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A CATEGORICAL APPROACH TO ALGEBRAS AND

COALGEBRAS

ROBERT WISBAUER
UNIVERSITY OF DÜSSELDORF, GERMANY

Abstract. Algebraic and coalgebraic structures are often handled in-
dependently. In this survey we want to show that they both show up
naturally when introducing them from a categorical point of you. Azu-
maya, Frobenius, separable, and Hopf algebras are obtained when both
notions are combined. The starting point and guiding lines for this
approach are given by adjoint pairs of functors and their elementary
properties.
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1. Introduction

In the last decades categorical techniques turned out to be very effective
in algebra and representation theory. Hereby, it was a key observation that
module theory of an algebra A over a field K is essentially the theory of the
functor

A⊗K − : MK →MK ,

an endofunctor of the category of K-vector spaces. An algebra A is defined
by K-linear maps multiplication A⊗K A→ A and unit e : K → A, subject
to associativity and unitality conditions. Left A-modules are given by a
K-vector space V with K-linear maps % : A ⊗K V → V , also subject to
associativity and unitality conditions. Together with A-linear maps, this
yields the category AM of left A-modules, The tensor product with product

1The final version of this paper has been submitted for publication in Intern. Electr.
J. Algebra
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(A⊗K V,m⊗ V ) is a left A-module and this leads to the free and forgetful
functors

φA : MK → AM, V 7→ (A⊗ V,m⊗ V ),

UA : AM→MK , (M,ρ) 7→M,

and the bijection

HomA(A⊗K V,M)→ HomK(V,UA(M)),

that is, the functor UA is right adjoint to A⊗K −.
These basic structures can be defined for arbitrary categories A, replacing

MK , and any functor F : A→ A, replacing A⊗K − : MK →MK . Multipli-
cation and unit are replaced by natural transformations, m : FF → F and
η : 1 → F , satisfying the respective associativity and unitality conditions.
This gives F a monad structure.

An F -module is an object V ∈ A with a morphism % : F (V )→ V and for
any W ∈ A, (F (W ),mW ) is an example for this. Morphisms of F -modules
are morphisms from A respecting the module structures and they yield the
category AF of F -modules with free and forgetful functors

φF : A→ AF , V 7→ (F (V ),mV ),

UF : AF → A, (M,%) 7→M,

and the bijection

MorF (F (V ),M) → MorA(V,UF (M)),

F (V )
f→M 7→ V

ηV→ F (V )
f→M,

shows that the functor UF is right adjoint to φF .
This shows that structures from module theory can be formulated in

great generality. As we will see, if the functor F : A→ A has a right adjoint
G : A → A, then the monad structure on F provides G with the structure
of a comonad. Thus this approach leads naturally to comonads (coalgebras,
bocses) and comodules and we will highlight this interplay. Notice that
the categorical tools developped are also successfully applied in theoretical
computer science and logic (e.g. [25], [37]).

2. Category theory

The idea that the role of elements in algebraic structures should be taken
over by homomorphisms came up from the beginning of the last century. It
has finally been poured into a solid frame 1945 by Samual Eilenberg and
Saunders MacLane in the seminal paper [6]. For convenience and to fix
notation we recall the basic notions and refer to [11] for more details.

2.1. Categories. A category A consists of a class of objects, and

(i) for each pair of objects A,A′ of objects, there is a set of morphisms
MorA(A,A′), usually denoted by arrows A→ A′,
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(ii) for any triple A,A′, A′′ of objects there is a composition of morphisms,

MorA(A,A′)×MorA(A′, A′′)→ MorA(A,A′′)

which is associative in an obvious sense,

(iii) for any object A, MorA(A,A) contains an identity morphism 1A, leav-
ing any composition with it unchanged.

2.2. Functors. A covariant functor F : A→ B between categories sends

(i) an object A from A to an object F (A) in B,

(ii) a morphism f : A→ A′ to F (f) : F (A)→ F (A′) in B,

(iii) a composit fg of morphisms in A to F (fg) = F (f)F (g) in B,

(iv) the identity 1A for A in A, to the identy of F (1A) in B, F (1A) = 1F (A).

It follows from this definition that F induces a set map

ΦF : MorA(A,A′)→ MorB(F (A), F (A′)),

and F is called faithful if ΦF is injective, and full if ΦF is surjective.

F defines an equivalence of categories provided there exists a functor G :
B→ A such that FG and GF both yield the respective identities.

A fully faithful functor F : A→ B induces an equivalence between A and
a full subcategory of B, the image of F .

