semisimple, and simple rings
which are Morita equivalent to left SI-domains.

For an R-module M denote by o[M] the full subcategory of R-Mod subgen-
erated by M. Extending the definition of SI-rings, we call an R-module M an
SI-module if every singular module in o[M|] is M-injective. This also gener-
alizes a similar notion in Yousif [11]. We obtain that every finitely generated,
self-projective SI-module A has a decomposition

M:K@V1®@Vna

with fully invariant submodules K, V;, such that K/Soc X is a semisimple &~
module, and, for i = 1,---,n, Endg(V;) is a simple ring, and the category o[V]]
is equivalent to Ti-Mod for an 57-domain T}

1  Preliminary results

Let R be an associative ring with unit and R-Mod the category of nnital left
R-modules. For M € R-Mod we denote by G{M] the full subcategory of fI-
Mod whose objects are submodules of M-generated modules. M is called seif-
~ projective if it is M-projective. Soc M (resp. Rad M) denotes the socle (resp.
the radicel) of the module M. An R-submodule of 3 is said to be fully invariant
(or characteristic) if it is invariant under any R-endomorphism of M.

. The kernel of s homomorphism f is denoted by Ke f. Morphisms are written
on the opposite side of the scalars. For basic notions see [10].

The following elementary observations will be useful:
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1.1 Proposition. Consider a self-projective R-module M with 5 = Endg(M).
(1) If Rad M = 0, then S has zero {Jacobson) radical.
(2) Assume M is finitely generated. Then M has no non-trivial fully invari-

ant submodules if and only if § iz a simple ring.

Proof: (1) This follows from the fact that, for any simple homomorphic
image E of M, Homg(M, E) is a simple left Endp(M )}-module.

(2) For every ideal 7 € §, MI C M is fully invariant. Since M is self-
projective, I = Hompg(M, MI) by [10, 18.4] and hence MI # M for I # §.

For every fully invariant submodule U C M, Homg(M,U) is an ideal in 5.

If K ¢ M is an essential submodule, we write K < M.

Let M and N be R-modules. IV is called singular in o[M] or M-singular if
N ~ L/K for some L € o[M] and K < L (see [9]).

By definition, every M-singular module belongs to o[M]. For M = R the
notion R-singular is identical to the usual definition of singular for R-modules.

The class of all M-singular modules is closed under submodules, homo-
morphic images and direct sums {e.g. [10, 17.3 and 17.4]). Hence every module
N € o[M] contains a largest M -singular submodule which we denote by Z ().
The following properties of M-singular modules are shown in [9, 1.1] and 8,
2.4j:

1.2 Proposition. Let M be an R-module.
(1) A simple R-module E is M-singular or M-projective.
(2) If Soc M = O, then every simple module in o[M| is M -singular.
(3} If M is self-projective and Zy (M) = 0, then the M-singular modules

form a hereditary forsion class iy &{M].

We extend the definition of a left SI-ring (see [4]) to modules:

Definition: An R-module M is called an S/-module if every M-singular
module i3 M-injective.

In Yousif [11], M is called SI-module if every singular module in H-Mod is
M-injective. Since M-singular modules are singular in B-Mod, this is a stronger
condition then the one given above.



Though for M = R the two notions coincide, in general $7-modules in our
sense need not be SI-modules in the sense of Yousif {compare the example after
9, 2.2]}:

Let T be a left 51-ring which is not left semisimple (for examples see 14
[1]), and R the ring of lower triangular (2,2)-matrices over T. The map

R:TUWT, a{}}__’a,
T 7T b ¢

is a surjective ring homomorphism whose kernel is essential as left ideal in R.
Hence every left T-module is singular as R-module and all T-singular modules
are T-injective, i.e. T is a SI-module over RH. Since T is not left semisimple,

not every R-singular module is T-injective. Hence T is not an ST -module over
R in the sense of Yousif.
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Every left module over a left 57 -ring is an §7-module in the sense of Yousif
and hence is an example of an ST -module in our sense.

