
SEPARABILITY IN ALGEBRA AND CATEGORY THEORY

ROBERT WISBAUER
HEINRICH HEINE UNIVERSITY
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Abstract. Separable field extensions are essentially known since the 19th century
and their formal definition was given by Ernst Steinitz in 1910. In this survey we
first recall this notion and equivalent characterisations. Then we outline how these
were extended to more general structures, leading to separable algebras (over rings),
Frobenius algebras, (non associative) Azumaya algebras, coalgebras, Hopf algebras,
and eventually to separable functors. The purpose of the talk is to demonstrate that
the development of new notions and definitions can lead to simpler formulations and
to a deeper understanding of the original concepts. The formalism also applies to
algebras and coalgebras over semirings and S-acts (transition systems).
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Preliminaries

The investigation of the interplay between (roots of) polynomials over the ratio-
nals and (automorphisms of) extensions of the rationals was started by Joseph-Louis

Lagrange (1736 -1813). Through the work of Évariste Galois (1811-1832) it became
evident that this was the key to an interesting deep relationship between finite exten-
sions of the rationals and the theory of finite groups. The first presentation of Galois’
ideas in a textbook was given 1866 by Joseph Alfred Serret (1819-1885). At that time,
the abstract notion of a field was not yet available in algebra. The (German) name
Körper (Engl. body) was coined by Richard Dedekind in 1871, meaning substructures
of the complex numbers. His intention of choosing this name was to signify – as in
the natural sciences, geometry, and human society – a system with certain complete-
ness, seclusion, and perfection. He provided the fundamentals for linear algebra over
a Körper like linear dependence, basis, dimensions as well as trace and norm of finite
extensions.

In 1893, Heinrich M. Weber [78] defined the abstract notion of a Körper (as a set
allowing for addition and multiplication subject to certain conditions) to give the
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right frame to Galois theory. Eliakim H. Moore used in [59] the English word field as
synonym for endliche Körper in the sense of Weber. Nowadays field and Körper are
synonyms without finiteness restrictions.

The abstract theory of fields was initiated by Ernst Steinitz in 1910 [72]. System-
atically developing the axioms of (commutative) fields he introduced the notions of
prime field, algebraic closure, and field extensions of first (resp. second) kind which
later on were called separable (resp. inseparable) extensions in van der Waerden’s
textbook from 1930.

New perspectives in the study of field extensions were obtained by applying tensor
products. These arose (under different labels) in the late 19th century in physics and
mathematics for vector spaces over the real or complex numbers (e.g. Gibbs [5]).
The crucial step in extending tensor products to abelian groups was made by Hassler
Whitney in [79], 1938. From this, tensor products of modules over rings (and fields)
are obtained by suitable coequalisers.

In this survey, we shall first recall the properties of separable field extensions, and
then generalisations deduced from them. Recall that a field extension L :K is called
separable provided every element of L is a root of an irreducible polynomial with
coefficients in K which does not have multiple roots.

For any normal extension L :K, the automorphism group G := Aut(L :K) acts on
L thus making L a module over the group algebra K[G] and a comodule over the dual
coalgebra K[G]∗. Then L :K is separable provided L ' K[G] as K[G]-module.

For any field extension L :K, L is a vector space over K and any L-vector space Y
is given by a K-linear map % : L⊗K Y → Y . Furthermore, for any K-vector space X,
L⊗K X is an L-vector space by the action

m⊗X : L⊗K L⊗K X → L⊗K X, a⊗ b⊗ x 7→ ab⊗ x,
where m : L⊗K L→ L denotes the multiplication in L. Denoting by Vk the category
of vector spaces over any field k, this gives rise to the functors

L⊗K − : VK → VK , X 7→ L⊗K X,

φL : VK → VL, X 7→ (L⊗K X,m⊗X),

UL : VL → VK , (Y,L⊗K Y → Y ) 7→ Y,

and φL (the free functor) is left adjoint to UL (the forgetful functor). Now, separability
of L :K is equivalent to require that, for any V,N ∈ VL, the canonical map

HomL(V,N)→ HomK(UL(V ), UL(N))

is a (naturally) splitting monomorphism.
The setting just described can readily be transferred to general categories, replacing

the functor L⊗K − by a monad on any category A and defining separable and Frobe-
nius functors (and (co)monads). This is done in Section 2 and, for the convenience
of the reader, basic notions from category theory are recalled in Appendix 7. In the
ensuing sections, the categorical notions are applied to generalise field extensions by
replacing

(i) the field L by a (non-) associative algebra A (Section 3);

(ii) the base field K by a (non-) commutative ring R (Subsection 3.11);

(iii) the field L by a coalgebra C (Section 4);

(iv) the base field K by a semiring R (Section 5);

(v) the base field K by a set A (Section 6);

(vi) the bialgebra K[G] by any Hopf algebra (Subsection 4.7).
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In the theory of separability for algebras, derivations also play a mayor role (e.g.
in [22, 46]). However, this aspect is not addressed in the present survey.

1. Separable and normal fields

A field is a triple K = (K,+, · ) where K is a set, (K,+) is an abelian group with
neutral element 0,

(1.1) · : K ×K → K

is a bilinear map making (K \ {0}, · ) an abelian group with unit 1, and the relation
between + and · is given by distributivity.
K[X] will denote the ring of polynomials with coefficients in K.
A morphism between two fields K,K ′ is a map K → K ′ respecting addition, mul-

tiplication, the neutral element, and the unit.
As prototypes of fields we have the rationals Q and the factor rings Z/pZ of the

integers Z, for any prime number p. There are no field morphisms between these two
types.

1.1. Field extensions. A subset K of a field L is called a subfield, if K contains 1
and is closed under subtraction and division in L. This setting is also called a field
extension and denoted by L :K. By an intermediate field M of L :K we mean a subfield
of L containing K as a subfield. For a subset S ⊂ L, the smallest intermediate field
of L :K containing S is denoted by K(S), and for a ∈ L we write K({a}) = K(a).
L :K is called a finite extension, if dimK L ≤ ∞ and this dimension is the degree

[L :K] of the extension.
An element a ∈ L is called algebraic over K, if there is a non-vanishing polynomial

f ∈ K[X] with f(a) = 0. The monic polynomial of smallest degree with this property
is called the minimal polynomial of a over K, denoted by Min(a : K); its degree is
[K(a) :K].

The extension L :K is called algebraic, if all a ∈ L are algebraic over K. The field
K is called algebraically closed, if K has no proper algebraic extension.

1.2. K-morphisms. If L :K and Q :K are field extensions, and ϕ : L→ Q is a field
homomorphism such that ϕ(k) = k for all k ∈ K, then ϕ is called a K-morphism (also
K-isomorphism, e.g. in [13]).

A theorem of Dedekind (from 1871, [47]) says that a family of pairwise distinct
K-morphisms L→ Q are linearly independent over Q (as elements of HomK(L,Q)).

Evidently, the bijective K-morphisms L → L form a group, the automorphism
group of L :K,

Aut(L :K) = {ϕ : L→ L |ϕ is a K-isomorphism},

which acts on L. If L :K is algebraic, its orbits on L are finite (consisting of roots of
some irreducible polynomial).

For any subset (subgroup) H ⊆ Aut(L :K), the invariant elements

Fix(L :H) := {a ∈ L |h(a) = a for any h ∈ H}

form an intermediate field of L :K.

The main concern of studying field extensions is to find roots for polynomials and
the next two results give a basic answer to this problem.

1.3. Splitting fields. Let K be a field.
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(i) (Kronecker 1887): For any polynomial f ∈ K[X], there is a smallest extension
L :K such that f splits completely in L into a product of linear polynomials and
a constant.

L is generated as a field by the roots of f and is unique up to K-isomorphisms.
It is called the splitting field of f over K.

(ii) (Steinitz 1910): For any set of polynomials S ⊆ K[X], there is a smallest
extension L : K such that any f ∈ S splits completely in L into a product of
linear polynomials and a constant.

For S = K[X], this gives an algebraic extension K̂ of K which is algebraically
closed.

As easily seen, the number of roots of an irreducible f ∈ K[X] may be smaller then
the dimension of the splitting field L :K. These numbers are equal for the

1.4. Separable polynomials. An irreducible polynomial f ∈ K[X] is called sep-

arable, if it has no double roots in an algebraic closure K̂ of K. An algebraic field
extension L :K is said to be separable provided, for every a ∈ L, the minimal polyno-
mial Min(a :K) is separable.

For an irreducible f ∈ K[X], the following are equivalent:

(a) f is separable;

(b) for any field extension L :K and a ∈ L, (X − a)2 does not divide f in L[X];

(c) there is an extension L :K such that f has deg(f) roots in L;

(d) the number of distinct roots of f is equal to the degree of f .

1.5. Normal extensions. An algebraic field extension L :K is called normal if, for
every a ∈ L, the minimal polynomial Min(a :K) splits completely into linear factors
over L. In this case, L :M is normal for each intermediate field M of L :K.

Let K be a field with algebraic closure K̂ and L an intermediate field of K̂ :K. Then
the following are equivalent:

(a) L :K is normal;

(b) L is the splitting field of a set of polynomials in K[X];

(c) for any ϕ ∈ Aut(K̂ :K), ϕ(L) ⊆ L.

Combining the preceding notions, we get extensions of particular interest:

1.6. Galois extensions. A field extension L :K is said to be Galois provided it is
separable and normal; Aut(L :K) is called its Galois group.