2.3. Natural transformations. Given two functors F,G : A→ B between
categories, a natural transformation ψ : F → G is given by a family of
morphisms ψA : F (A)→ G(A), A ∈ A, with commutative diagrams, for any
morphism h : A→ A′ in A,

A

h��
A′,

F (A)
ψA //

F (h) ��

G(A)

G(h)��
F (A′)

ψA′ // G(A′).

ψ is called a (natural) isomorphism if all ψA are isomorphisms in B.

2.4. Separable functors. A functor F : A→ B is said to be separable if, for
any A,A′ ∈ A, the canonical map ΦF (from 2.2) is a split monomorphism,
that is, there is a map

ΨF : MorB(F (A), F (A′))→ MorA(A,A′),

natural in A,A′, with ΨF · ΦF the identity on MorA(A,A′).
Clearly, for a separable functor F , ΦF is always injective, and every fully

faithful functor is separable. A survey on separability in algebra and cate-
gory theory is given in [36].

It turned out that the following notion introduced and described by S.
Eilenberg and J.C. Moore in [5], is a milestone in category theory.
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2.5. Adjoint pair of functors. A pair of (covariant) functors F : A→ B,
G : B → A between any categories A, B, is said to be adjoint, we write
F a G, provided there is a bijection

αA,B : MorB(F (A), B)→ MorA(A,G(B)),

natural in A ∈ A and B ∈ B. Such a bijection can be described by natural
transformations, called unit and counit,

η : 1→ GF, ε : FG→ 1,

satisfying the triangualar identities

F
Fη−−→ FGF

εF−−→ F = 1F , G
ηG−−→ GFG

Gε−−→ G = 1G.

They are obtained as images of the identities of F (A) andG(B), respectively,
in the defining bijection.

Adjointness of contravariant functors A → B is defined by considering
relating them with covariant functors between opposite categories.

2.6. Remark. The notion of adjointness can be weakened in various ways.
For example, instead of being invertible one may require α to be regular,
that is, there exists βA,B : MorA(A,G(B)) → MorB(F (A), B), natural in
A ∈ A and B ∈ B, such that αβα = α (and βαβ = β). This yields a weaker
form of the triangular identities (see [34], [18]).

A short argument shows that for adjoint functors F a G,

- F preserves epimorphisms and coproducts,
- G preserves monomorphisms and products.

2.7. Properties of units and counits. Let F a G : B→ A be an adjoint
pair of functors (notation from 2.5).

(1) ε is an isomorphism if and only if G is a fully faithful functor:
G yields an equivalence between B and the image of G.

(2) η is an isomorphism if and only if F is a fully faithful functor:
F yields an equivalence between A and the image of F .

(3) ε and η are isomorphisms if F and G both are fully faithful:
F and G determine an equivalence between A and B.

(4) ε is a split epimorphism if and only if G is a separable functor.

(5) η is a split monomorphism if and only if F is a separable functor.

(6) η is an extremal epimorphism and ε an extremal monomorphism:
the categories AGF and BFG (see 4.2) are equivalent (∗-functors, [4]).

2.8. Rings and modules. We follow the notation from [26]. For associative
rings R and S, denote by RM and MS the category of left and right modules,
respectively. Then any bimodule RPS induces an adjoint pair of functors

RP ⊗S − : SM→ RM, HomR(P,−) : RM→ SM
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with bijection, counit, and unit

HomR(P ⊗S Y,X) ' HomS(Y,HomR(P,X)),

εX : M ⊗S HomR(P,X)→ X, m⊗ f 7→ f(m)

ηY : Y → HomR(P, P ⊗S Y ), y 7→ [m 7→ m⊗ y].

Denote by Gen(P ) (Pres(P )) the category of P -generated (P -presented)
R-modules. Clearly the image of P ⊗S − is contained in Pres(P ).

Choose an (injective) cogenerator Q in RM and put U = HomR(P,Q). For
the S-module U , denote by Cog(U) (Cop(U)) the category of U -cogenerated
(U -copresented) S-modules. The image of HomR(P,−) is contained in
Cog(U). If R is a cogenerator in RM we can choose U = P ∗.

(i) ε isomorphism: P is a generator in RM and the categories RM and
Cog(U) are equivalent.

(ii) η isomorphism: P ⊗S − is faithful on the image of HomR(P,−) and
the categories SM and Pres(P ) are equivalent (Sato equivalence, [22,
Theorem 2.1]).

