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Abstract

Algebras and coalgebras are fundamental notions for large parts
of mathematics. The basic constructions from universal algebra are
now expressed in the language of categories and thus are accessible to
classical algebraists and topologists as well as to logicians and com-
puter scientists. Some of them have developed specialised parts of the
theory and often reinvented constructions already known in a neigh-
bouring area. One purpose of this survey is to show the connection
between results from different fields and to trace a number of them
back to some fundamental papers in category theory from the early
70’s.

Another intention is to look at the interplay between algebraic and
coalgebraic notions. Hopf algebras are one of the most interesting
objects in this setting. While knowledge of algebras and coalgebras
are folklore in general category theory, the notion of Hopf algebras is
usually only considered for monoidal categories. In the course of the
text we do suggest how to overcome this defect by defining a Hopf
monad on an arbitrary category as a monad and comonad satisfying
some compatibility conditions and inducing an equivalence between
the base category and the category of the associated bimodules. For
a set G, the endofunctor G × − on the category of sets shares these
properties if and only if G admits a group structure.

Finally, we report about the possibility of subsuming algebras and
coalgebras in the notion of (F,G)-dimodules associated to two functors
F,G : A → B between different categories. This observation, due to
Tatsuya Hagino, was an outcome from the theory of categorical data
types and may also be of use in classical algebra.

Contents: 1.Introduction, 2.Modules and comodules, 3.Relations be-
tween functors, 4.Relations between endofunctors, 5.Combining monads and
comonads, 6.(F,G)-dimodules.
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1 Introduction

The purpose of Universal Algebra is to develop a general theory which applies
to a large part of algebraic structures. Initially it started with the study of
abstract algebras, that is, sets A with a collection of (n-ary) operations on
A. In his thesis (1963, [32]) Lawvere suggested to formulate these general
settings in the language of categories and functors.

In particular it turned out that adjoint pairs of functors are of central
importance. The study of monads (triples) and their modules and comonads
(cotriples) and their comodules was initiated by Eilenberg and Moore in [21]
and in Beck [5]. This approach covers an extremely wide range of applications
including not only the classical notions from module theory and topology but
also those from model theory and logic, the latter being of growing interest
for computer science.

Bringing the notions down to the language of categories and functors, the
common part of all theories envisaged has to be expressed in this terminology.
Many interesting observations in these areas can be traced back and under-
stood with the abstract handling of functors as suggested by Eilenberg, Mac
Lane and their schools. To make this clear we will pay some attention to the
so called mixed distributive laws between endofunctors introduced in Beck [6]
and further studied in van Osdol [54] and Wolff [57] (see also Barr and Wells
[4] and Škoda [46, Section 9]). These were rediscovered in Turi and Plotkin
[52] in the context of operational semantics and by Brzeziński and Majid [14]
in the form of entwining structures between the tensor product of an algebra
and a coalgebra over a commutative ring R. Some of these notions were more
generally handled in monoidal categories by Mesablishvili in [40]. The action
of monoidal categories on any category as considered by Škoda in [45] puts
this in a wider context.

We note that for some purposes it is natural to consider monads and
comonads in 2-categories and we refer to Street [47], Lack and Street [31],
Power and Watanabe [43], Lenisa, Power and Watanabe [33] and Tanaka
and Power [51] for a treatment in this direction. Szlachányi also considers
2-categories in [48] to understand (op)monoidal functors for bialgebroids. His
approach is similar in spirit to our investigations but his focus is on different
results.

Now each field of application has its own requirements and the questions
and constructions arising, say, in computer science may also be of relevance for
classical modules. In fact this lecture was motivated by the observation that
manipulations suggested and performed by computer scientists (e.g. [52]) are
also of interest for corings and comodules.

Dualising the algebraic theory yields the coalgebraic theory and both of
these have their realms of applications. However, there are also combinations
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of constructions from both of them and one purpose of this presentation is to
outline how this can be done and what the outcome is.

As some other authors do (e.g. [11], [45]) we modify the terminology from
Eilenberg and Moore in [21] by referring to the F -algebras of an endofunctor
in their sense as F -modules, and F -coalgebras as F -comodules. This is in
total correspondence to the application in module theory where the functor
F plays the role of an algebra or coalgebra, respectively, while the attached
categories are modules or comodules. We hope this change does not lead to
conflicts in other situations.

At the core of our treatise is Johnstone’s general Lifting of functors the-
orem 3.1 from which many applications can be understood and derived. A
different handling of related problems can be found in Mesablishvili [39] where
a generalisation of descent theory is proposed.

As a byproduct, on our way we obtain some of the conditions on a monad
S on a monoidal category C from Moerdijk [41, Proposition 1.4] which allow
the tensor product to lift from C to the category of S-modules (see 3.4).
Monads of this type were named Hopf monads in [41], called opmonoidal
monad in McCrudden [37, Example 2.5] and Szachlányi [48, Definition 2.4],
and bimonads in Bruguières and Virelizier [11, 2.3]. We do not use these
notions but will associate a different meaning to the term Hopf monad here.

Classical Hopf algebras H over a commutative ring R have compatible
algebra and coalgebra structures H ⊗R H → H and H → H ⊗R H such that
the free functor φH : R-Mod→ R-ModHH induces a category equivalence (e.g.
[16, 15.5]). Traditionally most generalisations of Hopf algebras are based on
a kind of tensor product on a category which allows us to follow the usual
arguments at least for a larger part. Trying to have the aforementioned equiv-
alence in utmost generality for an endofunctor B on an arbitrary category A,
one has to impose all conditions necessary on the functor B. Thus we re-
quire B to be a monad and a comonad whose compatibility is controlled by
a natural transformation λ : BB → BB (mixed distributive law). We call
this a (mixed) bimonad and suggest naming it a Hopf monad provided the
related free functor φBB : A → AB

B induces an equivalence (see 5.15). In case
λ is derived from a natural transformation τ : BB → BB which satisfies
the Yang-Baxter equation, following Takeuchi, B may be called a braided bi-
monad or braided Hopf monad if B is a Hopf monad (see 5.17). We note that
natural transformations satisfying the Yang-Baxter equation are also used by
Menini and Stefan in [38] to define compatible flip morphisms for monads
on arbitrary categories and their concept was extended by Kasangian, Lack
and Vitale in [29] (see 5.18). By a suggestion of Manin, in noncommutative
geometry the role of the twist map can be replaced by an arbitrary Yang-
Baxter operator (on vector space categories). This approach leads to similar
formulas and is developed by Baez in [2]. Relations between Yang-Baxter op-
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erators and entwining structures (on vector space categories) are investigated
by Brzeziński and Nichita in [15].

As a special case we can look at a set G and the endofunctor G×− on the
category of sets. As outlined in Caenepeel and Lombaerde [19], the existence
of an antipode for the related bimonad is then equivalent to G having a group
structure and implies the fundamental theorem. The notions introduced here
deepens the understanding of this situation and in this case the fundamental
theorem implies in turn the existence of an antipode (see 5.19, 5.20).

Inspired by questions arising in computer science, Hagino introduced in
[25] for two functors F,G : A → B between arbitrary categories the notion
of (F,G)-algebras (we call them (F,G)-dimodules). These generalise modules
as well as comodules of endofunctors and in Section 6 we give a short outline
how to treat them in abstract category theory. Their use in (classical) algebra
still awaits exploration. For a deeper presentation of examples and usage of
(co)algebras in universal algebra and computer science the interested reader
may consult Gumm’s articles [23, 24].

To avoid confusion, we mention that, as usual, functor symbols are writ-
ten on the left side of an object. When referring to examples in module
categories over a commutative ring R, following the usage of our main refer-
ences, we usually consider right tensor functors −⊗X, X an R-module. The
reader should be aware that this causes a reversion of symbols in some of the
diagrams or formulas when passing from arbitrary categories to R-modules.

2 Modules and comodules

To fix notation let us recall some basic facts.

2.1. Categories. A category A consists of a class of objects Obj(A) and a
class of morphism sets Mor(A) satisfying

(i) for objects A,B in A there is a morphism set MorA(A,B) such that

MorA(A,B) ∩MorA(A′, B′) = ∅ for (A,B) 6= (A′, B′);

(ii) for A,B,C ∈ Obj(A) there is a composition map

MorA(A,B)×MorA(B,C)→ MorA(A,C), (f, g) 7→ gf ;

(iii) for every A ∈ Obj(A) there is an identity morphism IA ∈ MorA(A,A).

The connection between two categories is given by

2.2. Functors. A covariant functor F : A → B between two categories
consists of assignments

Obj(A)→ Obj(B), A 7→ F (A),

Mor(A)→ Mor(B), f : A→ B 7→ F (f) : F (A)→ F (B),
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such that F (IA) = IF (A) and F (fg) = F (f)F (g).

Contravariant functors reverse the composition of morphisms. Here all
our functors considered will be covariant.

The relation between two functors is described by

2.3. Natural transformations. Let F, F ′ : A→ B be covariant functors.
A natural transformation α : F → F ′ is given by morphisms

αA : F (A)→ F ′(A) in B, A ∈ Obj(A),

such that f : A→ B in A induces the commutative diagram in B

F (A)
F (f) //

αA

��

F (B)

αB

��
F ′(A)

F ′(f) // F ′(B) .