For a finite field extension L :K, the following are equivalent:

(a) L :K is Galois;

(b) L is the splitting field of a separable polynomial in K[X];

(c) [L :K] = |Aut(L :K)|;
(d) Fix(L :Aut(L :K)) = K.

In view of the observations made above it is not difficult now to prove our next result.
It shows the close connection between the structures of groups and field extensions.
For example, it implies that polynomials of degree 5 need not be solvable by radicals
since the corresponding Galois groups need not be solvable, that is, need not have a
subnormal series with abelian factor groups.
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1.7. Galois correspondence. For a finite Galois extension L :K, there is an (order
reversing) bijection between the sets (lattices)

F := {intermediate fields of L :K},
G := {subgroups of Aut(L :K)},

given by
Aut(L :−) : F→ G, M 7→ Aut(L :M),

Fix(L : −) : G→ F, H 7→ Fix(L,H).

Notice that a Galois extension L :K need not be finite dimensional. In case it is
not, there is a bijective correspondence between F, the intermediate fields of L :K,
and those subgroups of Aut(L :K), which are closed in the topology on Aut(L :K)
induced by the pointwise convergence on L. Then Aut(L : K) is a projective limit
of the finite groups Aut(M : K), where the intermediate fields M are finite Galois
extensions of K (see [44]).

1.8. Trace form. For any finite field extension L : K, the K-endomorphism ring
of the vector space L, EndK(L), is isomorphic to the n × n-matrix ring over K,
n = [L :K]. The trace function on this ring (sum of diagonal elements) is K-linear
and thus provides a K-linear map Tr : EndK(L)→ K satisfying

Tr(f ◦ g) = Tr(g ◦ f) for any f, g ∈ EndK(L).

The (left) multiplication by any a ∈ L,

λa : L→ L, x 7→ ax,

is in EndK(L) and for a, b ∈ L, λab = λa ◦ λb, thus yielding an (injective) K-algebra
morphism

λ : L→ EndK(L), a 7→ λa.

Composing these maps we get the K-linear map

(1.2) tr : L
λ−→ EndK(L)

Tr−→ K,

with the properties

(1.3) tr(ab) = Tr(λa ◦ λb) = Tr(λb ◦ λa) = tr(ba).

For separable extension L :K, with algebraic closure K̂ :K, and a ∈ L,

(1.4) tr(a) =
∑
{σ(a) |σ : L→ K̂ is a K-morphism},

and it follows from Dedekind’s theorem (see 1.2) that tr(a) 6= 0.
If L :K is Galois, a ∈ L, and G = Aut(L :K),

(1.5) tr(a) =
∑

σ∈G
σ(a).

1.9. The dual space. For any field extension L :K, L∗ = HomK(L,K) is an L-vector
space with the action of b ∈ L on f ∈ L∗ given by b · f(−) := f(b−).

Fixing a ∈ L, tr(a−) : L→ K, x 7→ tr(ax), is in L∗ and the map

ψ : L→ L∗, a 7→ tr(a−),

is L-linear since b · tr(ax) = tr(b(ax)) = tr((ab)x), that is,

b · tr(a−) = tr(ba−).

If L :K is finite and separable, tr(a) is nonzero for a ∈ L (see (1.4)) and hence ψ is
injective, and in fact bijective, since dimK L = dimK L

∗.

These are the ingredients for the
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1.10. Proposition. For a finite field extension L :K, there are equivalent:

(a) L :K is separable;

(b) tr : L→ K is not zero;

(c) ψ : L→ L∗, a 7→ tr(a−), is an isomorphism (and is L-linear).

Notice that so far our results are essentially obtained with the techniques available
in the 19th century. The way of looking at the material was greatly expanded when
the following notion came into play.

1.11. Tensor product of modules. Let R be a commutative ring. The tensor
product of R-modules N and M is a pair (N ⊗RM,π) where N ⊗RM is an R-module
and π : N×M → L⊗RM is a R-module homomorphism such that, for any R-module
G and R-bilinear map β : N×M → G, there exists a unique R-module homomorphism

β̃ : N ⊗RM → G with commutative diagram

N ×M π //

β &&

N ⊗RM
β̃
��
G.

The tensor product of R-linear maps f : N → N ′ and g : M → M ′ between
R-modules, is defined as f ⊗ g : N ⊗RM → N ′ ⊗RM ′ by putting

f ⊗ g(n⊗m) := f(n)⊗ g(m), for n ∈ N, m ∈M,

and showing that this defines in fact a map on N⊗RM . For the identity 1N : N → N ,
it is customary just to write 1N ⊗ g = N ⊗ g. We often delete the suffix of ⊗R (in
particular in formulas) and just write ⊗ if no ambiguity arises.

1.12. Tensor product and field extensions. For a field extension L : K, the
product m : L ⊗K L → L and unit ι : K → L are K-linear maps with commutative
diagrams

(1.6) L⊗ L⊗ L m⊗L //

L⊗m
��

L⊗ L
m
��

L⊗ L m // L,

K ⊗ L ι⊗L //

=
%%

L⊗ L
m
��

L⊗KL⊗ιoo

=
yy

L .

For two field extensions L :K and Q :K, a multiplication on Q⊗K L is defined by
putting, for q1, q2 ∈ Q and l1, l2 ∈ L,

(q1 ⊗ l1) · (q2 ⊗ l2) = q1q2 ⊗ l1l2.
This makes Q⊗K L a K-algebra which need not be a field, in particular, it may allow
for nilpotent elements.

The set of all nilpotent elements of a commutative finite dimensional K-algebra A
is called the nil radical and is denoted by Nil(A). The structure theorem says that
Nil(A) = 0 if and only if A is a (finite) direct product of fields. The relevance of
nilpotency for separability becomes evident in the following result (e.g. [87, Section
28]).

1.13. Proposition. Let L :K be an algebraic field extension and assume a ∈ L is not
separable over K. Then there exists some field extension Q :K such that L⊗K Q has
non-zero nilpotent elements.

Proof. Since over fields with zero characteristic all extensions are separable, we have
to consider the case char(K) = p 6= 0. Let f ∈ K[X] be the minimal polynomial of a
over K and Q its splitting field. Then there exists a polynomial



SEPARABILITY 7

h(X) =
∑r

i=1 biX
i with bi ∈ Q, br 6= 0, and f(X) = h(X)p.

Since r < n, the elements 1, a, · · · , ar are linearly independent over K, hence

0 6= c =
∑r

j=1
aj ⊗ bj ∈ L⊗K Q, and

cp = (
r∑
j=1

aj ⊗ bj)p =
r∑
j=1

ajp ⊗ bpj =
r∑
j=1

(bja
j)p ⊗ 1 = h(a)p ⊗ 1 = 0.

So c ∈ L⊗K Q is non-zero and nilpotent �

1.14. Remark. A more general version of Proposition 1.13 can be given in terms of
radicals, e.g. [69, Chapitre 2]: for any K-algebra A, define the prime radical rad(A)
as intersection of all prime ideals of A. Then, for any field extension L :K,

rad(A⊗K L) ∩A = rad(A),

and if L :K is separable,

rad(A⊗K L) = rad(A)⊗K L.

Notice that for commutative algebras A, rad(A) = Nil(A).

From these observations we get:

1.15. Proposition. For a finite field extension L : K, the following properties are
equivalent:

(a) L :K is separable;

(b) for any field extension Q : K, Nil(L⊗K Q) = 0;

(c) Nil(L⊗K L) = 0;

(d) L is projective as an L⊗K L-module;

(e) m : L⊗K L→ L is split by some (L,L)-bimodule morphism
δ : L→ L⊗K L;

(f) there exist e ∈ L ⊗K L with ae = ea, for any a ∈ L, and m(e) = 1 (choose
e = δ(1), separability idempotent).

By the structure theorem mentioned above, Nil(L⊗K L) = 0 implies that L⊗K L
is a semisimple algebra and hence all L ⊗K L-modules are projective. The last two
characterisations are just module theoretic variations of projectivity in the category
of L⊗ L-modules.

The map δ in (e) opens the view to a new structure:

1.16. Coproduct on L. If L : K is separable, then δ : L → L ⊗K L in (e) of the
above proposition is left and right L-linear and this is expressed by commutativity of
the diagrams

(1.7) L⊗ L m //

δ⊗L ��

L

δ��
L⊗ L⊗ L L⊗m// L⊗ L ,

L⊗ L
m ��

L⊗δ // L⊗ L⊗ L
m⊗L��

L
δ // L⊗ L .

These relations between m and δ are called Frobenius conditions.
Moreover, m◦δ = 1L, and an easy argument shows that these imply commutativity

of the diagram (coassociativity, compare (1.6))

(1.8) L
δ //

δ ��

L⊗ L
L⊗δ��

L⊗ L δ⊗L // L⊗ L⊗ L .
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There is yet another way to define a coproduct on L.

1.17. Dual of algebra (coalgebra). For any finite field extension L :K, applying
(−)∗ = HomK(−,K) to m : L⊗K L→ L and ι : K → L, yields K-linear maps

L∗
m∗−→ (L⊗K L)∗ ' L∗ ⊗K L∗, L∗

ι∗−→ K.