(iii) η and ε are isomorphisms: the categories RM and SM are equivalent;
P is a finitely generated projective generator in RM and S = EndR(P )
(Morita equivalence, [20]).

(iv) ε monomorph and η epimorph: the categories Gen(P ) and Cog(U) are
equivalent (∗-modules, e.g. [23, Theorem 1.3], [4], [27], [28]).

3. Monads and comonads

Monads and comonads on categories are modelled after the algebras and
coalgebras on vector spaces.

3.1. Monads and their modules. A monad on any category A is an
endofunctor T : A→ A with natural transformations, product and unit,

m : TT → T, η : 1A → T,

subject to associativity and unitality conditions (as for algebras).

T -modules are objects A ∈ A with a morphism % : T (A) → A subject to
associativity and unitality conditions (as for modules over rings).

Morphisms between T -modules (A, %) and (A′, %′) (or T -morphisms) are
morphims f : A→ A′ in A with commutative diagram

T (A)

%

��

T (f) // T (A′)

%′

��
A

f // A′.

The category determined by T -modules and their morphisms is called the
Eilenberg-Moore category - or just the module category - of the monad
(T,m, η) and we denote it by AT .
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For any A ∈ A, T (A) has a T -module structure by mA : TT (A)→ T (A)
and this leads to the free functor φT which allows for a right adjoint, the
forgetful functor,

φT : A→ AT , A 7→ (T (A),mA),

UT : AT → A, (A, %A) 7→ A.

The adjunction φT a UT is given by the bijection, for A ∈ A, B ∈ AT ,

(3.1) MorAT
(φT (A), B)

'−→ MorA(A,UT (B)), f 7→ f ηA.

Putting B = φT (A′) with A′ ∈ A and applying UTφT = T , we obtain

(3.2) MorAT
(φT (A), φT (A′))

'−→ MorA(A, T (A′)).

Define a new category ÃT with the objects of A but choosing

MorÃT
(A,A′) = MorA(A, T (A′))

and defining the composition of f : A→ T (A′) and g : A′ → T (A′′) by

g � f : A
f−→ T (A′)

T (g)−−−→ TT (A′′)
mA′′−−−→ T (A′).

This is known as the Kleisli category of the monad T and the bijection

(3.1) shows that ÃT is isomorphic to the full subcategory of the Eilenberg-
Moore category AT determined by the objects T (A), A ∈ A (free T -modules).

Reversing the arrows in the definitions around monads yields

3.2. Comonads and their comodules. A comonad on a category A is an
endofunctor S : A→ A with natural transformations, coproduct and counit,

δ : S → SS, ε : S → 1A,

subject to coassociativity and counitality conditions (dual to monad case).

S-comodules are objects A ∈ A with a morphism ω : A → S(A) subject
to coassociativity and counitality conditions.

Morphisms between comodules (A,ω) and (A′, ω′) (or S-morphisms), are
morphisms g : A→ A′ in A with commutative diagrams

A

ω
��

g // A′

ω′
��

S(A)
S(g) // S(A′).

The category formed by the S-comodules and their morphisms is called
the Eilenberg-Moore category - or just the comodule category - of the
comonad (S, δ, ε) and we denote it by MS .

For any A ∈ A, the structure map δA : S(A) → SS(A) makes S(A) an
S-comodule. This yields the free functor φS which is right adjoint to the
forgetful functor US ,

φS : A→ AS , A 7→ (S(A), δA),

US : AS → A, (A,ω) 7→ A.
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The adjunction US a φS is given by the bijection, B ∈ AS , A′ ∈ A,

(3.3) MorS(B,S(A′))
'−→ MorA(US(B), A′), h 7→ εA′ h.

For B = S(A) with A ∈ A, using USφS = S, we obtain

(3.4) MorS(S(A), S(A′))
'−→ MorA(S(A), A′).

Define a new category ÃS with the objects of A but choosing

MorÃS (A,A′) := MorA(S(A), A′)

and take as composition, of h : S(A)→ A′ and k : S(A′)→ A′′,

k � h : S(A)
δA−→ SS(A)

S(h)−−−→ S(A′)
k−→ A′.

This is known as the Kleisli category of the comonad S. The bijection (3.4)

shows that ÃS is isomorphic to the full subcategory of the Eilenberg-Moore
category AS determined by the objects S(A), A ∈ A ((co)free S-comodules).

3.3. Rings and modules. For a ring R, any (R,R)-bimodule A defines
an endofunctor A ⊗R − : RM → RM. A is called an R-ring if this functor
allows for a monad structure. If R is commutative and ra = ar for a ∈ A,
r ∈ R, an R-ring is called an R-algebra.