Given another pair of functors G,G′ : B→ C with natural transformation
β : G→ G′, the diagram

GF
Gα //

βF
��

GF ′

βF ′

��
G′F

G′α // G′F ′

is commutative and thus there is a natural transformation (Godement product)

βα := βF ′ ◦Gα = G′α ◦ βF : GF → G′F ′.

If A is a small category then the endofunctors (as objects) together with
natural transformations form a strict monoidal category: the product of end-
ofunctors is the composition and the composition of natural transformations
is given by the Godement product (e.g. [46, Section 8]).

In what follows we will use functors and natural transformations as basic
tools for general constructions.

2.4. Adjoint pairs of functors. A pair (L,R) of functors L : A → B and
R : B → A between categories A and B is called adjoint if there are natural
isomorphisms (in A ∈ Obj(A) and B ∈ Obj(B))

ϑA,B : MorB(L(A), B)→ MorA(A,R(B)).

Associated to such a pair there are natural transformations

unit η : IA → RL and counit ε : LR→ IB.
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2.5. F -modules. Given an endofunctor F : A→ A, an F -module (A, %A) is
an A ∈ Obj(A) with a morphism in A,

%A : F (A)→ A.

A morphism f : A → A′ in A between F -modules is an F -module mor-
phism provided it induces a commutative diagram

F (A)
F (f) //

%A

��

F (A′)

%A′

��
A

f
// A′ .

With these morphisms, the F -modules form a category which is denoted
by AF . There is the faithful forgetful functor

UF : AF → A, (A, %A) 7→ A.

In all generality some limits in AF are induced from limits in A.

2.6. Proposition. Let L : Λ→ AF be any functor and Λ a small category.

(1) If lim←−L exists in A, then it belongs to AF .

(2) Assume that F preserves colimits. If lim−→L exists in A, then it belongs
to AF .

The relations between AF and A are even stronger if additional conditions
are imposed on the endofunctor F .

2.7. Monads. A monad on A is a triple F = (F, µ, η), where F : A→ A is a
functor and

µ : FF → F , η : IA → F ,

are natural transformations with commutative diagrams

FFF
µF //

Fµ

��

FF

µ

��
FF µ

// F ,

F
ηF //

Fη

��

=

""F
FF

FF
FF

FF FF

µ

��
FF µ

// F .

Given two monads F = (F, µ, η) and F′ = (F ′, µ′, η′) on A, a natural
transformation α : F → F ′ is called a morphism of monads if the following
induced diagrams commute:

FF
αα //

µ

��

F ′F ′

µ′

��
F

α // F ′,

IA
η //

η′   B
BB

BB
BB

B F

α

��
F ′.
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2.8. Monads and their modules. Given a monad F = (F, µ, η) on A, an F-
module is an A ∈ Obj(A) and a morphism %A : F (A)→ A with commutative
diagrams

FF (A)
µA //

F%A

��

F (A)

%A

��

A
ηA //

IA !!C
CC

CC
CC

CC
F (A)

%A

��
F (A) %A

// A , A .

As shown in Eilenberg-Moore [21], for a monad F , the forgetful functor
UF : AF → A is right adjoint to the (free) functor

φF : A→ AF, A 7→ (F (A), FF (A)
µA−→ F (A)),

A
f→ A′ 7→ F (A)

F (f)−→ F (A′),

by the isomorphisms for A ∈ Obj(A) and B ∈ Obj(AF),

MorAF
(F (A), B)→ MorA(A,UF (B)), f 7→ f ◦ ηA.

Notice that UFφF = F .

Dual to the preceding notions there is a theory of comodules which we
sketch in the next paragraphs.

2.9. G-comodules. For a functor G : A → A, a G-comodule (A, %A) is an
A ∈ Obj(A) with a morphism in A,

%A : A→ G(A).

A morphism f : A → A′ in A between G-comodules is a G-comodule
morphism inducing the commutative diagram

A
f //

%A

��

A′

%A′

��
G(A)

G(f) // G(A′) .

The G-comodules together with G-comodule morphisms form a category
which we denote by AG. The forgetful functor is faithful,

UG : AG → A, (A, %A) 7→ A.

As a sample of the relation between the categories A and AG we mention:

2.10. Proposition. Let L : Λ→ AG be any functor and Λ a small category.

(1) If lim−→L exists in A, then it belongs to AG.
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(2) Assume that G preserves limits. If lim←−L exists in A, then it belongs to

AG.

For more information about the behaviour of limits and colimits and ex-
amples of modules and comodules in the category of sets we refer to Adámek
and Porst [1].

2.11. Comonads. A comonad is a triple G = (G, δ, ε), where G : A → A is
a functor and

δ : G→ GG, ε : G→ IA,

are natural transformations with commuting diagrams

G
δ //

δ
��

GG

Gδ
��

GG
δG // GGG ,

G
δ //

δ
��

=

""F
FF

FF
FF

FF GG

εG

��
GG

Gε
// G.

Given two comonads G = (G, δ, ε) and G′ = (G′, δ′, ε′), a natural trans-
formation β : G → G′ is called a morphism of comonads if the following
diagrams commute:

G

δ

��

β // G′

δ′

��
GG

ββ // G′G′ ,

IA
ε //

β

��

G′

G′.
ε′

==||||||||

2.12. Comonads and their comodules. Let G = (G, δ, ε) be a comonad.
A G-comodule is an object A ∈ Obj(A) with a morphism

%A : A→ G(A) in A

inducing commutative diagrams

A
%A

//

%A

��

G(A)

δA
��

A
%A
//

IA ##G
GGGGGGGGG G(A)

εA

��
G(A)

G%A
// GG(A) , A.

The forgetful functor UG : AG → A is left adjoint to the (free) functor

φG : A→ AG, A 7→ (G(A), G(A)
δA−→ GG(A)),

A
f→ A′ 7→ G(A)

G(f)−→ G(A′),
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by the isomorphisms

MorAG(B,G(A))→ MorA(UG(B), A), f 7→ εA ◦ f,

for any A ∈ Obj(A) and B ∈ Obj(AG). Notice that UGφG = G.

We now recall that monads and comonads are closely related to adjoint
pairs of functors (e.g. [21]):

2.13. Adjoint pairs and (co)monads. Let L : A → B and R : B → A be
an adjoint pair of functors (see 2.4) with

unit η : IA → RL and counit ε : LR→ IB,

Then RL : A→ A has a monad structure with

product µ = RεL : RLRL→ RL and unit η : IA → RL,

and LR : B→ B has a comonad structure with

coproduct δ = LηR : LR→ LRLR and counit ε : LR→ IB.

3 Relations between functors

To study the relationship between various module categories, the following
definition is of interest. It was formulated in Johnstone [27] for monads but
we also consider it for arbitrary endofunctors.

3.1. Lifting of functors. Let F and G be endofunctors of the categories A
and B respectively. Given functors

T : A→ B, T : AF → BG, and T̂ : AF → BG

we say that T (resp. T̂ ) is a lifting of T provided the left (resp. right) diagram

AF
T //

UF

��

BG

UG

��
A T // B,

AF
bT //

UF

��

BG

UG

��
A T // B,

is commutative, where the U ’s denote the forgetful functors.

The following assertions are easy to verify.

3.2. Proposition. With the notation in 3.1, consider the functors

TF, GT : A→ B.
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(1) For any natural transformation λ : GT → TF , the functor

T : AF → BG, (A, %A) 7→ (T (A), T (%A) ◦ λA),

A
f−→ A′ 7→ T (A)

T (f)−→ T (A′),

is a lifting of T : A→ B.

(2) For any natural transformation ϕ : TF → GT , the functor

T̂ : AF → BG, (A, %A) 7→ (T (A), ϕA ◦ T (%A)),

A
f−→ A′ 7→ T (A)

T (f)−→ T (A′),

is a lifting of T : A→ B.

For monads and comonads there exist bijections between liftings and cer-
tain natural transformations.

3.3. Lifting for monads. (Applegate) Let F = (F, µ, η) and G = (G, µ′, η′)
be monads on the categories A and B, respectively, and let T : A → B be a
functor.

(1) The liftings T : AF → BG of T are in bijective correspondence with the
natural transformations λ : GT → TF inducing commutative diagrams

GGT
µ′T //

Gλ
��

GT

λ
��

GTF
λF // TFF

Tµ // TF,

T
η′T //

Tη !!C
CC

CC
CC

C GT

λ
��

TF.

(2) If AF has coequalisers of reflexive pairs and T has a left adjoint, then
any lifting T has a left adjoint.

(3) Assume there is a lifting T : AF → BG with invertible λ : GT → TF . If
T has a right adjoint, then T has a right adjoint.

Proof. This is proved in Johnstone [27, Lemma 1, Theorem 4 and 2].
For λ, the left hand diagram corresponds to λA being a G-module mor-

phism for every F -module (A, %A) and the right hand diagram is related to
unitality.

Given a lifting T : AF → BG, λ is obtained in the following way. For any
A ∈ Obj(A) there is an isomorphism

αA : MorBG
(φGT (A), TφF (A))→ MorB(T (A), UGTφF (A)).