Given a K-isomorphism ψ : L→ L∗ leads to K-linear maps

(1.9) δ : L→ L⊗K L, ε : L→ K,

by the diagrams

(1.10) L
δ //

ψ
��

L⊗K L

L∗
m∗ // L∗ ⊗K L∗ ,

ψ−1⊗ψ−1

OO L

ψ
��

ε

  
L∗

ι∗ // K,

and exploiting associativity of m and unitality yields commutativity of the diagrams
(dual to (1.6))

(1.11) L
δ //

δ
��

L⊗ L
L⊗δ
��

L⊗ L δ⊗L // L⊗ L⊗ L ,

L

=
""

L⊗ LL⊗εoo ε⊗L // L

=
||

L

δ

OO

,

which describe coassociativity and counitality, respectively.
In case ψ : L→ L∗ is even L-linear (e.g. Proposition 1.10), the Frobenius conditions

(1.7) are satisfied for (L,m, δ).

1.18. Tensor functor. For a field extension L :K, the L-vector spaces can be defined
as K-vector spaces V with K-linear maps % : L ⊗K V → V subject to associativity
and unitality conditions, that is, commutativity of the diagrams

L⊗ L⊗ V m⊗V //

L⊗%
��

L⊗ V
%
��

L⊗ V
% // V,

L⊗ V
% // V

K ⊗ V

ι⊗V

OO

=

;;

.

In particular, L⊗K V is always an L-vector space by

m⊗ V : L⊗ L⊗ V → L⊗ V,

and this leads to the extension of scalars functor

ΦL : VK → VL, V 7→ (L⊗K V,m⊗ V ),

V
f−→ V ′ 7→ L⊗K V

L⊗f−−−→ L⊗K V ′;

there is a restriction of scalars (or forgetful) functor

UL : VL → VK , (V, %) 7→ V,

leaving morphisms unchanged. These form an adjoint pair of functors by the bijection,
for V ∈ VK , N ∈ VL,

HomL(L⊗K V,N) ' HomK(V,UL(N)), f 7→ f ◦ (ι⊗ V ).

It is customary to write UL(N) = N if no confusion occurs.



SEPARABILITY 9

1.19. Splitting of UL. Let L : K be a finite separable field extension. For (V, %),
(N, %′) in VL, the forgetful functor UL : VL → VK provides the canonical map (writing
UL(V ) = V etc.)

(1.12) ΦU
V,N : HomL(V,N)→ HomK(UL(V ), UL(N)) = HomK(V,N).

Since (L,m, δ) satisfies the Frobenius conditions, it is not difficult to show that for
the L-linear map

(1.13) ω : V
ι⊗V−−−→ L⊗ V δ⊗V−−−→ L⊗ L⊗ V L⊗%−−−→ L⊗ V,

one has % ◦ ω = 1V . Now define the map (natural in V and N)

ΨU
V,N : HomK(V,N)→ HomL(V,N),

V
f−→ N 7→ V

ω−→ L⊗K V
L⊗f−−−→ L⊗K N

%′−→ N.

If f happens to be L-linear one easily sees that ΨU
V,N (f) = f . This proves one

implication of the

1.20. Proposition. For a field extension L :K there are equivalent:

(a) L :K is separable;

(b) ΦU
V,N is a naturally split monomorphism.

1.21. Group algebra and its dual. Let G be any group with unit e and K a field
(or commutative ring). The group algebra G[K] is defined as a K-vector space with
basis set G and product (multiplication) with unit

mG : K[G]⊗K K[G]→ K[G], g ⊗ h 7→ gh, ι : K → K[G], k 7→ k ·e,

K[G] also allows for a coproduct with counit

δG : K[G]→ K[G]⊗K K[G], g 7→ g ⊗ g, ε : K[G]→ K, g 7→ δg,e,

where δg,e denotes the Kronecker symbol. One has

(1K[G] ⊗ ε)δG = 1K[G] = (ε⊗ 1K[G])δG,

and for u, v ∈ K[G], δG(uv) = δG(u) · δG(v).
This shows that (K[G],mG, δG) is a K-bialgebra.

If G is a finite group, product and coproduct of K[G] are - by the functor ( )∗ =
HomK(−,K) - transferred to (the dual) coproduct and product on K[G]∗ (compare
1.17) thus making (K[G]∗,m∗G, δ

∗
G) also a K-bialgebra.

1.22. Action induced by Aut(L :K). For a field extension L :K, putG = Aut(L :K).
By the action of G, L becomes a K[G]-module,

% : K[G]⊗K L→ L, g ⊗ a 7→ g(a).

If [L : K] is finite, then G is finite, say with elements g1, . . . , gn which form a basis
for K[G]. Choosing p1, . . . , pn ∈ K[G]∗ as a dual K-base for the bialgebra K[G]∗ (see
1.21) yields a morphism

η̃ : K →
∑

K[G]∗ ⊗K K[G], 1 7→
∑

pi ⊗ gi,

and leads to the K-linear map (coaction)

ω : L
η̃⊗L−−−→ K[G]∗ ⊗K[G]⊗ L K[G]∗⊗%−−−−−→ K[G]∗ ⊗ L, a 7→

∑
i
pi ⊗ gi(a).
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Composing ω ⊗ L with K[G]∗ ⊗m yields the map

β : L⊗K L→ K[G]∗ ⊗K L, a⊗ b 7→
∑

i
pi ⊗ gi(a)b.

These constructions can be applied to prove:

1.23. Proposition. Let L : K be a field extension with [L : K] = n, n ∈ N, and
G = Aut(L :K). With the notation from above, the following are equivalent:

(a) L :K is separable and normal (Galois extension);

(b) for some a ∈ L, {g(a)}g∈G is a K-basis of L;

(c) for some a ∈ L, the map K[G] → L, g 7→ g(a), is an isomorphism of K[G]-
modules (Normal basis theorem);

(d) β is an isomorphism.

The assertions are essentially derived from the fact that finite separable extensions
can be generated by a single (primitive) element (e.g. [57, 8.1.2]). For a detailed
presentation of (Hopf) Galois extension the reader may consult [77, Chapter 4].

Summarising, to any field extension L : K, we have attached the endofunctors
L⊗K − and the adjoint pair of functors (φL, UL) and, as shown in Proposition 1.20,
L :K is separable precisely when for UL, the canonical map

ΦU
V,N : HomL(V,N)→ HomK(UL(V ), UL(N))

is a naturally split monomorphism. In the next section we shall consider functors and
endofunctors for any categories and follow the above pattern to define separable (and
Frobenius) functors.

2. Separable and Frobenius functors

In this section, A and B denote any categories. For basic definitions and notations
we refer to the Appendix, Section 7.

2.1. Definition. A functor F : A → B between categories is said to be separable
provided, for any A,A′ ∈ A, the canonical map

ΦF
A,A′ : HomA(A,A′)→ HomB(F (A), F (A′))

is a naturally split monomorphism, that is, there is a map

ΨF
A,A′ : MorB(F (A), F (A′))→ MorA(A,A′),

natural in A,A′, with ΨF
A,A′ ◦ ΦF

A,A′ = 1A.

Clearly, for a separable functor F , ΦF
A,A′ is always injective, that is, F is a faithful

functor. Of course, every equivalence functor F is separable. In this context, adjoint
pairs of functors are of particular interest (e.g. [68, 18, 12]).

2.2. Adjoint pairs. Let L a R : B → A be an adjoint pair of functors with unit
η̃ : 1A → RL and counit ε̃ : LR→ 1B.

(i) L is separable if and only if η̃ is a split monomorphism;

(ii) R is separable if and only if ε̃ is a split epimorphism.

The situation for field extensions is subsumed by (co-)monads (see [12, 2.9]). Recall
that for a monad F , φF a UF with counit εF : φFUF → 1AF

, and for a comonad G,
UG a φG with unit ηG : 1AG → φGUG.
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2.3. Definitions. A monad (F,m, ι) on A is called separable if the forgetful functor
UF : AF → A is separable.

A comonad (G, δ, ε) on A is called coseparable if the forgetful functor UG : AG → A
is separable.

2.4. Separability for monads and comonads.

(1) For a monad (F,m, ι) on A, the following are equivalent:

(a) (F,m, ι) is separable;

(b) there exists a natural transformation δ : F → FF with m · δ = 1F and
(Frobenius condition)

Fm · δF = δ ·m = mF · Fδ;

(c) εF : φFUF → 1AF
is a split epimorphism.

(2) For a comonad (G, δ, ε) on A, the following are equivalent:

(a) (G, δ, ε) is coseparable;

(b) there exists a natural transformation m : GG→ G with m · δ = 1G and

mG ·Gδ = δ ·m = Gm · δG;

(c) ηG : 1AG → φGUG is a split monomorphism.

2.5. Separability of adjoints. Consider an adjoint pair of endofunctors G a F :
A → A with unit η : 1A → FG and counit ε : GF → 1A. Assume (G, δ, ε) to be a
comonad on A and denote by (F,m, ι) the corresponding monad (see Theorem 7.12).
Then there are pairs of adjoint (free and forgetful) functors,

A φF−−→ AF , AF
UF−−→ A, with unit ηF and counit εF ,

AG UG

−−→ A, A φG−−→ AG, with unit ηG and counit εG,

(1) φG is separable if and only if φF is separable;

(2) UG is separable if and only if UF is separable.

The isomorphism ψ : L → L∗ for finite separable field extensions L :K in Propo-
sition 1.10 can be understood as natural isomorphism between the functors φL and
HomK(L,−) from VK to VL. This is the basic property of Frobenius algebras. More
generally, the role of adjoint pairs of functors for Frobenius extensions was highlighted
by K. Morita in [60]. The key to this approach is the

2.6. Definition. A functor F : A→ B is said to be Frobenius provided it has a right
adjoint G : B→ A which is also left adjoint to F .