In Smith [7], R is called a left RIC-ring if every cyclic singular left R-module
is injective. It is observed in (5, Corollary 5] that RI C-rings are SI-rings. By
[9, 3.8 and 8.10] and [2, Lemma 2], we have more general statements in our next
Proposition which also include Proposition 3.1 and 3.6 in [4]. For this we recall
two definitions:

An E-module M is called hereditary in o[ M| if every submodule of M is pro-
Jective in o[M] (see [10, 39.1]). Misa GCO-module (generalized co-semisimple)
if every M-singular simple R-module is A -injective (see [9, 2.2]).

1.3 Proposition. For g finitely generated, self-projective R-module M the
following conditions are equivalent:

(2) M is an SI-module;

(b} every cyclic M-singular module is M-injective;

(¢c) M/K is semisimple for every K 4 M and Zy (M) = 0.

(d) M is hereditary in o[M] and M-singuler modules are semisimple;

{(e) M is a GCO-module, M/Soc M is noetherian and Soc(M/K) # 0 for
every K <1 M.

We will need the following




1.4 Lemma. Let M be a self-projective SI-module with finite uniform dimen-
sion and Rad M = 0. Then M contains no proper fully invariant submodule

which is essential as R-submodule.

Proof: Assume V C M is a fully invariant submodule and V < zgM. Since
RadM = 0, § := Endg(M) has zero radical by Proposition 1.1. RadM = 0
also implies that Homgz{M,U) # 0 for non-zero U C M (see [8], p. 1475,
(iv)). With this knowledge we derive from Theorem 3.7 in [8] that there exists
a monomorphism f : M — V, and since M has finite uniform dimension, the
image of every monomorphism in 5 is essential in M. Hence the image of f2
is.essential in M. Therefore M /M f2 is a semisimple module and the following
exact sequence splits:

0 — Mf/Mf* — M/Mf* — M/Mf — 0.

Applying the functor Hompg(M, —) and the isomorphisms Sg ~ Hom{M, Mg)
for any ¢ € § (see [10], 18.4), we obtain that Sf/Sf? is a direct summand
in the S-module §/8f2. Hence there exists a submodule Sf? C U C § with
Sf+U=28and SfFNU = 5f2 This yields id = rf + v for some » € § and
w € IV and hence f = frf + fu. Since fu € SfnU = Sf? we finally have
f = frf-+ sf® for some s € §. Since f is monic this means id = fr + sf and
M=Mfr+MsfCV,

2  Structure Theorem
Let us first describe uniform S7-modules with zero socle:

2.1 Proposition. For o finitely generated, self-projective H-module M, the
following are eguivalent: ,
{a) M is a uniform SI-module with Soc M = 0;
(b} M is o self-generater and Endp(M} is a left 5T-domein which is not a
division Ting.
Under this condition, M has no fully invariant submodules and Endg(M )

15 a simple ring.



Proof: (a) = (b) If M is an SI-module with zero socle, all simple mod-
ules in o{M] are M-singular (by Proposition 1.2), hence M-injective and M-
generated. Therefore M is a projective generator in o[M]. This implies that
e[M] is equivalent to S-Mod (see [10, 18.5 and 46.2]) and S is a left SI-ring.

Since Zy (M) = 0, every f € Endp(M) is a monomorphism.

() = (a) The functor Homg(M, —) is an equivalence.

The last part follows from L.emma 1.4 and Proposition 1.1.

Now we investigate the decomposition of S7-modules with zero socles:

2.2 Theorem. For a finitely generated, self-projective R-module M and 5 =

Endg(M), the following are equivalent:

(a) M is an SI-module and Soc M = 0;

(6) M is a generator in o[M) and § is a left SI-ring with zero left socle;

(¢c] M =M\ & - @ M,, with M; minimal fully invariant submodules, and
o[M;] = o[L;] for some finilely generated, self-projeciive and uniform 5I-module
L; with zero socle;

(d) M = M, & --- & M,, with M; fully invarient submodules, Endg(M;)
simple rings and o[M;] equivalent to T;-Mod, for lefi SI-domains T; which are

not division rings.