Then T (ηA) : T (A) → TF (A) = TUFφF (A) = UGTφF (A) belongs to the
right side of the isomorphism and we obtain λ̄(A) = α−1

A (T (ηA)) : φGT (A)→
TφF (A). This yields

λ = UGλ̄ : GT = UGφGT → UGTφF = TUFφF = TF.

tu
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3.4. Lifting of a tensor product to modules. The above proposition can
be applied to characterise monads (S, µ, η) on a monoidal category (C,⊗, E)
(see [35]) for which the monoidal structure from C lifts to the category CS of
S-modules. The situation is described by the diagram

CS × CS
−⊗− //

US×US

��

CS
US

��
C × C −⊗− // C,

By 3.3(1), for the existence of some −⊗− making the diagram commute one
needs a natural transformation

λ : S(X ⊗ Y )→ S(X)⊗ S(Y )

yielding commutative diagrams

SS(X ⊗ Y )
µX⊗Y //

Sλ
��

S(X ⊗ Y )

λ
��

S(S(X)⊗ S(Y ))
λS // SS(X)⊗ SS(Y )

µX⊗µY// S(X)⊗ S(Y ),

X ⊗ Y
ηX⊗Y //

ηX⊗ηY ''OOOOOOOOOOOO S(X ⊗ Y )

λ
��

S(X)⊗ S(Y ).

This corresponds to the first three diagrams in [41, Section 7].
To make CS a unital tensor category one has to require that E is an S-

module for some morphism S(E)→ E in C and that the coherence conditions
are respected (diagrams (4) to (7) in [41, Section 7]). Such monads are called
Hopf monads in Moerdijk [41] (see introduction).

3.5. Lifting for comonads. Let F = (F, δ, ε) and G = (G, δ′, ε′) be comonads
on the categories A and B, respectively, and let T : A→ B be a functor.

(1) The liftings T̂ : AF → BG of T are in bijective correspondence with the
natural transformations ϕ : TF → GT inducing commutativity of the
diagrams

TF
Tδ //

ϕ

��

TFF
ϕF // GTF

Gϕ
��

GT
δ′T // GGT,

TF
Tε //

ϕ

��

T

GT.
ε′T

=={{{{{{{{
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(2) If AF has equalisers of reflexive pairs and T has a right adjoint, then

any lifting T̂ has a right adjoint.

(3) Assume there is a lifting T̂ : AF → BG with ϕ : TF → GT invertible.

If T has a left adjoint, then the lifting T̂ has a left adjoint.

Proof. Dual to 3.3. tu

3.6. Lifting of a tensor product to comodules. Let (T, δ, ε) be a comonad
on a monoidal category (C,⊗, E) for which the monoidal structure from C lifts
to the category CT of T -comodules. The situation is described by the diagram

CT × CT
−b⊗− //

UT×UT

��

CT

UT

��
C × C −⊗− // C,

By 3.5(1) for the existence of some −⊗̂− making the diagram commute one
needs a natural transformation

ϕ : T (X)⊗ T (Y )→ T (X ⊗ Y )

and a morphism E → T (E) yielding the commutative diagrams as required
by 3.5 plus appropriate conditions to assure the coherence conditions.

4 Relations between endofunctors

In this section we will specialise the preceding observations to A = B and
endofunctors.

4.1. Lifting of the identity. Let F = (F, µ, η), F′ = (F ′, µ′, η′) be monads
and G = (G, δ, ε), G′ = (G′, δ′, ε′) be comonads on the category A. Then

I : AF → AF ′ or Î : AG → AG′
are liftings of the identity if the corresponding

diagrams commute:

AF
I //

UF

��

AF ′

UF ′
��

A I // A,

AG
bI //

UG

��

AG′

UG′

��
A I // A.

(1) There is a bijection between the liftings I of the identity functor and the
monad morphisms α : F ′ → F .

(2) There is a bijection between the liftings Î of the identity functor and the
comonad morphisms α : G→ G′.
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Proof. The assertions follow from 3.3 and 3.5. A proof is also given in
Borceux [9, Proposition 4.5.9]. tu

The next observation is a special instance of the situation described above
and is the essence of the theory of Galois comodules (see 5.9).

4.2. Adjoint functors to comodules. Let G = (G, δ, ε) be a comonad on
the category A and assume there is an adjoint pair of functors with counit

L : B→ AG, R : AG → B, ν : LR→ IAG ,

for some category B. Then the functors

R̂ = RφG : A→ B, L̂ = UGL : B→ A

form an adjoint pair, we have the commutative diagram

A
φG

//

bR
��?

?
?

?
?

?
?

?
AG

UG
oo

R

~~}}
}}

}}
}}

}}
}}

}}
}}

B

bL
__?

?
?

?
?

?
?

?

L

>>}}}}}}}}}}}}}}}}

and for any A ∈ Obj(A) and B ∈ Obj(B) the isomorphisms

MorA(UGL(B), A) ' MorGA(L(B), φG(A)) ' MorB(B,RφG(A)).

Thus the composition L̂R̂ = UGLRφG : A → A is a comonad on A and
there is a functorial morphism

νG(A) : L̂R̂(A) = LRG(A)→ G(A),

yielding the commutative diagram

AbL bR bI //

U
bL bR
��

AG

UG

��
A I // A,

where Î is induced by the comonad morphism νG : L̂R̂→ G.

In what follows we will consider the lifting of endofunctors to the category
of some modules or comodules.
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4.3. Lifting of endofunctors. Let F,G and T be endofunctors of the
category A. For the functors T : AF → AF and T̂ : AG → AG we have the
diagrams

AF
T //

UF

��

AF

UF

��
A T // A,

AG
bT //

UG

��

AG

UG

��
A T // A,

and we say that T or T̂ are liftings of T provided the corresponding diagrams
are commutative.

Besides the situations considered before we may now also ask when the
liftings of a monad T are again monads.

4.4. Lifting of monads to monads. Let F = (F, µ, η) be a monad and
T : A→ A any functor on the category A.

(1) The liftings T : AF → AF of T are in bijective correspondence with the
natural transformations λ : FT → TF inducing commutativity of the
diagrams

FFT
µT //

Fλ
��

FT

λ
��

FTF
λF // TFF

Tµ // TF,

T
ηT //

Tη !!C
CC

CC
CC

C FT

λ
��

TF.

(2) If T = (T, µ′, η′) is a monad, then the lifting T : AF → AF of T with
natural transformation λ : FT → TF is a monad if and only if we have
the commutative diagrams

FTT
Fµ′ //

λT

��

FT

λ
��

TFT
Tλ // TTF

µ′F // TF,

F
Fη′ //

η′F !!D
DD

DD
DD

D FT

λ
��

TF.

(3) For a monad T = (T, µ′, η′), a natural transformation λ : FT → TF
induces a canonical monad structure on TF if and only if the diagrams
in (1) and (2) are commutative.

Proof. See Beck [6]. To give an idea of the techniques involved we
outline some of the arguments.

The assertion in (1) follows immediately from 3.3(1). It is related to the
condition on λA being an F -module morphism for any A ∈ Obj(A).

The diagram in (2) is derived from the requirement that µ′F (A) and η′F (A)

are to be F -module morphisms for any A ∈ Obj(A). The first of these
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conditions corresponds to commutativity of the right hand rectangle in the
diagram

FTT
FTTη//

Fµ′

��

FTTF
λTF //

Fµ′F
��

TFTF
TλF // TTFF

TTµ // TTF

µ′F
��

FT
FTη // FTF

λF // TFF
Tµ // TF.

The bottom line is part of the commutative diagram

FT
FTη //

λ
��

FTF

λF

��
TF

TFη // TFF
Tµ // TF

showing that Tµ◦λF ◦FTη = λ, while the top line is part of the commutative
diagram

FTT
λT //

FTTη

��

TFT

TFTη

��

Tλ

**UUUUUUUUUUUUUUUUUUUU

FTTF
λTF

// TFTF
TλF

// TTFF
TTµ

// TTF.

This yields the diagram given in (2).
(3) This is shown in Beck [6] who called the diagrams a distributive law

of a monad T over a monad F. (See also [4].) tu
Obviously TF being a monad need not imply that T and F both are

monads.
An explicit presentation of the material on lifting of monads and endo-

functors can be found in Tanaka’s thesis [50].

4.5. Definition. Given two monads F = (F, µ, η) and T = (T, µ′, η′) on a
category A, a natural transformation λ : FT → TF is said to be monad
distributive provided the diagrams in 4.4(1) and (2) are commutative.

4.6. Tensor product of algebras. Given two R-algebras A, B, and an
R-linear map

λ : B ⊗R A→ A⊗R B,
the tensor product A⊗R B can be made into an algebra by putting

(a⊗ b) · (a′ ⊗ b′) = a λ(b⊗ a′) b′, for a, a′ ∈ A, b, b′ ∈ B.

If A and B are associative, the functors −⊗R A and −⊗R B are monads on
the category of R-modules. Then the product defined on A⊗RB is associative
and unital if and only if − ⊗R A ⊗R B is a monad for the R-modules, that
is, λ has to induce commutativity of the corresponding diagrams in 4.4. For
this special case the conditions are formulated in Caenepeel, Ion, Militaru
and Zhu [18, Theorem 2.5].
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4.7. Braidings in R-Mod. A prebraiding on the category R-Mod is given
by natural morphisms

τB,A : B ⊗R A→ A⊗R B

for any R-modules A,B, satisfying τA,R = τR,A = IA and

τB⊗A,C = (τB,C ⊗ IA)(IB ⊗ τA,C), τB,A⊗C = (IA ⊗ τB,C)(τB,A ⊗ IC).