Similar to separability, Frobenius (co)monads are defined by properties of the cor-
responding forgetful functors.

2.7. Definition. A monad (F,m, ι) on A is said to be a Frobenius monad provided
the forgetful functor UF : AF → A is Frobenius.

A comonad (G, δ, ε) is said to be a Frobenius comonad provided the forgetful functor
UG : AG → A is Frobenius (see 2.6).

As a first characterisation we note (see [54, Proposition 3.11]):

2.8. Proposition. A monad (F,m, ι) on A with a right adjoint comonad (G, δ, ε)
is Frobenius if and only if the functors F and G are isomorphic as left F -module
functors.
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Obviously, every Frobenius monad may also be seen as a Frobenius comonad and
hence it suffices to talk about Frobenius monads. We collect various characterisations
of such functors (e.g. [73], [54, Theorem 3.13]).

Recall from Theorem 7.12 that, in the situation of Proposition 2.8, the categories
of F -modules and of G-comodules are isomorphic.

2.9. Frobenius monads. For a monad (F,m, ι) on A, there are equivalent:

(a) (F,m, ι) is a Frobenius monad;

(b) the free functor φF : A→ AF is Frobenius;

(c) F admits a comonad structure (F, δ, ε) and - equivalently -

(i) Fm · δF = δ ·m = mF · Fδ (Frobenius conditions);

(ii) F a F by unit and counit,

1A
ι−→ F

δ−→ FF, FF
m−→ F

ε−→ 1A;

(iii) an isomorphism of categories

Q : AF → AF with UF ·Q = UF and Q · φF ' φF .

The following shows how close separable monads are to Frobenius monads.

2.10. Corollary. Let Let (F,m, ι) be a monad on A and δ : F → FF a coassociative
coproduct such that (F,m, δ) satisfies the Frobenius condition (e.g. 2.4). Then:

(1) (F,m, ι, δ) is a separable monad if and only if m · δ = 1A.

(2) (F,m, ι, δ) is a Frobenius monad if and only if (F, δ) allows for a counit ε : F →
1A.

3. Separable and Frobenius algebras

We sketch the application of the categorical results from the preceding section for
various special cases, beginning with the categories MR of modules over a commutative
ring R. Unless stated otherwise our algebras will be associative with unit.

3.1. R-algebras. A triple (A,m, ι) is called an R-algebra provided A is an R-module
and there are R-linear maps (product and unit),

m : A⊗R A→ A, ι : R→ A,

satisfying the conditions to make the functor A ⊗R − : MR → MR a monad. The
induced module category is just the category AM of left A-modules with the free and
forgetful functors, φA : MR → AM and UA : AM→MR.

The functor −⊗RA leads to the category MA of right A-modules and corresponding
constructions.

The functor A ⊗R − has a right adjoint HomR(A,−) : MR → MR, with unit and
counit, for X,Y ∈MR,

η : X → HomR(A,A⊗R X), x 7→ [a 7→ a⊗ x],

ε : A⊗HomR(A,X)→ X, a⊗ f 7→ f(a),

and the bijection

(3.1) HomR(A⊗X,Y )→ HomR(X,HomR(A, Y )), f 7→ [x 7→ f(−⊗ x)].

By Theorem 7.12, HomR(A,−) is a comonad on MR with coproduct and counit,

HomR(A,−)
Hom(m,−)−−−−−−→ HomR(A⊗A,−) ' HomR(A,HomR(A,−)),

HomR(A,−)
Hom(ι,−)−−−−−−→ 1MR

.
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If A is finitely generated and projective as R-module, HomR(A,−) ' A∗ ⊗R −. In
this case, A∗ ⊗R − is left and right adjoint to A⊗R −.

Comonads based on tensor functors are usually called coalgebras.

For an R-algebra A, the opposite algebra Ao is defined as the same R-module
with opposite multiplication. Then the (A,A)-bimodules can be considered as (left)
modules over the algebra Ae := A⊗R Ao. In particular, A is a left Ae-module by the
action

(3.2) µA : (A⊗Ao)⊗A→ A, a⊗ b⊗ c 7→ acb.

and its endomorphism ring EndAe(A) is just its center Z(A).
Now Definition 2.1 yields:

3.2. Definition. An R-algebra (A,m, ι) is called separable if the induced monad on
MR is separable, that is, UA : MA → MR is a separable functor, which means that,
for M,N ∈ AM, the canonical map

ΦA
M,N : HomA(M,N)→ HomR(UA(M), UA(N))

is a (naturally) split monomorphism.

This generalises the characterisation of separable field extensions in 1.19 and we
derive from 2.4:

3.3. Separable algebras. For an R-algebra A, the following are equivalent:

(a) A is a separable algebra;

(b) m : A⊗R A→ A splits as an A⊗R Ao-module morphism
(by some δ : A→ A⊗R A);

(c) there exists e ∈ A⊗R Ao with (a⊗ 1)e = (1⊗ a)e for a ∈ A
and m(e) = 1 (choose e = δ(1), separability idempotent);

(d) every A-epimorphism which splits as R-module map splits as an A-module map
(A is (A,R)-semisimple).

To show (b)⇒(a), the splitting of HomA(M,N)→ HomR(M,N), for M,N ∈ AM,
is given by sending any R-morphism g : M → N to the composite

M
ι⊗M // A⊗M δ⊗M // A⊗A⊗M

A⊗%M// A⊗M
A⊗g // A⊗N

%N // N.

Characterisation (c) is possible, since the Ae-linear map δ is uniquely determined
by the image of 1A yielding the separability idempotent δ(1A) which is often used to
prove properties of these algebras.

The condition in (b), reducing the property to the splitting of a single linear map,
was used by M. Auslander and O. Goldman in their paper [5] and before a special
case of this was considered by G. Azumaya in [6].

3.4. Definition. A separable R-algebra (A,m, ι) is said to be strongly separable if
the separability idempotent e ∈ A⊗R Ao (in Theorem 3.3(c)) is symmetric, that is,

e =
∑

i
ei ⊗ fi =

∑
i
fi ⊗ ei.

Such algebras were considered by A. Hattori in [32] and more observations on these
were made, among others, by L. Kadison and A. Stolin [37], and M. Aguiar in [4].

One question of interest is which of the properties of field extension can be obtained
for algebras A over a field K. For a finite dimensional A, the K-endomorphism ring
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EndK(A) is a matrix ring, canonically isomorphic to A ⊗K A∗, and so we get the
K-linear map

(3.3) tr : A
λ−→ EndK(A) ' A⊗A∗ ev−→ K, a 7→ Tr(λa),

where ev denotes the evaluation map, and EndK(A) → K just gives the trace map
Tr. For a, b, c ∈ A, we have

tr(ab) = tr(ba), tr(a(bc)) = tr((ab)c),

that is, tr is a symmetric and balanced linear form. It is called non-degenerate provided
the K-linear map

A→ A∗, a 7→ tr(a−),

is a K-linear isomorphism.
We note that this construction can also be made for algebras A over commutative

rings R provided A is finitely generated and projective as R-module.

3.5. Separable algebras over fields. Let A be a finite dimensional algebra A over
a field K.
(1) The following are equivalent:

(a) A is a separable K-algebra (Definition 3.2);

(b) for every field extension L : K, A ⊗K L is a (finite) direct product of simple
algebras.

(c) for any field extension L : K, rad(A⊗K L) = 0:

(d) A⊗K Ao is a direct product of simple algebras.

(2) Furthermore, the following are equivalent:

(a) A is a strongly separable K-algebra (Definition 3.4);

(b) tr : A→ K is a non-degenerate linear form.

The equivalence of (b) and (c) in (1) is due to the fact that for any finite dimensional
algebra the prime radical is zero if and only if the algebra is semisimple. For the
equivalences stated in (2) we refer to [4, Theorem 3.1]. Notice that here it is not
enough to require tr to be non-zero (as it is for field extensions).

3.6. Definition. A separable R-algebra A with center Z(A) = R is called central
separable or Azumaya algebra.

The class of these structures can be characterised in the following way.

3.7. Azumaya algebras. For a central R-algebra (A,m, ι), there are equivalent:

(a) A is a separable R-algebra;

(b) there is an Ae-linear map δ : A→ A⊗R A with m · δ = 1A;

(c) A induces an equivalence of categories,

A⊗R − : MR → AeM, X 7→ (A⊗R X,m⊗X);

(d) A as a left Ae-module is a generator in AeM.

We note that in any full module category over a ring, generators are finitely gen-
erated and projective over their endomorphism rings (e.g. [88, 18.8]). Thus an equiv-
alence as given in (c) always forces this kind of finiteness condition on the R-module
structure of A.

On the other hand, there are simple algebras over rings (and fields) which are not
finitely generated over their centers (which are fields). To include this type of algebras
in our theory we proceed in the following way.
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The basic idea of the above characterisations is to relate internal properties of an al-
gebra A (as given in (a)) with properties in a suitable category (as in (e)). The category

AeM has coproducts and cokernels, products and kernels (Grothendieck category). We
restrict our considerations to a (smallest) subcategory with similar properties which
contains the Ae-module A: So we form a full category σAe [A] by taking as objects all
direct sums of copies of A, all homomorphic images and submodules of the resulting
modules. This gives us again a Grothendieck category (see [87]).