An (R,R)-bimodule C is called an R-coring provided the functor C⊗R−
allows for a comonad structure. If R is commutative and rc = cr for c ∈ C,
r ∈ R, an R-coring is called an R-coalgebra.

Notice that not every monad or comonad on RM can be represented by
a tensor functor. For an extensive treatment of corings refer to [3].

4. Adjoints and (co)monads

The notion of adjoints and (co)monads are intimately related. Using
naturality of the transformations involved it is straightforward to show:

4.1. From adjoints to (co)monads. Let F a G : B → A be an adjoint
pair of functors with unit η : 1A → GF and counit ε : FG→ 1B.

(i) T := GF : A→ A is an endofunctor and the natural transformations,
product and unit,

m : TT = GFGF
GεF−−−→ GF = T, η : 1A → GF = T,

make (T,m, η) a monad on A.

(ii) S := FG : B → B is an endofunctor and the natural transformations
coproduct and counit,

δ : S = FG
FηG−−−→ FGFG = SS, ε : S = FG→ 1B,

make (S, δ, ε) is a comonad on B.
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Recall that the construction of module and comodule categories in 3.1
and 3.2 show the inverse direction. In fact, these structures were introduced
to show that monads as well as comonads can be written as a composition
of adjoint functors ([10], [5]).

4.2. From (co)monads to adjoints. Let A be any category.

(i) For a monad (T,m, η) on A, the category AT allows for an adjoint
pair of functors φT a UT : AT → A with T = UTφT .

(ii) For a comonad (S, δ, ε) on A, the category AS allows for an adjoint
pair of functors US a φS : A→ AS with S = USφS.

The same assertions hold replacing the Eilenberg-Moore categories by the
corresponding Kleisli categories.

The structure of the (co)monads related to an adjunction are strongly
influenced by the properties of the unit and counit.

4.3. Separability. Let F a G : B → A be an adjunction as in 4.2 and
T = GF , S = FG the associated monad and comonad.

(i) Assume G to be a separable functor (see 2.4). Then the monad
(T,m, η) allows for a coproduct

δ′ : T = GF
Gε′F−−−→ GFGF = TT

with m · δ′ = 1T and commutative diagrams (Frobenius conditions)

(4.1) TT
δT //

m ��

TTT

Tm��
T

δ // TT,

TT
Tδ //

m ��

TTT

mT��
T

δ // TT.

With these properties, (T,m, η, δ′) is (called) a separable monad.

(ii) Assume F to be a separable functor (see 2.4). Then the comonad
(S, δ, ε) allows for a product

m′ : SS = FGFG
Fη′G−−−→ FG = S

with m′ · δ = 1S and commutative diagrams as in (4.1).

(S, δ, ε,m′) is (called) a coseparable comonad.

4.4. Rings and modules. As in 2.8, we consider an (R,S)-bimodule P .
The related adjunction yield

monad HomR(P, P ⊗S −) : SM→ SM,

comonad P ⊗S HomR(P,−) : RM→ RM.

Now P ∗ := HomR(P,R) is an (S,R)-bimodule and hence induces

monad HomS(P ∗, P ∗ ⊗R −) : RM→ RM,

comonad P ∗ ⊗R HomS(P ∗,−) : SM→ SM.
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If RP is finitely generated and projective, HomR(P,−) ' P ∗ ⊗R − and
the comonad P ⊗S HomR(P,−) ' P ⊗S P ∗ ⊗R −, that is, P ⊗S P ∗ is an
R-coring (and P ∗ ⊗R P ' S).

If η is an isomorphism, P ⊗S− is (left) exact on the image of HomR(P,−)
and hence the comonad

P ⊗S HomR(P,−) : RM→ RM

is a left exact functor commuting with products in RM. Therefore, by the
dual of Watts’ theorem (e.g. [8]), it is determined by the image of a cogen-
erator Q ∈ RM, that is,

P ⊗S HomR(P,−) ' HomR(P ⊗S HomR(P,Q),−)

' HomS(HomR(P,Q),HomR(P,−)).

In case R is a cogenerator in RM, we put Q = R to obtain

P ⊗S HomR(P,−) ' HomR(P ⊗S P ∗,−)

' HomS(P ∗,HomR(P,−)).

This is a comonad, thus P ⊗S P ∗ ⊗R − is a monad (by 5.1) which means
that P ⊗S P ∗ is an R-ring (see 3.3).