A prebraiding is called a braiding provided all τB,A are isomorphisms. If
τA,B ◦ τB,A = I for all A,B, then the braiding τ is said to be a symmetry.
Clearly the twist map tw : B ⊗R A→ A⊗R B, b⊗ a 7→ a⊗ b, is a symmetry.

By naturality of τ , for any linear map µ : B ⊗R B → B, we have the
commutative diagram

B ⊗B ⊗ A
I⊗τB,A

��

µ⊗I // B ⊗ A
τB,A

��
B ⊗ A⊗B

τB,A⊗I// A⊗B ⊗B I⊗µ // A⊗B.

Similarly, naturality of τ induces the commutativity of all diagrams appearing
in 4.4. Thus for any prebraiding τ , the natural transformation

−⊗R τB,A : −⊗R B ⊗R A→ −⊗R A⊗R B

is monad distributive for all pairs of R-algebras A,B.
Similar constructions can be considered in monoidal categories (e.g. [28],

[36], [44]).

In 4.4(2), conditions are given for the lifting of a monad to be a monad.
More generally one may ask how the lifted functor T becomes a monad with-
out T being required to be a monad. Then of course some other data must
be given. For an R-algebra A and an R-module V this was considered in
Brzeziński [12, Proposition 2.1]. The transfer of this construction to endo-
functors should come out as follows:

4.8. Liftings as monads. Let F = (F, µ, η) be a monad and T : A→ A any
functor on the category A with a natural transformation ι : I → T satisfying
Tι = ιT . Then TF induces a monad (TF, µ, η) on AF with unit η = Tη ◦ ι
and commuting diagram

TFF
Tµ //

TFιF
��

TF

TFTF
µ

::uuuuuuuuu
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if and only if there are natural transformations

λ : FT → TF and σ : TT → TF,

such that λ implies the commutative diagrams in 4.4(1), and for λ and σ
there are commutative diagrams

TTT
σT //

Tσ
��

TFT
Tλ // TTF

σF // TFF

Tµ
��

TTF
σF // TFF

Tµ // TF,

FTT
λT //

Fσ
��

TFT
Tλ // TTF

σF // TFF

Tµ
��

FTF
λF // TFF

Tµ // TF,

F
Fι //

ιF !!C
CC

CC
CC

C FT

λ
��

TF,

T
ιT //

Tη !!C
CC

CC
CC

C TT

σ

��
TF.

In the terminology used in [17, Definition 1.2], this means that σ is normal
(right triangle) and is a cocycle (first rectangle) satisfying the twisted module
condition (second rectangle). As a special case one may take F to be the
identity functor. Then the conditions reduce to T being a monad.

Given λ and σ the multiplication µ is obtained by the diagram

TFTF
µ //

TλF

��

TF

TTFF
σFF // TFFF

TµF // TFF.

Tµ

OO

If the monad (TF, µ, η) is given, suitable λ and σ are defined by the
diagrams

FT
λ //

ιFT

��

TF

TFT
TFTη// TFTF,

µ

OO TT
σ //

TηT

��

TF

TFT
TFTη// TFTF.

µ

OO

Dual to the constructions considered in 4.4 one obtains

4.9. Lifting of comonads to comonads. Let G = (G, δ, ε) be a comonad
and T : A→ A any functor on the category A.
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(1) The liftings T̂ : AG → AG of T are in bijective correspondence with
the natural transformations ϕ : TG → GT inducing the commutative
diagrams

TG
Tδ //

ϕ

��

TGG
ϕG // GTG

Gϕ
��

GT
δT // GGT,

TG
Tε //

ϕ

��

T

GT.

εT

=={{{{{{{{

(2) If T = (T, δ′, ε′) is a comonad, then the lifting T̂ : AG → AG of T with
natural transformation ϕ : TG → GT is a comonad if and only if we
have the commutative diagrams

TG
δ′G //

ϕ

��

TTG
Tϕ // TGT

ϕT

��
GT

Gδ′ // GTT,

TG
ε′G //

ϕ

��

G

GT.
Gε′

==zzzzzzzz

(3) For a comonad T=(T, δ′, ε′), a natural transformation ϕ :TG→ GT in-
duces a canonical comonad structure on TG if and only if the diagrams
in (1) and (2) are commutative.

Proof. (1) is a special case of 3.5 and the diagram shows that ϕA is a
G-comodule morphism for any A ∈ Obj(A).

(2) The diagrams are derived from the conditions that δ′G(A) and ε′G(A) must

be G-comodule morphisms for all A ∈ Obj(A). This is seen by arguments
dual to those of the proof of 4.4.

(3) This goes back to Barr [3, Theorem 2.2]. tu
Similar to the composition for monads, a canonical comonad structure on

TG need not imply that T and G are comonads.

4.10. Definition. Given two comonads G = (G, δ, ε) and T = (T, δ′, ε′) on
a category A, a natural transformation ϕ : TG→ GT is said to be comonad
distributive provided the diagrams in 4.9(1) and (2) are commutative.

4.11. Tensor product of coalgebras. Given two R-coalgebras C, D, and
an R-linear map

ϕ : C ⊗R D → D ⊗R C,
the tensor product C ⊗R D can be made into a coalgebra by putting

∆ = (IC ⊗ ϕ⊗ ID) ◦ (∆C ⊗∆D).

If C and D are coassociative, the functors −⊗RC and −⊗RD are comonads
on the category of R-modules. Then the coproduct defined on C ⊗R D is
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coassociative and counital if and only if − ⊗R C ⊗R D is a comonad for the
R-modules, that is, ϕ has to induce commutativity of the corresponding dia-
grams in 4.9. For this special case the conditions are formulated in Caenepeel,
Ion, Militaru and Zhu [18, Theorem 3.4] and also in [16, 2.14].

Similar to the case of algebras (see 4.7), for a prebraiding τ on R-Mod
and R-coalgebras C,D, the natural morphism

−⊗R τC,D : −⊗R C ⊗R D → −⊗R D ⊗R C

is comonad distributive (the diagrams in 4.9 commute) and thus induces a
coassociative coproduct on C ⊗R D.

In particular the twist map tw : C⊗RD → D⊗RC satisfies the conditions
imposed yielding the standard coproduct on C ⊗R D.

4.12. Liftings as comonads. In 4.9(2), conditions are given for the lifting
of a comonad to be a comonad. Dual to the case of monads one may ask how
the lifted functor T̂ of a comonad G = (G, δ, ε) becomes a comonad without T
being a comonad. This can be handled similar to the constructions considered
in 4.8. In particular, based on a natural transformation ϕ : TG → GT
satisfying 4.9(1), natural transformations σ : TG → TT and ε : T → I are
needed satisfying appropriate conditions.

5 Combining monads and comonads

In this section we consider relationships between monads and comonads.

5.1. Lifting of monads for comonads. Let G = (G, δ, ε) be a comonad
and T : A→ A any functor on the category A.

(1) The liftings T̂ : AG → AG of T are in bijective correspondence with
the natural transformations ϕ : TG → GT inducing the commutative
diagrams

TG
Tδ //

ϕ

��

TGG
ϕG // GTG

Gϕ
��

GT
δT // GGT,

TG
Tε //

ϕ

��

T

GT.

εT

=={{{{{{{{

(2) If T = (T, µ, η) is a monad, then the lifting T̂ : AG → AG of T with
associated natural transformation ϕ : TG→ GT is a monad if and only
if we have the commutative diagrams

TTG
µG //

Tϕ

��

TG

ϕ

��
TGT

ϕT // GTT
Gµ // GT,

G
ηG //

Gη !!D
DD

DD
DD

D TG

ϕ

��
GT.
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Proof. (1) follows from 3.5 and the diagrams are induced by the require-
ment that the ϕA are G-comodule morphisms for all A ∈ Obj(A).

(2) These diagrams are consequences of the condition that µA and ηA are
G-comodule morphisms but they can also be read as condition for ϕA being
a T -module morphism for any A ∈ Obj(A). tu

5.2. Lifting of comonads for monads. Let F = (F, µ, η) be a monad and
T : A→ A any functor on the category A .

(1) The liftings T : AF → AF of T are in bijective correspondence with
the natural transformations λ : FT → TF inducing the commutative
diagrams

FFT
µT //

Fλ
��

FT

λ
��

FTF
λF // TFF

Tµ // TF,

T
ηT //

Tη !!C
CC

CC
CC

C FT

λ
��

TF.

(2) If T = (T, δ, ε) is a comonad, then the lifting T : AF → AF of T with
associated natural transformation λ : FT → TF is a comonad if and
only if we have the commutative diagrams

FT
Fδ //

λ
��

FTT
λT // TFT

Tλ
��

TF
δF // TTF,

FT
Fε //

λ
��

F

TF.

εF

==zzzzzzzz

Proof. (1) follows from 3.3 and the diagrams are induced by the require-
ment that the λA are F -module morphisms for any A ∈ Obj(A).

(2) These diagrams are consequences of the condition that δA and εA are
F -module morphisms but they can also be interpretted as the condition that
λA is a T -comodule morphism for any A ∈ Obj(A). tu

We observe that in 5.1 and 5.2 essentially the same diagrams arise.