Proof: {a) < (b) As observed in the proof of Proposition 2.1, {a) implies
that M is a projective generator in ¢[M|. Hence o{M| is equivalent to S-Mod
(see [10, 18.5 and 46.2}) and M is an S§J-module if and only if 5 is a left §1-ring.

(a} = (c) As noted above, M is a generator in o{M|, and by Proposition
1.3, M is noetherian and hereditary in o{M|. Every essential submodule of M
is an intersection of maximal submodules, and Soc M = 0. implies Rad M = §
and S has zero radical by Proposition 1.1.

By Theorem 3.7 in [8], the endomorphism ring of the M-injective hull M is
semisimple artinian, i.e. End}g(lﬁ V=T, & --@ T, with simple artinian rings
T;. Denoting by e; the unit in T}, we have e; + - -+ + e, = idg; and, since the &;

o

are in the center of Endgz(M),
M= Me ¢ @& Me,

is a decomposition into fully invariant submodules. The intersection M; :=
MnMe isa fully invariant submedule of M and M1 & -8 M, < M. Aswe
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have seen in Lemma 1.4, this means
Ml@"'@MnERM.

Since Homp(M;, M;) = 0 for i # j, we observe that Me; is the injective hall
of M; in o[M;]. Moreover M, is a self-projective self-generator with Zy (M) =0
and, again applying Theorem 3.7 in [8], we know that Endg(ﬂ? e;) ~ T; is the
classical left quotient ring of Endg(M;). Hence Endg(M;) has no non-trivial
central idempotents and M; has no non-trivial decomposition into fully invariant
submodules.

To study i)roperties of the summands M; we may assume that M itself has
no non-trivial decomposition into fully invariant submodules. We want {o show
that M has no proper fully invariant submodules.

Let X C M be fully invariant. First consider a non-zero H-submodule
Y C M with XNnY = 0. We show that X and Y do not have isomorphic
uniform submodules: Assume, for a uniform submodule U C X, there exists a
monomorphism ¢ : U — Y. Since Homg(M, U) is a non-zero left ideal in § and
Rad § = 0, we can find f : M — U with f® # 0 and hence (U}f 5 0. Then
(U)fg C Y and, by the invariance of X, also (U)fg C X implying (U)f =0, a
contradiction.

Now let {¥3}s denote the family of all submodules of M, with no uniform
submodules isomorphic to submodules of X, and put ¥ = 5, Y.

Assume Y contains a uniform submodule U isomorphic t¢ a submoedule
of X. Since M is hereditary in o[M], we may suppose U C @, ¥), and we
conclude that U has an isomorphic copy in one of the Y,’s (compare [10, 39.7]), a
contradiction. Obviously, XNY = 0 and, by the above observation, X @Y dgM.

Hereditariness of M also implies thag, for any f € S, (¥)J has no uniform
submodules isomorphic to submodules in X. Hence (Y)f ¢ V,ie Y and
X &Y are fully invariant in M. By Lemma 1.4, we have X @Y = M. This
means by assumption X = M.

Now choose a uniform submodule U ¢ M and a non-zero f € Homg{M,U).
Then L := (M)f is uniform and M-projective. The trace Tr{L,M) of L in M
is fully invariant and hence T'7(L, M) = M, implying o[M] = o[L].

(¢) = (d) Each of the L; is a progeunerator in o|[M,;} = o[L;] (see proof of
{a) & {b})). Hence o[M,] is equivalent to T;-Mod where T; ;= Endg(L;} is a left
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S1-domain by Proposition 2.1.

According to Proposition 1.1, Endg(M;) is a simple ring.

(d) = (b) By the given equivalences, every M; is an S/-module and o[M;]
contains an M;-projective generator L; with zero socle. Then also M, has zero
socle and is a progenerator in o[M;] (see proof of (a) & ()}, and Endg(M,) is
a left SI-ring. As a product of these rings, Endp(M) is also a left S7-ring.

Remark: For the proof of (b) = (c) we could have used part of Goodearl’s
structure theorem for left SI-rings in [4, 3.11]. For M = R our prootf provides
an alternative to Goodear!’s proof of the corresponding part.