3.8. Definition. A central R-algebra (A,m, ι) is called an Azumaya ring provided
the Ae-module A is a projective generator in σAe [A].

These algebras were also investigated by J.P. Delale in [21] under the name algèbres
affines, by G. Azumaya in [7] under the name separable rings, and D.G. Burkholder
called them Azumaya rings in [16]. The notion was extended to non-associative alge-
bras in [84]. Any simple algebra A is a simple Ae-module and hence every module in
σAe [A] is semisimple, in fact a direct sum of copies of A, and hence A is a projective
generator in σAe [A], i.e., A is an Azumaya ring.

Generators in σAe [A] are flat as modules over their endomorphism rings and we get
the following characterisations (see [87, 26.4]).

3.9. Azumaya rings. For a central R-algebra (A,m, ι), the following are equivalent:

(a) A is an Azumaya ring;

(b) A induces an equivalence of categories,

A⊗R − : MR → σAe [A], X 7→ (A⊗R X,ma ⊗X);

(c) A is a generator in σAe [A] and A is faithfully flat over R;

(d) HomAe(A,−) : σAe [A]→MR is an equivalence of categories.

As easily seen, a central algebra A is an Azumaya algebra if and only if A is an
Azumaya ring and A is finitely generated as an R-module. In this case one has
σAe [A] = AeM.

So far we have considered algebras with unit. The missing of an identity element
changes the picture in some aspects.

3.10. Algebras without units. For a non-unital R-algebra (A,m), A ⊗R − is no
longer a monad, Ae may have no unit and hence need neither be projective nor a
generator in AeM. Furthermore, EndAe(A) is no longer the center of the algebra
A, it is called the centroid C(A) of A (e.g. [87, 2.7]). If A = A2, then C(A) is a
commutative R-algebra and A is a C(A)-algebra which is called central if C(A) ' R.
The definition of Azumaya rings also hold for non-unital algebras. However, their
characterisations considered above are to be modified (see [87, Chapter 7]). Non-unital
separable algebras may be defined by the (A,A)-bimodule splitting of m : Ae → A.
They are investigated, for example, by Taylor in [76] to study a bigger Brauer group.

Most of the preceding results in this section depend heavily on the commutativity of
the base ring (or field) R, which allows the twist map X⊗RY → Y ⊗RX, x⊗y 7→ y⊗x.
This is, for example, needed to define multiplication on the tensor product A⊗R Ao.
Yet some constructions are still possible in more general situations.

3.11. Non-commutative base ring. Let (A,m, ι) be a ring (Z-algebra). For a
ring extension B → A, A ⊗B − : BM → BM defines a monad on BM, and if this is
separable, the extension is said to be separable. As for algebras, this is the case if
m : A⊗B A→ A splits as an (A,A)-bimodule map. The investigation of this case was
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initiated by K. Hirata and S. Sugano in [34]. Several properties of separable algebras
are maintained but here A⊗B A need not have a ring structure and hence the results
from subsection 3.3 need modification.

For example, for the separable extension, A need not be a projective generator for
the (A,A)-bimodules. To replace this, K. Hirata in [33], suggested a stronger condition
for separability (and K. Sugano coined its name [74]):

3.12. Definition. A ring extension B → A is called H-separable if, for some n ∈ N,
A⊗B A is a direct summand of An as an (A,A)-submodule.

As observed in [33, Theorem 2.2], any H-separable extension is a separable exten-
sion. These structures are investigated in a series of papers by K. Hirata, K. Sugano,
T. Nakamoto, Y. Kurata, S. Morimoto, S., F. Kasch and B. Pareigis [33, 74, 61, 39, 45],
and others.

3.13. Separability and modules. The notion of separability applies to any functors.
In particular, one may ask when functors related to bimodules have this property.
Early papers considering this question were Sugano [75] and Cunningham [19].

3.14. Definition. A bimodule AMB over any rings A,B is said to be separable pro-
vided the functor

(3.4) HomA(M,−) : AM→ BM, X 7→ HomA(M,X),

is a separable functor.
Since M ⊗B − is left adjoint to HomA(M,−), it follows from 2.2 that the latter is

separable if and only if, for any X ∈ AM, the evaluation map

evX : M ⊗B HomA(M,X)→ X, m⊗ f 7→ f(m),

is a naturally split epimorphism.
If M is finitely generated and projective as A-module, the condition can be reduced

to require that the evaluation

(3.5) evA : M ⊗B HomA(M,A)→ A, m⊗ f 7→ f(m),

is naturally split as an (A,A)-bimodule map. This situation was investigated in [75]
and further results in this direction are given in [19] and [86].

3.15. Remark. The functor HomA(M,−) in (3.4) can be restricted to the category
σ[AM ], the full subcategory of AM subgenerated by AM (e.g. [88]). Then it still
has the functor M ⊗B − : BM → σ[M ] as a left adjoint and the results from Section
2 apply. However, separability of HomA(M,−) does not imply that evA from 3.5 is
surjective (unless A ∈ σ[AM ]). Compare also Theorem 3.9.

This kind of studies were also pursued by M. Sato in [70] where some properties of
tilting and static modules are anticipated (e.g. [89], [90]).

For non-associative R-algebras (A,m), the endofunctor A ⊗R − is no monad and
to study the relevance of separability in this case, one looks at the structure of closely
related associative unital algebras.

3.16. Multiplication algebra. For any R-algebra A, not necessarily associative
nor with unit, the left and right multiplications with elements a ∈ A yield R-linear
endomorphisms of A,

λa : A→ A, x 7→ ax, ρa : A→ A, x 7→ xa,

Denote by M(A) the subalgebra of EndR(A) generated by all {λa, ρa |a ∈ A} and the
identity map of A. M(A) is called the multiplication algebra of A and since A is a
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module over EndR(A), it is also a module over M(A), in fact an (M(A), R)-bimodule.
The M(A)-submodules are just the two-sided ideals of A and hence the M(A)-module
structure of A reflects its ring theoretic properties.

In case A is an associative unital algebra, there is a surjective algebra homomor-
phism

Ae = A⊗Ao →M(A), a⊗ b 7→ λaρb,

and hence the Ae-module structure and the M(A)-module structure of A coincide. In
fact, the attached categories σAe [A] and σM(A)[A] can be identified and large parts of
our results for separability and generating properties as Ae-modules can be formulated
in terms of M(A)-modules. For example, A is an Azumaya algebra if and only if it is
a generator in M(A)M since, in this case, Ae 'M(A) ' EndR(A).

3.17. Non-associative algebras. The description of properties of non-associative
algebras A by their multiplication algebras M(A) was already considered by A.A.
Albert and N. Jacobson (e.g. [36]). They observed that a finite dimensional algebra A
over a field K is separable if and only if M(A) is a separable (associative) K-algebra.

Considering the category σM(A)[A] introduced in 3.16, one obtains a rich theory
for non-associative algebras over rings without a priori finiteness restrictions. For
example, characterisations of nonassociative Azumaya rings are obtained by simply
replacing in 3.9 the algebra Ae by M(A). This is elaborated in [87]. In this context,
the algebra Ae, known as enveloping algebra in the associative case, is not relevant.
Instead, for certain classes of non-associative algebras, e.g. alternative, Jordan or
Lie algebras, the corresponding (associative) enveloping algebras can enter the picture
(e.g. [87, 29.10], [36], [28], [10], [11]). For the study of regularity and radicals for
non-associative algebras we refer to [85] and [82].

In 3.5, strong separability of associative algebras is characterised by a non-degenerate
associative linear form A⊗RA→ R. This can also be achieved for some non-associative
algebras, for example, certain composition algebras (e.g. [83]). For Lie algebras, sep-
arability is given by nondegeneracy of the Killing form (e.g. [20], [65]). In [80], a
Killing form is also defined for Hopf algebras.

For associative algebras over a commutative ring R, Definition 2.7 yields:

3.18. Definition. An R-algebra (A,m, ι) is said to be a Frobenius algebra provided
the forgetful functor UA : AM→MR is Frobenius.

The categorical characterisations of this notion in 2.9 read now:

3.19. Frobenius algebras. For an R-algebra (A,m, ι), there are equivalent:

(a) (A,m, ι) is a Frobenius algebra;

(b) the free functor φA : MR → AM is Frobenius;

(c) A admits a comonad structure (A, δ, ε) and - equivalently -

(i) (A,m, δ) satisfies the Frobenius conditions, that is,

Am · δA = δ ·m = mA ·Aδ; or

(ii) A⊗R − : MR →MR is adjoint to itself with unit and counit,

1A
ι−→ A

δ−→ A⊗R A, A⊗R A
m−→ A

ε−→ 1A;

(d) A⊗R − ' HomR(A,−) as left A-module functors on MR;

(e) A is finitely generated and projective as an R-module and A ' A∗ as left (or
right) A-modules.
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The isomorphism in (d) means that A⊗R− preserves direct products and monomor-
phisms (as right adjoints do), that is, AR has to be flat and finitely presented, hence
finitely generated and projective as an R-module. In this case HomR(A,−) ' A∗⊗R−.

For an R-module A with an algebra and a coalgebra structure, one may attach the
categories of left A-modules AM and left comodules AM. Then A yields a Frobenius
algebra if and only if there is an isomorphism of categories (see Theorem 2.9, [54,
Theorem 3.13])

Q : AM→ AM with UA ·Q = UA and Q · φA ' φA.