If unit η and counit ε are isomorphisms, the comonad P ∗⊗RHomS(P ∗,−) '
P ∗ ⊗R P ⊗S −, that is, P ∗ ⊗R P is an S-coring.

As a special case, we look at a situation studied in representation theory.

4.5. Nakayama functors. Let A be a finite dimensional algebra over a
field K and A-mod the category of finitely generated left A-modules. It
is customary to write D(−) = HomK(−,K), so A∗ = D(A), and one gets
HomK(A,−) ' D(A)⊗K −. The functor (e.g. [8])

ν = DHomA(−,AA) : A-mod→ A-mod

is called the Nakayama functor, and

ν− = HomA(D(−), AA) : A-mod→ A-mod

is said to be the inverse Nakayama functor. By the Eilenberg-Watts theo-
rems one gets the natural isomorphisms

ν(−) ' D(A)⊗A −, ν−(−) ' HomA(D(A),−),

thus there is an adjoint pair of endofunctors to be investigated.
From 2.8 and 4.4 one can see which monad or comonad structures may

show up in this setting. The (A-module) structure of D(A) is of course
influenced by the structure of A.



10 ROBERT WISBAUER

5. Adjoint monads and comonads

In 3.2, comonads (S, δ, ε) were defined by reversing arrows in the definition
of monads (T,m, η). This does not mean that the two notions are strictly
dual in a categorical way: in our definition we do not have anything like the
”dual” of a functor T (or S). In this section we will outline that adjointness
provides a bijective correspondence between monads and comonads.

5.1. Monads versus comonads Let F a G : A→ A be an adjoint pair of
endofunctors with unit η, counit ε and bijection, for X,Y ∈ A,

αX,Y : MorA(F (X), Y )→ MorA(X,G(Y )),

(i) A monad structure on F induces a comonad structure on G, and vice
versa, such that the associated (Eilenberg-Moore) categories AF and
AG are isomorphic.

(ii) A comonad structure on F induces a monad structure on G, and vice

versa, such that the associated Kleisli categories ÃF and ÃG are equiv-
alent

Proof. (Sketch) (i) Let (F,m, η) be a monad. The adjunction F a G induces
the diagram

MorA(F (X), Y )
αX,Y //

Mor(mX ,Y )
��

MorA(X,G(Y ))

Mor(X,?)
��

MorA(FF (X), Y )
' // MorA(X,GG(Y ))

where the dotted arrow exists by composition of the other maps (α is in-
vertible) and determines a natural transformation δ : G → GG. A similar
argument shows the existence of a counit ε : G→ 1A. Explicitly we get

δ : G
ηG−−→ GFG

GηFG−−−−→ GGFFG
GGmG−−−−→ GGFG

GGε−−−→ GG,

ε : G
ηG−−→ FG

ε−→ 1A .

The symmetric construction shows that a comonad structure on G leads
to a monad structure on F . The equivalence of categories is given by

AF → AG, F (A)
h−→ A 7→ A

ηA−−→ GF (A)
G(h)−−−→ G(A),

AG → AF , A
%−→ G(A) 7→ F (A)

F (%)−−−→ FG(A)
εA−−→ A.

(ii) By arguments symmetric to those in (i), a comodule structure on F
induces a module structure on G, and vice versa. The equivalence of Kleisli

categories ÃF and ÃG follows from the isomorphisms

MorAF (φF (A), φF (A′))
(1)
' MorA(F (A), A′)

(2)
' MorA(A,G(A′))

(3)
' MorAG

(φG(A), φG(A′)),
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where (1) is the isomorphism from (3.4), (2) is the adjunction, and (3) is
the isomorphism from (3.2). �

5.2. Frobenius monads. Let F : A → A be a self-adjoint endofunctor,
that is, F a F . By subsection 5.1, there are equivalent:

(a) F has a monad structure (F,m, η);

(b) F has a comonad structure (F, δ, ε);

With this (mutually) induced structures, (F,m, δ) satisfies the Frobenius
conditions (4.1) and the categories AF and AF are isomorphic. These data
define a Frobenius monad. ([17], [24])

5.3. Rings and modules. Let A be an (R,R)-bimodule and consider the
adjoint functor pair of endofunctors (as in 2.8),

A⊗R −, HomR(A,−) : RM→ RM.