Finally we are ready to prove the following extension of Goodearl’s charac-
terization of SI-rings in {4, 3.11}: |

2.3 Structure Theorem. For a finilely generated, self-projective R-module
M and S = Endg(M), the following .are equivalent:
(a) M is an SI-module; |
(6} Zy (M) =0 and M has a decomposition

M=KeVWeo --aV,

with fully invariant submodules K,V;, such that K/Soc K is a semisimple H- -
module, and, fori=1,---,n, Endg(V]) is a simple ring and the category o|V,]
is equivaleni to T;-Mod, for an SI-domain T; which is not o division ring.

Under the given conditions, S is a left S1-ring.

Proof: {a) = (b) Assume M is an SI-module. As already observed in
Proposition 1.3, M is hereditary and M := M/Soc M is noetherian.

As noted in Proposition 1.2, the M-singular modules form a torsion class in
o[M]. Let K denote the R-submodule Soc M C K C M such that K/Soe M is
the torsion submodule of M in this torsion theory. Since Soc M is fully invariant
in M and K/Soc M is fully invariant in M/Soc M, K is fully invariant in M. -

By construction, SocK = SocM. Also K/SocM is an SI-module and
Soc M < K since K is projective in o[M| (M hereditary). Hence K/Soc M is
semisimple by 1.3 and M-injective by assumption. Therefore

M =K/SoecM @& N/Soc M



for some R-submodule N C M containing Soc M. Since SocM is a fully
invariant submodule, M is self-projective. As M/L is semisimple for L < M,
and Soc M is the intersection of all L <9 M, we conclude Rad M = (.

Hence M/K ~ N/SocM is a self-projective SI-module with zero radical.
By definition of K, M/K contains no M-singular submodules. Therefore every
simple submodule of M/K is M-projective by Proposition 1.2. Since Soc M C
K, we conclude Soc(M/K) = 0.

Denote by {H,}4 the family of all submodules of M with Soc H, = 0 and
set V = Y., H,. Since all simple submodules of V C M are M-projective (by
Proposition 1.2) and @, H) has zero socle, also SocV = 0 and KNV = 0. The
M-projectivity of simple submodules of M also implies that, for every f € 5,
(V) f has zerc socle and hence (V)f C V, i.e. V is fully invariant. It is obvious
from the definitions and the properties derived that Soc MV I K@V I gM
and that K & V is a fully invariant submodule of M.

Passing to the factor module, we have that (K @ V)/K is a fully invariant
‘submodule of M /K which is essential as R-submodule. Recalling the properties
of M/K shown above, by Lemma 1.4, this implies K @ V = M.

The decomposition of V is now obtained from Theorem 2.2.

{(b) = {a) Obviously, for every essential submodule U C M, M /U is semisim-
ple and hence 3 is an S1-module by Proposition 1.3.

It remains to show that § is a left §7-ring. Since M is hereditary in o[M],
S is left semi-hereditary by [10, 39.14] and hence left non-singular.

From the exact sequence 0 — Soc M — M — M — 0, we derive the exact
sequence

0 — Hom{M, Soc M) — 8§ — Hom(M,M) — 0.

Since M ~ K/Soc K is semisimple, Hom(M, M) is a semisimple left S-module.
From Hom{M,Soc M) C Soc § we conclude that §/Soc § is left semisimple
and S is a left S{-ring by Proposition 1.3.

Remark: For M = R, our Structure Theorem yields Goodearl’s Structure
Theorem for S7-rings (see (4, 3.11]), which was also proved in Theorem 2.7 of
Baccella [1] in a different way. '

Obviously any ST-module is & GCO-module (compare 1.3). By our Struc-
sure Theorem we obtain that self-projective GCO-modules with descending
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chain condition on essential submodules are $1-modules. Referring to [9, 3.11]

we have:

2.4 Corollary. For a finitely generated, self-projective R-module M, the fol-
lowing are equivalent:

(a) M is an SI-module with dcc on essential submodules;
{b) M is a GCO-module with dec on essential submodules;
(c) M]/Soc M is semisimple and Zp (M) = 0.
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