By Proposition 1.10, finite separable field extensions L :K allow for an L-isomorphism
L ' L∗. This may have been one of the motivations for F. Frobenius to investigate
(in [30], 1903) finite dimensional algebras A with the corresponding property. In [26]
(1955), Eilenberg and Nakayama observed that the notion makes sense for algebras
A over commutative rings R, provided A is finitely generated and projective as an
R-module. These turned out to be of considerable interest in various areas of mathe-
matics and theoretical physics.

3.20. Corollary. Let A be a finitely generated and projective R-module allowing for
an algebra structure (A,m, ι) and a coassociative coproduct δ : A→ A⊗R A such that
(A,m, δ) satisfies the Frobenius conditions. Then:

(1) A is a separable algebra if and only if m · δ = 1A.

(2) A is a Frobenius algebra if and only if (A, δ) allows for a counit ε : A→ R.

3.21. Frobenius extensions. For ring extensions B → A with non-commutative
rings A, B, the functor A ⊗B − : BM → BM allows for a monad structure (see
3.11) and if this is Frobenius, the extension is called Frobenius extension, that is, the
forgetful functor UA : AM→ BM is Frobenius.

The theory of such extensions was initiated by F. Kasch [38], T. Nakayama and T.
Tsuku [62], K. Morita [60] and the literature around it is abundant.

4. Coseparable and Frobenius coalgebras

The categorical setting readily provides properties of coseparable comonads. In
classical algebra, mainly comonads based on a tensor functor are considered and then
are called coalgebras. We sketch the resulting framework for the category MR of
modules over a commutative ring R.

4.1. Coalgebras. A triple (C, δ, ε) is called an R-coalgebra provided C is an R-module
and there are R-linear maps

δ : C → C ⊗R C, ε : C → R,

satisfying the conditions to make the functor C ⊗R − : MR →MR a comonad on MR

(see 7.6).
Notice that every free R-module V , with basis xi, i ∈ I any set, has a comodule

structure by defining

δ : xi 7→ xi ⊗ xi, ε : xi 7→ 1, for i ∈ I,

and extending this linearly to all of V .

From 7.6 we derive the notion of C-comodules obtaining the category of left co-
modules CM (in which monomorphisms need not be injective and morphism need not



SEPARABILITY 19

have kernels). The morphism sets in CM are denoted by HomC . We have the adjoint
pair of forgetful and free functors,

UC : CM→MR, (M,ω) 7→M,

C ⊗R − : MR → CM, X 7→ (C ⊗R X, δ ⊗X),

by the bijection

HomC(M,C ⊗R X)→ HomR(M,X),

M
h−→ C ⊗R X 7→ M

h−→ C ⊗R X
ε⊗X−−−→ X,

leading, in particular, to the isomorphisms

EndC(C) ' HomR(C,R) = C∗,

HomC(M,C) ' HomR(M,R) = M∗.

Of course, for a coalgebra (C, δ, ε), the setting of 7.6 also applies to the endofunctor
− ⊗R C : MR → MR leading to the category of right C-comodules MC . Clearly, C
itself is a left as well as a right C-comodule.

The functor C ⊗R − has as right adjoint the functor HomR(C,−) : MR →MR and
the coalgebra structure on C ⊗R − induces a monad structure on HomR(C,−). The
modules for this monad are also called C-contramodules (e.g,[27], [12], [93]). Following
Definition 2.3 we have:

4.2. Definition. An R-coalgebra (C, δ, ε) is said to be coseparable if the forgetful
functor UC : CM→MR is separable.

From 2.4 we derive (see also [15, 3.29]):

4.3. Coseparable coalgebras. For an R-coalgebra (C, δ, ε), the following are equiv-
alent:

(a) C is a coseparable R-coalgebra;

(b) δ : C → C ⊗ C splits as a left and right C-comodule map
(by some m : C ⊗R C → C);

(c) every C-monomorphism which splits as an R-module map splits as a C-comodule
map (C is (C,R)-semisimple).

As an application of 2.5 we obtain:

4.4. Proposition. An R-coalgebra (C, δ, ε) is coseparable if and only if the induced
monad on HomR(C,−) is separable.

If C is finitely generated and projective as an R-module, this means that C∗ (with
the convolution product) is a separable R-algebra.

For the investigation of R-coalgebras we have heavily used that the tensor product
of two R-modules is again an R-module, that is, MR allows for a tensor product
(monoidal category). For a non-commutative ring A, endofunctors for the category of
left A-modules can be provided by (A,A)-bimodules M , that is,

M ⊗A − : AM→ AM, X 7→M ⊗A X.
This is the basis for our next definition.

4.5. Corings. Let A be a ring. A triple (C, δ, ε) is called an A-coring provided C is
an (A,A)-bimodule and there are (A,A)-linear maps

δ : C → C ⊗A C, ε : C → A,

satisfying the conditions to make the functor C ⊗A − : AM→ AM a comonad on AM
(see 7.6).
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Left comodules over (C, δ, ε), the category of left comodules C
AM, the free and

forgetful functors φC : AM→ C
AM, UC : CAM→ AM are defined by the corresponding

definitions for comonads. In particular, coseparable corings are defined as coseparable
comonads (see Definition 2.3). The results for coalgebras - with obvious modifications
- apply widely to corings and this is outlined in detail in [15].

An interesting class of corings is obtained by tensoring an R-algebra A with an
R-coalgebra C, R a commutative ring:

4.6. Entwining algebras and coalgebras. Consider an R-algebra (A,m, ι), an R-
coalgebra (C, δ, ε) and a mixed entwining between the functors A⊗R − and C ⊗R −,
that is, an R-linear map

λ : A⊗R C → C ⊗R A
with commutative diagrams as in 7.7. This makes C ⊗R A a left A-module by

A⊗R C ⊗R A
λ⊗C−−−→ C ⊗R A⊗R A

C⊗m−−−→ C ⊗R A.

Together with the canonical right A-module structure, C ⊗R A is an (A,A)-bimodule
and the coproduct and counit,

C ⊗R A
δ⊗A−−−→ C ⊗R C ⊗R A ' (C ⊗R A)⊗A (C ⊗R A), C ⊗R A

ε⊗A−−−→ A,

create a comonad on AM, that is, an A-coring (see 4.6).

We end this section with a further view on group actions. Recall that in 1.22, a
K[G]∗-comodule structure on L is considered. This is a special case of a Hopf algebra
H coacting on an algebra, namely an

4.7. H-comodule algebra. Let H be an R-Hopf algebra and (A,m, ι) an R-algebra
with coaction ω : A → A ⊗R H. A is said to be an H-comodule algebra provided m
and ι are H-colinear. Then the coinvariants of H in A, defined as

AcoH = {a ∈ A |ω(a) = a⊗ 1H},

form a subalgebra of A. The extension AcoH ⊂ A is called (right) H-Galois whenever
the map

β : A⊗AcoH A→ A⊗R H, (a⊗ 1H)ω(b),

is bijective. These structures are addressed, for example, in [57], [77, Chapter 4], and
reconsidered for corings, e.g., in [15], [91]. A comprehensive survey is given in [58].

5. Application to semirings

In the last decades, semirings have turned out to be of considerable interest in
various fields of pure and applied mathematics. For example, bialgebras over semirings
offer an advantageous framework for automata and formal language theory (see [96]).
For a survey and an introduction to this field of research the reader is referred to the
book of J.S. Golan [31]. Aspects of linear algebra over semirings are nicely presented
in D. Wilding’s thesis [81]. We recall the basic notions in a form suitable for our
setting.

A commutative monoid (M,+) is a set M together with an associative and com-
mutative composition (addition)

+ : M ×M →M, (m,m′) 7→ m+m′,

and a neutral element 0 ∈ M , that is, 0 +m = m, for all m ∈ M . The prototype for
this structure are the non-negative integers, denoted by N0.
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Morphisms between two (commutative) monoids are maps f : M → N respect-
ing the addition and the neutral element. These data define the category Mon of
commutative monoids.

A tensor product between two objects M,N ∈ Mon is defined as a bilinear map
τ : M × N → M ⊗ N , for some M ⊗ N ∈ Mon, with the universal property: For
any L ∈ Mon and bilinear map β : M × N → L, there is a unique monoid map

β̃ : M ⊗N → L with commutative diagram

M ×N
β //

τ
��

L

M ⊗N
β̃

;;

.

The existence of such a tensor product is shown by taking the free commutative
monoid F generated by the setM×N , and then the quotient monoid by the congruence
relation on F generated by all pairs of the form

((m+m′, n); (m,n) + (m′, n)); ((m,n+ n′); (m,n) + (m,n′)),

with m,m′ ∈M , n.n′ ∈ N . (e.g. [40], [67], [2], [8]).

Any object R ∈Mon defines a functor R⊗− : Mon→Mon, X 7→ R⊗X, and it is
called a semiring if this functor allows for a monad structure, that is, an (associative)
product m : R ⊗ R → R and a unit ι : N0 → R. A morphism f : R → S of semirings
is a map respecting the defining operations.

A left R-semimodule is a module for the functor R ⊗ − : Mon → Mon, that is,
an M ∈ Mon together with a morphism ρ : R ⊗M → M in Mon, and morphism of
left R-semimodules M → N are the module morphisms for R ⊗ −, that is, monoid
morphisms respecting the scalar multiplication, we denote them by HomR(M,N).
These data define the category RMon of left R-semimodules.

Right R-semimodules and their category MonR are derived from the functor −⊗R :
Mon→Mon.