(i) An R-ring (A,m, η), that is, a monad A ⊗R − on RM, induces a
comonad structure on HomR(A,−) with coproduct

HomR(A,−)
Hom(m,−)−−−−−−→ HomR(A⊗R A,−)

' HomR(A,HomR(A,−)),

and the module category MA is isomorphic to the comodule category
MHom(A,−).

(ii) A coring (A, δ, ε), that is, a comonad A⊗R− on RM, induces a monad
structure on HomR(A,−) with product

HomR(A,HomR(A,−)) '
HomR(A⊗R A,−)

Hom(δ,−)−−−−−−→ HomR(A,−),

and the Kleisli categories are isomorphic by assigning, for X ∈ RM,

M̃A → M̃Hom(A,−), A⊗R X 7→ HomR(A,X).

Note that the objects of MHom(A,−) are also called contramodules (e.g.
[2, Section 4], [32]).

The R-ring (A,m, η) is called a Frobenius R-ring provided A ⊗R −
is a Frobenius monad on RM. This implies that RA is finitely generated
and projective and hence HomR(A,−) ' A∗ ⊗R −, thus A ' A∗ as left A-
modules and MA ' MA. For commutative rings R one obtains Frobenius
algebras.

6. Composition of monads and comonads

Over a commutative ringR, the tensorproduct of twoR-algebras (A,m, e),
(B,m′, e′) can be made an algebra defining a product (writing ⊗ := ⊗R)

mAB : A⊗B ⊗A⊗B A⊗tw⊗B−−−−−−→ A⊗A⊗B ⊗B m⊗m′
−−−−→ A⊗B,

with the twist map tw : B ⊗A→ A⊗B, b⊗ a 7→ a⊗ b.
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This map is no longer available if R is not commutative. On the other
hand, the product is formally defined replacing tw by any morphism τ :
B ⊗ A → A ⊗ B, however, it is not clear which properties it has. So one
may ask which conditions are to be satisfied by τ to make the product mAB

associative. These lead to commutativity of diagrams of the form

B ⊗B ⊗A
B⊗τ

��

m′⊗A // B ⊗A
τ
��

B ⊗A⊗B τ⊗B// A⊗B ⊗BA⊗m
′
// A⊗B,

A
e′⊗A //

A⊗e′ ##

B ⊗A
τ
��

A⊗B,
and should induce commutative diagrams of functors, with the forgetful
functor UB : BM→ RM,

BM
A⊗B⊗− //

UB
��

BM
UB
��

RM
A⊗R− //

RM.

The functor A⊗B ⊗− is called a lifting of A⊗− from RM to BM.

The questions considered above for the functors A⊗− and B⊗− can be
asked for endofunctors in any category.

6.1. Liftings of endofunctors. Let A be any category with endofunctors
F,G : A → A. If (F,m, e) is a monad or (G, δ, ε) is a comonad, we get the
two diagrams, respectively,

AF
G //

UF
��

AF
UF
��

A G // A,

AG F //

UG

��

AG

UG

��
A F // A.

If G (F ) exists it is called a lifting of G (F ) from A to AF (AG). The
following questions come up:

(i) when does a lifting G or F exist ?

(ii) if F and G are monads, when is G a monad ?

(iii) if F and G are comonads, when is F a monad ?

(iv) if F is a monad and G is a comonad, when is G a comonad, when is
F a monad ?

All these problems can successfully be handled applying distributive laws
as introduced and investigated in the 1970’s by J. Beck [1] and others (see
[31] for an overview and [2], [13], [15], et al. for more details).

Question (ii) above will lead to conditions which make the composition
FG a monad on A (as considered for algebras above) and (iii) describes
the corresponding properties of comonads. Of particular interest are the
questions in (iv) since they reveal an interesting interplay between monads
and comonads.
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6.2. Mixed distributive laws. Let (F,m, η) be a monad and (G, δ, ε) a
comonad on a category A. A natural transformations λ : FG→ GF is called
a mixed distributive law or (mixed) entwining if it induces commutativity of
the diagrams

FFG
mG //

Fλ
��

FG

λ
��

FGF
λF // GFF

Gm // GF,

FG
Fδ //

λ
��

FGG
λG // GFG

Gλ
��

GF
δF // GGF,

G
ηG //

Gη !!

FG

λ
��

GF,

FG
Fε //

λ
��

F

GF.

εF

==

The following are equivalent (with notation from 6.1):

(a) G can be lifted from A to G : AF → AF ;
(b) F can be lifted from A to F : AG → AG;
(c) there exists a mixed distributive law λ : FG→ GF .

Given a monad and a comonad on A, objects can have a module and a
comodule structure. An entwining allows to require a compatibility of these
structures.