5.3. Mixed distributive laws. Let F = (F, µ, η) be a monad and G =
(G, δ, ε) a comonad on the category A. Then a natural transformation

λ : FG→ GF

is said to be mixed distributive or entwining provided it induces commutative
diagrams

FFG
µG //

Fλ
��

FG

λ
��

FGF
λF // GFF

Gµ // GF,

FG
Fδ //

λ
��

FGG
λG // GFG

Gλ
��

GF
δF // GGF,
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G
ηG //

Gη !!C
CC

CC
CC

C FG

λ
��

GF,

FG
Fε //

λ
��

F

GF.

εF

==zzzzzzzz

The suggestion to consider distributive laws of mixed type goes back to
Beck [6, page 133] (see Remarks 5.5). The interest in these structures is based
on the following theorem which follows from 5.1 and 5.2.

5.4. Characterisation of entwinings. For a monad F = (F, µ, η) and a
comonad G = (G, δ, ε) on the category A, consider the diagrams

AF
G //

UF

��

AF

UF

��
A G // A,

AG
bF //

UG

��

AG

UG

��
A F // A.

The following conditions are equivalent:

(a) There is an entwining natural transformation λ : FG→ GF ;

(b) G : AF → AF is a lifting of G and has a comonad structure;

(c) F̂ : AG → AG is a lifting of F and has a monad structure.

5.5. Remarks. The preceding theorem was first formulated 1973 by van
Osdol in [54, Theorem IV.1]. It was extended to V-categories in Wolff [57,
Theorem 2.4] and was rediscovered in 1997 by Turi and Plotkin in the context
of operational semantics in [52, Theorem 7.1]. In the same year the corre-
sponding notion for tensor functors was considered by Brzeziński and Majid
who coined the name entwining structure for a mixed distributive law for an
algebra A and a coalgebra C over a commutative ring R in [14, Definition 2.1]
(see 5.8). The connection between this notions is also mentioned in Hobst
and Pareigis [26].

It was observed by Takeuchi that these structures are closely related to
corings (see [13, Proposition 2], [16, 32.6]). This is a special case of 5.4(b)
since the coring A⊗RC is just a comonad on the category of right A-modules.
The comultiplication is a special case of the constructions considered in the
next section. Similarly, by 5.4(c), C ⊗R A can be seen as a monad on the
category of right C-comodules.

5.6. Comultiplication induced by units. Let F,G be endofunctors on a
category A and η : I → F a natural transformation. Then we have natural
transformations

ηG : G→ FG, Gη : G→ GF,
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and naturality of η implies commutativity of the diagrams

G
ηG //

ηG

��

FG

FηG

��
FG

ηFG // FFG,

G
Gη //

Gη

��

GF

GηF

��
GF

GFη // GFF.

For F = G the diagrams show that both ηF and Fη induce coassociative
comultiplications on F .

If there is a coassociative comultiplication δ : G→ GG, then we can define
a comultiplication on FG by

δ̄ : FG
Fδ // FGG

FGηG// FGFG,

which is coassociative by commutativity of the diagram

FG
Fδ //

Fδ
��

FGG
FGηG //

FGδ
��

FGFG

FGFδ
��

FGG
FδG //

FGηG

��

FGGG
FGηGG //

FGGηG

��

FGFGG

FGFGηG

��
FGFG

FδFG // FGGFG
FGηGFG // FGFGFG.

The left top rectangle commutes by coassociativity of δ, the right top rectangle
by naturality of η, the left bottom rectangle by naturality of δ and the right
bottom rectangle again by naturality of η.

For a monad F = (F, µ, η) the comultiplication on FG can also be derived
from general properties of adjoint functors.

Symmetrically a coassociative comultiplication for GF is defined by

δ̃ : GF
δF // GGF

GηGF// GFGF.

In case a natural transformation ε : G → I is given, we have natural
transformations εF : GF → F and Fε : FG → F allowing to dualise the
above constructions. Then an associative multiplication µ : FF → F induces
associative multiplications on GF and FG.

Now let F = (F, µ, η) be a monad and G = (G, δ, ε) a comonad on A with
a natural transformation λ : FG→ GF satisfying λ ◦ ηG = Gη (left triangle
in 5.3). Then we have the commutative diagram

FGG

FηGG %%LLLLLLLLLL
FGηG

**VVVVVVVVVVVVVVVVVVVV

FG

Fδ
::uuuuuuuuu

FηG $$H
HH

HH
HH

HH
FFGG

FλG

// FGFG

FFG,
FFδ

99ssssssssss
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showing that the coproduct on FG induced by an entwining λ is the same as
the one considered above.

5.7. Mixed bimodules. Given a monad F = (F, µ, η) and a comonad
G = (G, δ, ε) on the category A with an entwining λ : FG→ GF , λ-bimodules
or mixed bimodules are defined as those A ∈ Obj(A) with morphisms

F (A) h // A
k // G(A)

such that (A, h) is an F-module and (A, k) is a G-comodule satisfying the
pentagonal law

F (A) h //

F (k)

��

A
k // G(A)

FG(A)
λA // GF (A).

G(h)

OO

A morphism f : A→ A′ between two λ-bimodules is a bimodule morphism
provided it is both an F -module and a G-comodule morphism.

These notions yield the category of λ-bimodules which we denote by AG
F .

This category can also be considered as the category of Ĝ-comodules for the
comonad Ĝ : AF → AF and also as the category of F -modules for the monad
F : AG → AG (e.g. [52, 7.1]). For every F -module A, G(A) is a λ-bimodule
and for any G-comodule A′, F (A′) is a λ-bimodule canonically. In particular,
for every A ∈ Obj(A), FG(A) and GF (A) are λ-bimodules.

As a sample we draw the diagram showing that, for any F -module %A :
F (A) → A, G(A) is a λ-bimodule with module structure given by the com-
position GρA ◦ λA : FG(A)→ G(A):

FG(A)
λA //

FδA

��

GF (A)
G%A //

δF (A) **UUUUUUUUUUUUUUUUUU G(A)
δA // GG(A)

GGF (A)

GG%A

OO

FGG(A)
λG(A) // GFG(A).

GλA

OO

The triangle is commutative by naturality of δ, the pentagon is commutative
by one of the mixed distributive laws.

5.8. Entwined algebras and coalgebras. Given an R-algebra (A, µ, η)
and an R-coalgebra (C,∆, ε), the functor −⊗R A is a monad and −⊗R C is
a comonad on the category of R-modules.
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If the functor −⊗RC can be lifted to the A-modules (equivalently −⊗RA
can be lifted to the C-comodules) then there is an R-linear map

ψ : C ⊗R A→ A⊗R C,

and the diagrams in 5.3 yield the conditions for an entwining structure intro-
duced by Brzeziński and Majid in [14] (see bow-tie diagram in [16, 32.2]):

C ⊗ A⊗ A I⊗µ //

ψ⊗I
��

C ⊗ A
ψ

��

∆⊗I // C ⊗ C ⊗ A I⊗ψ // C ⊗ A⊗ C
ψ⊗I
��

A⊗ C ⊗ A I⊗ψ // A⊗ A⊗ C µ⊗I // A⊗ C I⊗∆ // A⊗ C ⊗ C,

C
I⊗η //

η⊗I ##G
GGGGGGGG C ⊗ A

ψ

��

ε⊗I // A

A⊗ C.
I⊗ε

;;wwwwwwwww

A comultiplication on A⊗R C is defined by the general formalism consid-
ered in 5.6 making A⊗R C an A-coring.

Let M be an R-module with an A-module structure %M : M ⊗R A → M
and a C-comodule structure %M : M → M ⊗R C. Then M is an entwined
module if the diagram

M ⊗ A %M //

%M⊗IA
��

M
%M

//M ⊗ C

M ⊗ C ⊗ A I⊗ψ //M ⊗ A⊗ C,

%M⊗I

OO

is commutative (e.g. [16, 32.4]). This means that %M is a comodule morphism
when M ⊗R A is considered as a C-comodule with structure map (IM ⊗ ψ) ◦
(%M ⊗ IA), and %M is an A-module morphism when M ⊗R C is an A-module
with structure map (%M⊗IC)◦(IM⊗ψ). Observe the interplay between these
structures: given an entwining ψ the diagram imposes conditions on %M or
%M . On the other hand, if these two morphisms are given the problem is to
find a suitable ψ.

Notice that A need not be a C-comodule unless it has a grouplike element.
For more details the reader may consult [16, Section 32].

A braiding on the category of entwined modules induced by a morphism
C ⊗R C → A⊗R A is considered by Hobst and Pareigis in [26, Theorem 5.5].

5.9. Galois comodules. Let C be a coring over a ring A and P ∈MC with
S := EndGP . Then there is an adjoint pair of functors

−⊗S P : MS →MC, HomC(P,−) : MC →MS,
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with counit ev : HomC(P,−) ⊗S P → IMC , and, by 4.2, there is a functorial
morphism

evC : HomA(P,−)⊗S P → −⊗A C.

P is called a Galois comodule provided evC is an isomorphism. For further
details about these comodules we refer to [56].