Given two semirings R and S, a commutative monoid U with a left R-semimodule
and a right S-module structure is said to be an (R,S)-bisemimodule provided these
actions commute.

The tensor product between a right R-semimodule % : M ⊗ R → M and a left
R-semimodule %′ : R⊗N → N is defined by the coequaliser in Mon,

M ⊗R⊗N
%⊗N //

M⊗%′
// M ⊗N // M ⊗R N.

If R is a commutative semiring, left R-semimodules M may be considered as right
R-modules by putting rm = mr, for m ∈M , r ∈ R. Then M⊗RN obtains a canonical
structure as an R-semimodule.

For an (R,S)-bisemimodule U , the functors

U ⊗S − : SMon→ RMon and HomR(U,−) : RMon→ SMon

are adjoint by the (canonical) bijection, for M ∈ SMon, N ∈ RMon,

HomR(U ⊗S M,N)→ HomS(M,HomR(U,N)), h 7→ [m 7→ h(−⊗m)].

Let R be any semiring. An (R,R)-bisemimodule A yields an endofunctor A⊗R − :

RMon → RMon, and A is said to be an R-semiring provided this functor allows for
a monad structure. Similarly, an (R,R)-bisemimodule C is called an R-semicoring if
this functor allows for a comonad structure.
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In case R is a commutative semiring, left (right) R-semimodules are considered
as R-bimodules (as mentioned above), and the R-semirings are called R-semialgebras
and R-semicorings are named R-coalgebras.

The categorical background leads to the definitions and properties of the corre-
sponding categories of modules and comodules, respectively, and the appropriate free
and forgetful functors.

5.1. Definitions. Let R be any semiring. An R-semiring A is called separable (Frobe-
nius) if the forgetful functor UA : AMon → RMon is separable (Frobenius). An R-
semicoring C is called coseparable (Frobenius) if the forgetful functor UC : CMon →
RMon is separable (Frobenius).

Properties of theses structures can be derived from the results in Section 2. Further
investigation on these notions may be of interest. Separable and central separable
cancellative R-semialgebras (R a commutative semiring) are considered by R.P. Deore
e.a. in [23], [24].

In the setting considered above, the definition of bimonads and Hopf monads in
[50] provides the definition of bisemialgebras and Hopf semialgebras. This is worked
out by J. Abuhlail and N. Al-Sulaiman in [3] where also separability for Hopf semial-
gebras is discussed. Semialgebras, semi-coalgebras and bi-semialgebras are used by J.
Worthington as tools for automata theory in [96]. The Sweedler dual of a bialgebra
over semirings is considered by G.H.E. Duchamp and C. Tollu in [25]. An extension
of the Myhill-Nerode theorem to base semirings is subject of [49].

5.2. Near-semirings. For a set S, a quadruple (S,+, · , 0) is called a (right) near-
semiring (also semi-nearring) if

(i) (S,+, 0) is a monoid, (S, · ) is a semigroup,

(ii) 0 · a = 0 and (a+ b)c = ac+ bc for all a, b, c ∈ S.

A near-semiring (S,+, · 0) is a nearring if (S,+, 0) is a (not necessarily commuta-
tive) group, and it is a semiring, if (S,+, 0) is commutative and, in addition, a · 0 = 0
and c(a+ b) = ca+ cb for all a, b, c ∈ S.

The interest in these structures comes from the following observation: for any
monoid (N,+, 0), the maps from N to N , write Map(N,N), form a near-semiring
with respect to pointwise addition and composition of mappings. If (N,+, 0) is a
group, then Map(N,N) is a nearring. Note that the terminology may differ in the
literature.

These notions are also of interest in automata theory and computer science. To
get an adjount pair of functors between categories of interest observe that for an
object A in any category A, there is a functor MorA(A,−) : A → Set. A functor
T : Set → A that is left adjoint to it exists, provided for every family of copies of
A there is a coproduct in A. Based on this observation, a generalisation of nearrings
and related tensor products are considered in [29]. Representations of near-semirings
are investigated in [43].

6. Application to S-acts

In the preceding section we considered semiring actions on commutative monoids.
More generally, one may also study the action of monoids on any set. This is the
appropriate setting for the theory of automata and we recall the basic definitions (e.g.
[41]).
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Let S be any monoid, that is, a set S with associative product m : S × S → S and
unit element 1S . Then the endofunctor

S ×− : Set→ Set, X 7→ S ×X,

is a monad on Set. The (Eilenberg-Moore) modules of this functor (see 7.5) are called
(left) S-acts. These are sets A with an associative and unital S-action

% : S ×A→ A, (s, a) 7→ sa.

We denote the category of S-acts by SSet.
Induced by S ×−, we get the free and forgetful functors

φS : Set→ SSet, X 7→ (S ×X,mX),

US : SSet→ Set, (X, %) 7→ X.

Right S-acts are determined by the endofunctor −× S : Set→ Set and yield the
category SetS . For monoids S, T , (S, T )-biacts are given by commuting left S- and
right T -actions.

In the literature, S-acts also show up under the name S-sets, S-polygons, transition
system, S-automata, indicating the area where they are of interest.

Given any (A, %) ∈ SetS , (B, %′) ∈ SSet, their tensor product is defined as the
coequaliser in Set,

A× S ×B
%×B //

A×%′
// A×B τ // A⊗S B,

and thus is characterised by the universal property: for any set Y and S-balanced
map β : A × B → Y (i.e., β(as, b) = β(a, sb), for a ∈ A, b ∈ B, s ∈ S), there is a

unique map β̃ : A⊗S B → Y with commutative diagram

A×B
β //

τ
��

Y

A⊗S B
β̃

;;

.

Evidently, the formalism and the basic properties for this tensor product are the same
as for the tensor product for modules and semimodules.

Given two monoids S and T , any (S, T )-biact A induces the adjoint pair of functors

A⊗T − : TSet→ SSet, X 7→ A⊗T X,
HomS(A,−) : SSet → TSet, Y 7→ HomS(A, Y ),

with the canonical bijection

HomS(A⊗T X,Y )→ HomT (X,HomS(A, Y )), h 7→ [x 7→ h(−⊗ x)].

6.1. Remarks. For any monoid (S,m, 1S), S×− is a monad with a coproduct given
by d : S → S × S, s 7→ (s, s). An easy argument shows that (S,m, d) does not
satisfy the Frobenius conditions unless S consists only of one element. Furthermore,
m · d = 1S if and only if all elements of S are idempotent, i.e., S is a Boolean monoid.

On the other hand, d : S → S × S respects the product and thus m and d are
compatible in the sense of 7.8. Also, the map ε : S → 1Set, s 7→ [ω], where [ω] is
a singleton, makes (S, d, ε) a comonad such that (S,m, 1S , d, ε) becomes a bimonad.
This is a Hopf monad if and only if the monoid S is a group (e.g. [92, 5.19]).

For the use of distributive laws in the theory of automata we refer to [17].
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7. Appendix: Categorical background

For the convenience of the reader and to fix notation we recall some basic notions
from category theory.

7.1. Categories. A category A consists of a class of objects Obj(A), and for any
objects A,B,C, there are morphism sets MorA(A,B) and MorA(B,C) with associative
composition

MorA(A,B)×MorA(B,C)→ MorA(A,C), (f, g) 7→ gf.

Sometimes the composition gf is also denoted by g ·f or g ◦ f .

A set MorA(A,B) may be empty, except for A = B, since MorA(B,B) always should
contain an identity morphism 1B satisfying g1B = g and 1Bf = f , for g ∈ MorA(B,C),
f ∈ MorA(A,B).

It is customary to write A ∈ A instead of A ∈ Obj(A), and Mor(B,C) instead of
MorA(B,C) if no uncertainty can arise.

The connection between two categories is given by

7.2. Functors. A covariant functor F : A → B between two categories consists
of assignments of Obj(A) → Obj(B), A 7→ F (A), and of morphisms Mor(A,B) →
Mor(A,B), f 7→ F (f), such that

F (1A) = 1F (A) and F (fg) = F (f)F (g).

By definition, one has a map of sets,

ΦF
A,A′ : MorA(A,A′)→ MorB(F (A), F (A′),

and the functor F is called faithful if ΦF
A,A′ is injective, full if ΦF

A,A′ is surjective, and

fully faithful if ΦF
A,A′ is bijective.

Contravariant functors F reverse the composition of morphisms, that is, F (fg) =
F (g)F (f)

The relation between two functors is described by

7.3. Natural transformations. Let F, F ′ : A→ B be covariant functors. A natural
transformation α : F → F ′ is given by a family of morphisms

αA : F (A)→ F ′(A) in B, A ∈ Obj(A),

such that any f : A→ B in A induces commutativity of the diagram in B,

F (A)
F (f) //

αA

��

F (B)

αB

��
F ′(A)

F ′(f) // F ′(B) .

7.4. Adjoint pairs of functors. A pair (L,R) of functors L : A→ B and R : B→ A
between categories A and B is called adjoint if there are bijections, natural in A ∈
Obj(A) and B ∈ Obj(B),

ϑA,B : MorB(L(A), B)→ MorA(A,R(B)).

Such a pair can be characterised by the associated natural transformations

unit η : 1A → RL and counit ε : LR→ 1B.

with the trianglular identities

R
ηR−−→ RLR

Rε−→ R = 1R, L
Lη−→ LRL

εL−→ L = 1L.
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Vector spaces with products, that is, algebras, lead to the consideration of functors
with products. The products here are given by natural transformations and the rules
for them are taken from the relevant properties for algebras.