6.3. Mixed modules. Let (F,G, λ) be a mixed entwining and assume
A ∈ A to be an F -module % : F (A)→ A and a G-comodule ω : A→ G(A).
Then (A, %, ω) is called a mixed (F,G)-module if we get commutativity of
the diagram

F (A)
% //

F (ω)
��

A
ω // G(A)

FG(A)
λA // GF (A).

(%)

OO

These objects with morphisms that are module as well as comodule mor-
phisms, form a category which we denote by AGF .

In 6.1, the lifting to Eilenberg-Moore categories was considered. A corre-
sponding construction for Kleisli categories is the following.

6.4. Extending of endofunctors. Let A be any category with endofunc-
tors F,G : A→ A. If (F,m, e) is a monad or (G, δ, ε) is a comonad, we get
the two diagrams (with φ the free functors), respectively,

A

φF ��

G // A

φF��

ÃF
G̃ // ÃF ,

A F //

φG ��

A

φG��

ÃG F̃ // ÃG.
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G̃ and F̃ are called the extensions of F and G, respectively. Here again
distributive laws apply for further investigation but with the role of monad
and comonad interchanged, that is, one needs natural transformations σ :
GF → FG inducing commutativity of the corresponding diagrams. Notice
that the role of mixed modules (as in 6.3) does not transfer to this situation.

7. Bimonad and Hopf monads

Of special interest are endofunctors B on A which carry a monad structure
(B,m, η) and a comonad structure (B, δ, ε) at the same time. To make these
data a bimonad we first require the existence of a mixed distributive law
λ : BB → BB.

The relevant commutative diagrams are either for the monad structure or
else for the comonad structure - they do not relate product with coproduct,
for example. To connect these we need further compatibility conditions,
namely commutativity of the diagrams

(7.1) BB
m //

Bδ
��

B
δ // BB

BBB
λB // BBB,

Bm

OO

(7.2) BB

m
��

Bε // B

ε
��

B
ε // 1A,

1A

η
��

η // B

Bη
��

B
δ // BB,

1A

= !!

η // B

ε
��

1A,

where the bottom diagrams mean that η is comonad morphism and ε a
monad morphism. Diagram (7.1) guarantees that for each A ∈ A, B(A)
is a mixed (B,B)-module in the sense of 6.3, that is, B(A) ∈ ABB. This
determines a functor

φBB : A→ ABB, A 7→ BB(A)
mA−−→ B(A)

δA−−→ BB(A).

which is full and faithful by the isomorphisms (see 3.4, 3.1)

MorBB(B(A), B(A′)) ' MorB(B(A), A′) ' MorA(A,A′)

A natural transformation S : B → B is called an antipode if it induces
commutativity of the diagram

(7.3) B
ε //

δ
��

1A
η // B

BB
SB //
BS

// BB

m

OO .

A bimonad which allows for an antipode is called a Hopf monad. Such an
antipode exists if and only if either of the composits

BB(A)
Bδ−−→ BBB

mB−−→ BB, BB(A)
δB−−→ BBB

Bm−−→ BB
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is an isomorphism ([14, 5.5]).
Under certain conditions on the categry A and the functorB, the existence

of an antipode S is equivalent to φBB : A→ ABB defining an equivalence ([14,
5.6, 6.11]).

7.1. Adjoints of bimonads. Let (B,m, δ, λ) be a bimonad on A (as above).
Assume B allows for a right adjoint functor C : A→ A. Then by 5.1, C can
be endowed with a comonad as well as a monad structure. Furthermore,
there is a mixed distributive law λ′ : CC → CC (derived from λ, see [14,
7.4]) which makes C a bimonad.

The bimonad B has an antipode if and only if the associated bimonad C
has an antipode. Thus, given an adjoint pair B a C of functors on A, B
allows for a Hopf monad structure if and only if so does C.

7.2. Bimonad on Set. ([31, 5.19], [14, 7.9]) For any set G, the cartesian
product defines an endofunctor

G×− : Set→ Set, A 7→ G×A,
which is a comonad with coproduct δ : G → G × G, g 7→ (g, g), and is a
monad provided G is a monoid. Then it is a bimonad with entwining

λ : G×G→ G×G, (g, h) 7→ (gh, g).

Now G × − has an antipode, i.e., is a Hopf monad, if and only if the
monoid G is in fact a group. By 7.1, this is also equivalent to Map(G,−) :
Set→ Set, a right adjoint of G×−, being a Hopf monad.