5.10. Bialgebras and Hopf modules. Consider an R-module B which
is both an R-algebra µ : B ⊗R B → B, η : R → B, and an R-coalgebra
∆ : B → B ⊗R B, ε : B → R. Define a linear map ψ by commutativity of
the diagram

B ⊗B ψ //

I⊗∆
��

B ⊗B

B ⊗B ⊗B tw⊗I // B ⊗B ⊗B

I⊗µ

OO

which produces

ψ : B ⊗R B → B ⊗R B, a⊗ b 7→ (1⊗ a)∆(b).

To make B a bialgebra, µ and η must be coalgebra maps (equivalently, ∆ and
ε are to be algebra maps) with respect to the obvious product and coproduct
on B ⊗R B (induced by tw). This can be expressed by commutativity of the
set of diagrams

B ⊗B µ //

∆⊗I
��

B
∆ // B ⊗B

B ⊗B ⊗B I⊗ψ // B ⊗B ⊗B,

µ⊗I

OO R
η //

η

��

B

η⊗I
��

B
∆ // B ⊗B,

B ⊗B ε⊗I //

µ

��

R⊗B
I⊗ε
��

B
ε // R,

R
η //

=
  A

AA
AA

AA
A B

ε

��
R.

These show that ε is a monad morphism and η is a comonad morphism,
and µ is a right B-comodule morphism when B ⊗R B is considered as right
B-comodule by (I ⊗ ψ) ◦ (∆ ⊗ I). They also imply that every R-module
M is a B-module and B-comodule trivially by I ⊗ ε : M ⊗R B → M and
I ⊗ η : M →M ⊗R B.

If the above conditions hold then it is easily checked that the given ψ is
an entwining and B is called a (ψ-)bialgebra. Similarly, for any entwining
ψ′ : B ⊗R B → B ⊗R B one may define ψ′-bialgebras. Certainly, the twist
tw is an entwining but B is only a tw-bialgebra provided ∆ is trivial, that is,
∆(b) = b⊗ 1 for any b ∈ B.
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An R-module M which is both a B-module %M : M ⊗R B → M and a
B-comodule %M : M → M ⊗R B is called a (ψ-)B-bimodule or a B-Hopf
module if the diagram

M ⊗B %M //

%M⊗I
��

M
%M

//M ⊗B

M ⊗B ⊗B I⊗ψ //M ⊗B ⊗B,

%M⊗I

OO

is commutative. In this case B is a right B-bimodule and we have the com-
mutative diagram

M ⊗B %M //

%M⊗∆
��

M
%M

//M ⊗B

M ⊗B ⊗B ⊗B I⊗tw⊗I //M ⊗B ⊗B ⊗B

%M⊗µ
OO

which holds in particular for M = B.
Here we have derived our constructions from the twist tw but the same

pattern can be followed starting with a (pre-)braiding on R-Mod (or on a
monoidal category, e.g. [44]).

5.11. Hopf algebras. The bialgebra B is a Hopf algebra if (one of) the
following equivalent conditions hold (e.g. [16, 15.5]):

(a) B has an antipode S : B → B;

(b) the functor B ⊗R − : MR →MB
B is an equivalence;

(c) the functor HomB
B(B,−) : MB

B →MR is an equivalence;

(d) B is a Galois comodule for the coring B ⊗R B (in the sense of 5.9).

If B is flat as an R-module, then (a)-(d) are equivalent to:

(e) B is a (projective) generator in MB
B.

Being on the subject we mention the algebra counterpart of Hopf algebras:

5.12. Azumaya algebras. A central R-algebra A is an Azumaya algebra if
(one of) the following equivalent conditions hold:

(a) A⊗R AHomA(A,A⊗RA)→ A⊗RA, (a, f) 7→ f(a), is an isomorphism;

(b) the functor A⊗R − : MR → AMA is an equivalence;

(c) the functor AHomA(A,−) : AMA →MR is an equivalence;

(d) A is a (projective) generator in AMA.

An extension (in a different vein) of this notion to Azumaya categories is
proposed by Borceux and Vitale in [10].
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The formalism outlined for Hopf algebras can be transferred to endofunc-
tors on arbitrary categories A.

5.13. Mixed bimonads. An endofunctor B : A → A is called a mixed
bimonad or just bimonad if it has a monad structure B = (B, µ, η) and a
comonad structure B = (B, δ, ε) with an entwining functorial morphism

ψ : BB → BB

and commutative diagrams

BB
µ //

Bδ
��

B
δ // BB

BBB
ψB // BBB,

Bµ

OO I
η //

η

��

B

δ
��

B
Bη // BB,

BB
Bε //

µ

��

B

ε
��

B
ε // I,

I
η //

=
��>

>>
>>

>>
B

ε
��
I,

making η a comonad morphism and ε a monad morphism.
The (mixed) B-bimodules A are B-modules and B-comodules satisfying

the pentagonal law

B(A)
%A //

B(%A)
��

A
%A

// B(A)

BB(A)
ψA // BB(A).

B(%A)

OO

B-bimodule morphisms are both B-module and B-comodule morphisms.
We denote the induced category by AB

B.
Any object A in A is a B-module and B-comodule trivially by the mor-

phisms εA : B(A)→ A and ηA : A→ B(A) but need not be a B-bimodule.
The commutativity of the first diagram in the definition ensures that for

every A ∈ Obj(A), B(A) is a B-bimodule canonically and hence we have a
functor

φBB : A→ AB
B, A 7→ BB(A)

µA→ B(A)
δA→ BB(A),

A
f→ A′ 7→ B(A)

B(f)→ B(A′).

By the monad and comonad relations involved we get, for any A,A′ ∈ Obj(A),
the functorial isomorphisms

MorBB(B(A), B(A′)) ' MorB(B(A), A′) ' MorA(A,A′)
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which show that the functor φBB is full and faithful. This was observed for
Hopf modules in braided monoidal categories by Bespalov and Drabant in [7,
Proposition 3.3.2].

5.14. Bimonads induced by monads. Let B = (B, µ, η) be a monad
on a category A and consider the coproduct Bη : B → BB (see 5.6). Let
λ : BB → BB be any natural transformation which is monad distributive for
B (see 4.5). Then, by 4.4(2), λ ◦ Bη = ηB, and this yields commutativity of
the diagram

BB
BBη //

λ
��

BBB
λB // BBB

Bλ
��

BB
BηB

//
BBη

44jjjjjjjjjjjjjjjjjj
BBB.

Thus the two rectangles needed for a mixed distributive law are commutative.
Here we have no counit for (B,Bη).

The compatibility condition holds for the product µ : BB → B and the
coproduct λ ◦Bη : B → BB by commutativity of the diagram

BB
µ //

BBη

��

B
Bη // BB

λ // BB

BBB

µB

66llllllllllllll

Bλ
��

BBB
λB // BBB.

Bµ

OO

The triangle is commutative by naturality of µ and the pentagon is just the
diagram from 4.4(1).

A map ψ will be defined in 5.17(2), by commutativity of the outer rect-
angle in the diagram

BB
ψ //

BηB

��

BB

BBB
Bµ //

λB

��

BB
λ

::uuuuuuuuu

BBB
Bλ // BBB,

µB

OO

Since the pentagon is commutative by 4.4(2) and µ ◦ ηB = IB we obtain that
ψ = λ in this case.

5.15. Hopf monads. From the characterisations of Hopf algebras in 5.11,
condition (b) can be formulated in full generality. Thus one may call the
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bimonad B a Hopf monad if the functor φBB (from 5.13) induces an equivalence
of categories.

Obviously the classical Hopf algebras over commutative rings are examples
for this situation and the question arises if a Hopf monad can be characterised
by some other of the characterisations cited in 5.11. It should be no problem
to define a (left and right) antipode as a natural morphism S : B → B, with
the properties

µ ◦ SB ◦ δ = η ◦ ε = µ ◦BS ◦ δ.
However, it is not clear under which premisses the existence of such an an-
tipode implies the fundamental theorem, that is, that φBB is an equivalence. In
monoidal categories in which the tensor product preserves coequalisers, this
is outlined by Mesablishvili in [40]. To prove this for module categories, the
twist map plays a central role. In monoidal categories this can be replaced
by a more general braiding and it is shown in Bespalov and Drabant in [7]
that in braided monoidal categories the existence of an antipode implies the
fundamental theorem provided idempotents split in the base category. There
is some hope to get a similar result in not necessarily braided categories in
view of the following observations.

5.16. Braided bialgebras. The notions developed in 5.10 were derived
from the twist or a braiding in the category of R-modules and one may ask if
similar conditions can be considered in the general case. Initially braided Hopf
algebras were placed in braided categories ([36], [44]). Takeuchi suggested in
[49, Definition 5.1] to define braided bialgebras H by introducing a Yang-
Baxter operator R : H ⊗R H → H ⊗R H and requiring some compatibility
conditions including that R is monad and comonad distributive. Thus, in
contrast to other generalisations of braided Hopf algebras, he did not refer
to the braiding on the base category (of vector spaces). Similar situations
were studied by Menini and Stefan in [38] (see 5.18), the Gucciones in [22],
and Kharchenko in [30]. Another view on the relations between Yang-Baxter
operators and entwining structures is given by Brzeziński and Nichita in [15].

The conditions for a braided bialgebra given in [49, Definition 5.1] may
be adapted in the following way.