7.5. Monads and their modules. A monad on A is a triple F = (F,m, ι), where
F : A→ A is a functor and

m : FF → F , ι : 1A → F ,

are natural transformations with commutative diagrams

FFF
mF //

Fm
��

FF

m
��

FF m
// F ,

F
ιF //

Fι
��

=

""

FF

m
��

FF m
// F .

An F-module is an object A in A with a morphism %A : F (A) → A inducing
commutative diagrams

FF (A)
mA //

F%A
��

F (A)

%A

��

A
ιA //

1A !!

F (A)

%A

��
F (A) %A

// A , A .

Morphisms between two F -modules (A, %) and (A′, %′) are given by a morphism
h : A→ A′ in A implying commutativity of the diagram

F (A)
F (h) //

%

��

F (A′)

%′

��
A

h // A′.

With this morphisms, the F -modules form a category, denoted by AF .
Clearly, for any object A, F (A) has a an F -module structure given by mA :

FF (A) → F (A) and for any morphism h in A, F (h) is an F -module morphism.
This leads to the free functor and the forgetful functor,

φF : A→ AF, A 7→ (F (A),mA), UF : AF → A, (A, %) 7→ A,

and (φF , UF ) form an adjoint pair by the bijections for A ∈ Obj(A) and B ∈ Obj(AF),

MorAF
(F (A), B)→ MorA(A,UF (B)), f 7→ f ◦ ιA.

Notice that UFφF = F .

7.6. Comonads and their comodules. A comonad is a triple G = (G, δ, ε), where
G : A→ A is a functor with coproduct and counit, that is, natural transformations

δ : G→ GG, ε : G→ 1A,

with commuting diagrams

G
δ //

δ
��

GG

Gδ
��

GG
δG // GGG ,

G
δ //

δ
��

=

""

GG

εG
��

GG
Gε
// G.
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A G-comodule is an object A ∈ Obj(A) with a morphism ρA : A → G(A) in A,
inducing commutativity of the diagrams

A
ρA //

ρA

��

G(A)

δA
��

A
ρA //

1A ##

G(A)

εA

��
G(A)

GρA // GG(A) , A.

Morphisms between comodules (A, ρ), (A′, ρ′) are morphisms h : A→ A′ in A with
commutative diagrams

A
h //

ρ

��

A′

ρ′

��
G(A)

G(h) // G(A′).

The resulting category of G-comodules is denoted by AG.
Similar to the module case, for any A ∈ A, (G(A), δA) is a G-comodule and one has

the (cofree) functor and the forgetful functor,

φG : A→ AG, A 7→ (G(A), δA), UG : AG → A, (A, ρ) 7→ A,

and (UG, φG) form an adjoint pair of functors by the bijections

MorAG(B,G(A))→ MorA(UG(B), A), f 7→ εA ◦ f,
for any A ∈ Obj(A) and B ∈ Obj(AG). Notice that UGφG = G.

Composing two monads one expects to get - under certain conditions - again a
monad. New structures arise when a monad is combined with a comonad. For this
one considers

7.7. Mixed distributive laws. Let (F,m, ι) be a monad and (G, δ, ε) a comonad on
the category A. Then a natural transformation

λ : FG→ GF

is said to be mixed distributive law or entwining provided it induces commutativity of
the diagrams

FFG
mG //

Fλ
��

FG

λ
��

FGF
λF // GFF

Gm // GF,

G
ιG //

Gι !!

FG

λ
��

GF,

FG
Fδ //

λ
��

FGG
λG // GFG

Gλ
��

GF
δF // GGF,

FG
Fε //

λ
��

F

GF

εF

==

.

In this setting, it is of interest to consider mixed bimodules, that is, objects A ∈ A
with an F -module structure % : F (A)→ A and a G-comodule structure ω : A→ G(A)
with commutative diagram

F (A)
% //

F (ω)
��

A
ω // G(A)

FG(A)
λA // GF (A).

G(%)

OO
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Morphisms between two mixed bimodules are required to be F -module andG-comodule
morphisms.

Formally one can also consider entwinings GF → FG. These, however, do not
relate in the same way to mixed bimodules (involves Kleisli categories, e.g. [12]).

Of particular interest are endofunctors which are both a monad as well as a comonad.
In this case the question for the compatibility of the two structure arises.

7.8. Bimonads. Let B : A → A be a functor allowing for a monad (B,m, ι), a
comonad (B, δ, ε), and a mixed distributive law λ : BB → BB. These data are called
a bimonad provided they induce commutativity of the diagram

(7.1) BB
m //

Bδ
��

B
δ // BB

BBB
λB // BBB.

Bm

OO

It is customary to call the mixed (B,B)-bimodules Hopf modules and we denote them
by ABB. Commutativity of (7.1) implies that, for every A ∈ A, B(A) is a Hopf module
with

coaction δA : B(A)→ BB(A) and action mA : BB(A)→ B(A).

Thus one obtains a functor

φBB : A→ ABB, A 7→ (B(A),mA, δA).

A natural transformation S : B → B is called an antipode if

m · SB · δ = 1B · ε = m ·BS · δ,
and the bimonad (B,m, δ, λ) is called a Hopf monad provided such an antipode exists.
Under mild restrictions, this is the case if and only if φBB is an equivalence of categories
(e.g. [92], [50, 5.6]).

Over a commutative ring R, an R-bialgebra H is a Hopf algebra provided the
bimonad H⊗R− is a Hopf monad. If the Picard group of the ring R is zero, then any
Hopf algebra H with H finitely generated and projective as an R-module, has also
the structure of a Frobenius algebra (see [66]).

7.9. Remarks. The notion of distributive laws (of mixed type) goes back to Beck [9]
and we refer to [92, 12, 15] and the references given there for further information. In
more general situations, (simple) distributive laws are used by B. Klin in [42] in his
study of operational semantics. He shows how stream systems and Mealy machines
can be described by comodules and distributive laws.

For any monoid S, the monoid algebra K[S] over a field K is a bialgebra and
provides the setting for the Myhill-Nerode Theorem in the theory of formal languages
and (finite) automata (e.g., [64], [77]).

Monads and comonads are closely related to adjoint pairs of functors (e.g. [27]):

7.10. Adjoint pairs and (co)monads. Let L : A→ B and R : B→ A be an adjoint
pair of functors (see 7.4) with

unit η : 1A → RL and counit ε : LR→ 1B,

Then RL : A→ A has a monad structure with

product µ = RεL : RLRL→ RL and unit η : 1A → RL,

and LR : B→ B has a comonad structure with

coproduct δ = LηR : LR→ LRLR and counit ε : LR→ 1B.
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Our view on monads and comonads may suggest to consider comonads as dual to
monads and vice versa. As a special case one has the dual A∗ of a finite dimensional
algebra A. However, this only works because of finite dimension since then the end-
ofunctors A∗ ⊗K − and HomK(A,−) are isomorphic. Without finite dimension we
nevertheless get that the functor HomK(A,−) is a comonad. This can be formulated
in full generality.

7.11. Adjoint endofunctors. Let (F,G) be an adjoint pair of endofunctors on a
category A with bijection

ϕX,Y : MorA(F (X), Y )→ MorA(X,G(Y )),

and η : 1A → GF , ε : FG→ 1A as unit and counit.
Assume (F,m, ι) to be a monad. Then, for X,Y ∈ A, there are diagrams

MorA(F (X), Y )
ϕX,Y //

Mor(mX ,Y )

��

MorA(X,G(Y ))

Mor(X,?)

��
MorA(FF (X), Y )

' // MorA(X,GG(Y )),

MorA(F (X), Y )
ϕX,Y //

Mor(ιX ,Y )
��

MorA(X,G(Y ))

Mor(X,??)uu
MorA(X,Y ) ,

in which the dotted morphisms exist by composition of the other morphisms (ϕ is
invertible). By the Yoneda Lemma it follows that they are induced by morphisms

δY : G(Y )→ GG(Y ) and εY : G(Y )→ Y ,

and these are explicitly given by the natural transformations

δ : G
ηG−→ GFG

GηFG−→ GGFFG
GGmG−→ GGFG

GGε−→ GG,

ε : G
eG−→ FG

ε−→ 1A ,

yielding a comonad (G, δ, ε).

Based on this kind of arguments one obtains (e.g. [12, 2.8]):

7.12. Theorem. Let (F,G) be an adjoint pair of endofunctors on A with unit η :
1A → GF and counit ε : FG→ 1A. Then

(1) F has a monad structure if and only if G allows for a comonad structure. In this
case, the category of F -modules is isomorphic to the category of G-comodules by
the functors

Q : AF → AG, F (A)
h−→ A 7→ A

ηA−→ GF (A)
G(h)−−−→ G(A),

Q−1 : AG → AF , A
ρ−→ G(A) 7→ F (A)

F (ρ)−−−→ FG(A)
εA−→ A.

(2) F has a comonad structure if and only if G allows for a monad structure. In
this case the corresponding Kleisli categories are isomorphic.

More about these structures may be found, for example, in [12, 92]. For an explicit
outline for the Hom-tensor functors in module categories in this context we refer to
[94].

Acknowledgements. The author is grateful to Bachuki Mesablishvili for proof
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[67] Pareigis, B., and Röhrl, H., Remarks on semimodules, arXiv:1305.5531 (2013).
[68] Rafael, M.D., Separable functors revisited, Comm. Algebra, 18, 1445–1459 (1990).
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