7.3. Bialgebras. Let R be a commutative ring. An R-module B with an
algebra structure (B,m, η) and a coalgebra structure (B, δ, ε) is called a
bialgebra if δ and ε are algebra morphisms, or, equivalently, m and η are
coalgebra morphisms. These conditions require commutativity of the outer
path in the diagram

B ⊗B m //

B⊗δ
��

B
δ // B ⊗B

B ⊗B ⊗B
δ⊗B⊗B

��

ω⊗B // B ⊗B ⊗B

B⊗m

OO

B ⊗B ⊗B ⊗B B⊗tw⊗B // B ⊗B ⊗B ⊗B.

m⊗B⊗B

OO

Defining an R-linear map

ω : B ⊗B δ⊗B−−−→ B ⊗B ⊗B B⊗tw−−−−→ B ⊗B m⊗B−−−→ B ⊗B,
the condition reduces to commutativity of the upper rectangle. As readily
checked, ω : B⊗B → B⊗B is a mixed distributive law between the monad
B⊗− and the comonad B⊗−. Commutativity of the upper rectangle is just
the compatibiity condition which makes B a bialgebra. Thus a bialgebra
B corresponds to a monad B ⊗− with the associated monad and comonad
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structures and the specific mixed distributive law ω. The mixed (B,B)-
modules MB

B are called Hopf modules.

The composite

ω : B ⊗B B⊗δ−−−→ B ⊗B ⊗B tw⊗B−−−−→ B ⊗B B⊗m−−−→ B ⊗B

yields a similar rectangle (sides interchanged). It gives a mixed distributive
law between the related monad −⊗B and the comonad −⊗B. It may also
be considered as a mixed distributive law between the comonad B ⊗− and
the monad B ⊗− (see 6.4).

An antipode for the bialgebra B is an R-linear map S : B → B leading
to commutativity of the diagram (7.3) for the monad B ⊗−.

Bialgebras B with an antipode are called Hopf algebras and they are
characterised by the fact that φBB : MR → MB

B is an equivalence, that is,
every Hopf module is of the form B⊗X, for some X ∈MR (Fundamental
Theorem).

In case B is a finite dimensional algebra over a field K, B⊗K− is left ad-
joint to the endofunctor HomK(B,−) ' B∗⊗K−, whereB∗ = HomK(B,K).
Hence B is a Hopf algebra if and only if B∗ is a Hopf algebra (see 7.1). This
is known as the duality principle of Hopf algebras.

Hopf algebras were brought to light by Heinz Hopf in his seminal paper
[9] in topology (1941). The algebraic essentials of this notion were extracted
by Milnor-Moore in [19] (1965). As a result, interest was also directed to the
more elementary notions of coalgebras and corings as building blocks for the
theory. It took several years until their value for representation theory was
unveiled (1980) by A.V. Roiter in [21], there a coring is called bocs, and the
interest is focused on Kleisli categories. In the meantime more attention is
paid to coalgebraic aspects of finite dimensional algebras. For this we refer
to the recent paper [12] by R. Marczinzik and the references given there.

7.4. Remark. As pointed out in subsection 7.3, the mixed distributive law
for a bialgebra was derived from the canonical twist of the tensor product of
modules over a commutative ring. This setting was extended to monoidal
braided categories, where a general version of such a twist map is required.
Concentrating on the properties needed, for endofunctors B on any cate-
gory it is sufficient to define a local braiding τ : BB → BB to derive the
corresponding theory. For details we refer to [14, Section 6] and [16].

7.5. Rings and modules. The preceding sections show that the coproduct
plays an important role in the structure theory of algebras. Summarising we
consider an algebra (A,m, η) over a commutative ring R. Assume A allows
for a coproduct δ : A→ A⊗A. Then A becomes

(1) a separable algebra if (A,m, δ) satisfies the Frobenius condition and
m · δ = 1A;
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(2) an Azumaya algebra if it is separable and R ' C(A) (center of A);
the categroy of C(A)-modules is equivalent to the category AMA of
(A,A)-bimodules;

(3) a Frobenius algebra if (A,m, δ) satisfies the Frobenius condition and
(A, δ) has a counit ε : A → R; every A-module has an A-comodule
struture (Frobenius (bi)module, see [35]);

(4) a Hopf algebra if (A,m, δ) induce commutativity of (7.1) and (A, δ)
has a counit ε : A → R; the category of R-modules is equivalent to
the category MA

A of mixed (A,A)-bimodules (e.g. [3]).
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