5.17. Braided bimonad. Let B = (B, µ, η, δ, ε) be a monad and comonad
on a category A. Consider a natural (iso-)morphism τ : BB → BB satisfying
the Yang-Baxter (or braid) equation

BBB
τB //

Bτ
��

BBB
Bτ // BBB

τB
��

BBB
τB // BBB

Bτ // BBB.

B is said to be a braided bimonad if



30

(1) τ is monad and comonad distributive for B (see 4.5, 4.10);

(2) B is a mixed bimonad for ψ defined (as in 5.10) by

BB
ψ //

δB
��

BB

BBB
Bτ // BBB.

µB

OO

The resulting formalism is similar to that considered in 5.10. In particular
we obtain the commutative diagram

BB
µ //

δδ
��

B
δ // BB

BBBB
BτB // BBBB,

µµ

OO

a condition for bialgebras in prebraided categories (e.g. Schauenburg [44]).

5.18. Remarks. Conditions of similar type are required by Menini and Stefan
in [38, Definition 1.3] to define a compatible flip morphism. Variations of their
conditions are considered by Kasangian, Lack and Vitale in [29], where it is
shown that compatible flip morphisms are (monad distributive and) involutive
BCD-laws in their terminology. In these papers only monads are considered
and hence no monad-comonad compatibility comes in. However, as shown in
5.14, any monad (B, µ, η) with a monad distributive natural transformation
τ : BB → BB has a compatible comonad structure (without counit) and
thus many of the conditions required in 5.17 are satisfied for the coproduct
τ ◦ Bη (compare also [29, Section 3]). In this case the morphism ψ is equal
to τ (see last diagram in 5.14).

The conditions required in 5.17 may be also weakened, for example, by
deleting some of the restraints for the unit or counit. This is done, for ex-
ample, by van Daele and Wang in [53] in braided monoidal categories by
defining unifying braided bialgebras (and Hopf algebras). For further work in
this direction the reader may consult [55], Böhm, Nill, and Szlachány [8], and
Caenepeel, Wang, and Yin [20].

Given the data for a braided bimonad it may be possible to adapt the
arguments from [7] to derive for (braided) bimonads the fundamental theorem
from the existence of an antipode S : B → B (see 5.13) for (not necessarily
monoidal) categories with splitting idempotents. Then the coinvariants of a

mixed B-bimodule X should be defined by the splitting of X → B(X)
SX−→

B(X)→ X (see [7, Proposition 3.2.1]).
Similar questions are handled in connection with Turaev’s Hopf group-

coalgebras by Caenepeel and de Lombaerde in [19]. They consider the ex-
ample of a Hopf algebra in the category of sets (not a module category but
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still monoidal and braided by product and twist). To illustrate our formalism
and as a pattern for more general examples we sketch this in the terminology
used here and extend the list of characterisations of groups.

5.19. Hopf monads on the category of sets. For a set G, consider the
endofunctor in the category Set, G = G×− with G(X) = G×X for any set
X. G is a comonad if G is a coalgebra by the (unique) structure maps

δ : G→ G×G, g 7→ (g, g) and ε : G→ I, g 7→ {ω},

where {ω} is a singleton (see [19, Lemma 1.3], [48, 4.6]).
Following our terminology the category of G-comodules is denoted by

SetG. For A,B ∈ SetG, the G-morphisms are written as MapG(A,B) and
there is a bijection

MapG(A,G×B)→ Map(A,B), f 7→ (ε× I) ◦ f.

It follows by counitality that, for any G-comodule %G : X → G×X, we can
write

%G(x) = (ρ(x), x), for some ρ ∈ Map(X,G).

G is a monad provided (G, µ, η) is a semigroup. The objects of the cat-
egory SetG of G-modules are known as G-sets. As usual, for a G-module
%G : G×X → X we write %G(g, x) = gx, for g ∈ G and x ∈ X.

MapG(A,B) denotes the G-morphisms between sets A,B in SetG and
there is a bijection

MapG(G× A,B)→ Map(A,B), f 7→ f ◦ ηA,

in particular the bijection

ϕA : MapG(G,A)→ A, ϕA(f) = f(1G), ϕ−1
A (a) = [g 7→ ga].

Referring to the twist map we define an entwining GG→ GG as in 5.17,

ψ = (µ× I) ◦ (I × tw) ◦ (δ × I) : G×G→ G×G, (g, h) 7→ (gh, g).

For this, the monad and comonad structures on G are compatible (diagrams
in 5.13) and thus we have a mixed bimonad in the sense of 5.13.

Mixed G-bimodules are defined as sets X with G-action %X : G×X → X
and G-coaction %X : X → G ×X and the compatibility condition from 5.13
requires for g ∈ G and x ∈ X the equality

%X(gx) = (ρ(gx), gx) = (gρ(x), gx).

Thus, as pointed out in [19], mixed G-bimodules are G-sets X with some map
ρ : X → G satisfying
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ρ(gx) = gρ(x) for all g ∈ G and x ∈ X.

For any sets X and Y there are bijections

MapGG(G×X,G× Y )→ MapG(G×X, Y )→ Map(X,Y ).

For any mixed G-bimodule A there is the bijection,

ϕA : MapGG(G,A)→ AcoG = {a ∈ A | %A(a) = (1G, a)} = {a ∈ A | ρ(a) = 1G},

where the G-coinvariants come out as in [19], with inverse map

ϕ−1
A : AcoG → MapGG(G,A), c 7→ [g 7→ gc].

Considering G × G as G-bimodule with coaction %GG(x, y) = (x, x, y) and
action %GG(g, (x, y)) = (gx, gy), for g, x, y ∈ G, we obtain the bijection

ϕGG : MapGG(G,G×G)→ {1B} ×G ' G

with inverse map

ϕ−1
GG : G ' {1G} ×G→ MapGG(G,G×G), h 7→ (1G, h) 7→ [g 7→ (g, gh)].

The evaluation map now yields the commutative diagram

G×MapGG(G,A)
ev //

I×ϕA

��

A

=

��
G× AcoG // A

(g, f) //

��

f(g)

��
(g, f(1G)) // gf(1G).

In particular, for A = G×G the canonical map is defined by the diagram

MapGG(G,G×G)×G ev //

ϕGG×I
��

G×G
=

��
G×G γG // G×G,

γG = ev ◦ (ϕ−1
GG × I) : G×G→ G×G, (g, h) 7→ (g, gh).

An antipode S : G → G should come from a map s : G → G and the
conditions (as stated in 5.15) imply

gs(g) = 1G = s(g)g for all g ∈ G,

and thus an antipode exists if and only if the semigroup G is a group ([19,
Lemma 1.3]). Notice that in this case already one of the equalities (for all
g ∈ G) is enough to imply that G is a group.
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If the canonical map is bijective we can follow the arguments in [16, 15.2]
to show that an antipode exists.

So assume the canonical map γ : G×G→ G×G as defined above to have
a left inverse β : G×G→ G×G respecting the right G-action on G×G (i.e.
(x, y)g = (x, yg)) as γ does. Then β(δ(g)) = β(γ(g, 1G)) = (g, 1G) and thus
(ε× 1G)β(δ(g)) = (1G, 1G) and

s = (ε× 1G) ◦ β(−, 1G) : G→ G

is a left antipode since

µ ◦ (s× 1G) ◦ δ(g) = s(g)g = µ ◦ (ε× 1G) ◦ β(g, 1G)g

= µ ◦ (ε× 1G) ◦ β(g, g) = 1G.

Notice that for our proof we need β to be a right G-morphism. This does not
follow if γ is only required to be injective, but it does follow if γ is required
to be bijective.

By a previous observation the existence of a (left) antipode implies that
G is a group (then β(g, h) = (g, g−1h)).

Similar to the case of Hopf algebras (e.g. [16, 5.5]), the antipode s : G→ G
allows to find the coinvariants of any G-bimodule A as the image of

A
%A
// G× A s×1G // G× A %A // A.

Writing %A(a) = (ρ(a), a) for some ρ : A→ G, a ∈ A, we get

AcoG = {s(ρ(a))a | a ∈ A} = {ρ(a)−1a | a ∈ A}.

Moreover, as observed in [19, Theorem 3.1], in this case the canonical map
G× AcoG → A is bijective with the inverse map given by

A→ G× AcoG, a 7→ (ρ(a), ρ(a)−1a).

This implies that the evaluation map G×MapGG(G,A)→ A is also bijective.

Summarising the information collected above we can transfer characteri-
sations of Hopf algebras to the following

5.20. Characterisations of groups. For a set G and the functor G = G×−,
the following assertions are equivalent in the category of sets:

(a) The functor G = G×− is a Hopf monad (in the sense 5.15);

(b) G has a group structure;

(c) G is a semigroup and the functor G = G×− is a mixed bimonad with
entwining ψ (see above) and one of the following equivalent conditions
holds:
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(i) G has a (left) antipode;

(ii) the map γG : G×G→ G×G, (g, h) 7→ (g, gh), is bijective;

(iii) φG
G

: Set→ SetG
G
, X 7→ G×X, is an equivalence;

(iv) MorG
G
(G,−) : SetG

G
→ Set is an equivalence.

Proof. (b)⇒(c)(ii) is obvious and the equivalence of (a),(b),(c)(i), and
(c)(ii) is clear from the preceding comments.

(c)(ii)⇒(c)(iii) By the given condition in (c), the functor φG
G

: Set→ SetG
G

is full and faithful. To prove that it is an equivalence it remains to show
that it is representative. This follows from the fact that the evaluation map
G×MapGG(G,A)→ A is bijective.

(c)(iii)⇒(c)(iv) The functor MorG
G
(G,−) is right adjoint to the functor

G×−.
(c)(iv)⇒(a) is obvious. tu
The functor Map(C,−) for some coalgebra C in Set is also considered in

Szlachányi [48, 4.6].

6 (F,G)-dimodules

In the preceding sections we were concerned with compatibility conditions
between algebras and coalgebras. There is also a way to subsume algebras
and coalgebras under one notion. This was done by Hagino while studying
categorical data types in [25, Definition 3.1.2] where he introduced dialgebras
(the name being suggested by Bob McKay, although other meanings for this
term exist, e.g. [34]). These are not based on an endofunctor but on two
functors between two different categories. In consistency with our previous
notation we prefer the name dimodules instead of dialgebras for the basic
notion.

6.1. (F, G)-dimodules. Let F,G : A → B be two functors between cate-
gories A and B. An A ∈ Obj(A) is called an (F,G)-dimodule if there is a
morphism

ϑA : F (A)→ G(A) in B.

A morphism f : A → A′ between two (F,G)-dimodules is characterised
by commutativity of the diagram

F (A)
ϑA //

F (f)

��

G(A)

G(f)
��

F (A′)
ϑA′ // G(A′).
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With this morphisms the class of all (F,G)-dimodules form a category
which we denote by (F,G)-Dim.

This is a straightforward extension of the earlier notions of module and
comodule: for A = B and a functor F : A → A, (F, I)-dimodules are F -
modules, and (I, F )-dimodules are F -comodules.

Clearly, in case there is a natural transformation α : F → G, then every
A ∈ Obj(A) is an (F,G)-dimodule by αA : F (A)→ G(A).

Also, the mixed modules considered in 5.7 are (F,G)-dimodules by the

composed morphism F (A)
h−→ A

k−→ G(A). Certainly not all dimodules are
of this type. An example of an (F,G)-dimodule (based on the category of
sets) which is neither an F -module nor a G-comodule is given by Poll and
Zwanenberg in [42]. They also investigate how properties of invariants and
bisimulations can be generalised from (co-)modules to dimodules.

As outlined in [25, page 50], the great freedom given by the definition
allows, for example, to characterise a natural number object in a category A
as an initial object in the category of (F,G)-dimodules for the functors

F,G : A→ A× A, F (A) = (1, A), G(A) = (A,A), for A ∈ Obj(A).

The generality of the notion is also underlined by the fact that it subsumes
adjoint pairs of functors as shown in [25, Proposition 3.1.4]:

6.2. (F,G)-dimodules and adjoint functors. For categories A, B, and D,
let T : A×B→ D and S : A×Bop → D be functors. For B ∈ B these induce
functors

FB := T (−, B) : A→ D and GB := S(−, B) : A→ D.

Denote by

(λ(B), ηB) the initial object, (ρ(B), γB) the final object

in the category (FB, GB)-Dim. Then:

(1) If (λ(B), ηB) exists for every B ∈ B, then there is a functor

λ(−) : B→ A.

(2) If (ρ(B), ηB) exists for every B ∈ B, then there is a functor

ρ(−) : Bop → A.

(3) For a functor F : A → B, the left and right adjoint functors can be
derived from suitable functors
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T : A× B→ B and S : A× Bop → B.

As an example for the behaviour with respect to (co)limits in the general
case we show:

6.3. Limits of (F,G)-dimodules. Let F,G : A → B be functors between
categories. Let L : Λ→ (F,G)-Dim be a functor, Λ a small category.

(1) If F preserves colimits and lim−→L exists in A, it belongs to (F,G)-Dim.

(2) If G preserves limits and lim←−L exists in A, it belongs to (F,G)-Dim.

Proof. (1) We have the following diagram in B:

F (L(λ))

θL(λ)

��

F (ελ) // F (lim−→L)

G(L(λ))
G(ελ)// G(lim−→L) ,

where the G(ελ)◦θL(λ) form a compatible family of morphisms. By the colimit
property there exists F (lim−→L)→ G(lim−→L). Hence lim−→L is an (F,G)-module.

(2) This is shown with a similar argument. tu
For two endofunctors F and G, the notion of dimodules subsumes modules

and comodules. In this situation one may consider natural transformations
between FF , FG, etc. and the following definition may be of interest.

6.4. Monadic pairs and their dimodules. Consider two endofunctors
F,G : A → A of any category A. Call (F,G) a monadic pair if there are
natural transformations

ν : FF → GF, η : G→ F, ψ : FG
Fη // FF

ν // GF

such that the following diagrams commute:

FFF
νF //

Fν
��

GFF

Gν
��

FGF
ψF // GFF

Gν // GGF

, GF
ηF //

' ##F
FFFFFFF FF

ν

��
GF.

An A ∈ Obj(A) is said to be an (F,G)-dimodule if there is a morphism

ϑA : F (A)→ G(A)

yielding commutative diagrams

FF (A)
νA //

F (ϑA)
��

GF (A)

G(ϑA)
��

FG(A)
ψA // GF (A)

G(ϑA)// GG(A),

G(A)
ηA //

' $$H
HH

HH
HH

HH
F (A)

ϑA

��
G(A).
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For any monad F : A → A, (F, I) is a monadic pair and F -modules are
(F, I)-dimodules.

For a monadic pair canonical dimodules arise in the following way.

6.5. F (A) and G(A) as (F,G)-dimodules. Let (F,G) be a monadic pair of
endofunctors of the category A.

(1) For any A ∈ Obj(A), F (A) is a (unital) (F,G)-dimodule by

νA = ϑF (A) : FF (A)→ GF (A).

(2) If A is an (F,G)-dimodule with ϑA : F (A) → G(A), then G(A) is an
(F,G)-dimodule by

ϑG(A) : FG(A)
ψA // GF (A)

G(ϑA) // GG(A)

and ϑA is an (F,G)-dimodule morphism.

Dual to the previous case one may consider

6.6. Comonadic pairs and their dimodules. A pair of endofunctors F,G :
A→ A is said to be a comonadic pair if there are natural transformations

κ : FG→ GG, ε : G→ F, ϕ : FG κ // GG
Gε // GF

inducing commutative diagrams

FFG
Fκ //

Fκ
��

FGG
ϕG // GFG

Gκ
��

FGG
κG // GGG

, FG
κ //

' ##G
GGGGGGG GG

εG
��

FG.

An A ∈ Obj(A) is said to be an (F,G)-dimodule if there is a morphism

γA : F (A)→ G(A)

yielding commutative diagrams

FF (A)
F (γA) //

F (γA)
��

FG(A)
ϕA // GF (A)

G(γA)
��

FG(A)
κA // GG(A),

F (A)
γA //

' $$H
HH

HH
HH

HH
G(A)

εA

��
F (A).

Obviously for any comonad G : A → A, (I,G) is a comonadic pair and
G-comodules are (I,G)-dimodules.

Again we have canonical candidates for dimodules.
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6.7. F (A) and G(A) as (F,G)-dimodules. Let (F,G) be a comonadic pair
of endofunctors of A.

(1) For any A ∈ A, G(A) is a (counital) (F,G)-dimodule by

κA = γG(A) : FG(A)→ GG(A).

(2) If A is an (F,G)-dimodule with

%A : F (A)→ G(A),

then F (A) is an (F,G)-comodule by the morphism

%F (A) = FF (A)
F (%A) // FG(A)

ϕA // GF (A)

and %A is an (F,G)-dimodule morphism.

The notions of monadic and comonadic pairs of endofunctors are attempts
to generalise monads and comonads. Of course other sets of conditions are
possible. Their usefulness will depend on the importance of the class of
examples to be found. Notice that natural morphisms of the type TT → TF
for endofunctors F, T show up, for example, in the study of crossed products
in the sense of Brzeziński (see 4.8).
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[1] Adámek, J. and and Porst, H.E., From varieties of algebras to covarieties
of coalgebras, Electronic Notes in Theoretical Computer Science 44.1
(2001)

[2] Baez, J.C., R-commutative geometry and quantization of Poisson alge-
bras, Adv. Math. 95(1), 61-91 (1992)

[3] Barr, M., Composite cotriples and derived functors, in Sem. Triples Cat-
egor. Homology Theory, Springer LN Math. 80, 336-356 (1969)

[4] Barr, M. and Wells, Ch., Toposes, triples and theories, Reprints in The-
ory and Applications of Categories 12, 1-288 (2005)



39

[5] Beck, J., Triples, modules and cohomology, Ph.D. thesis Columbia Uni-
versity (1967), republished in: Reprints in Theory and Applications of
Categories 2, 1-59 (2003)

[6] Beck, J., Distributive laws, in Seminar on Triples and Categorical Ho-
mology Theory, B. Eckmann (ed.), Springer LNM 80, 119-140 (1969)

[7] Bespalov, Y. and Drabant, B., Hopf (bi-)modules and crossed modules
in braided monoidal categories, J. Pure Appl. Algebra 123(1-3), 105-129
(1998)

[8] Böhm, G., Nill, F., and Szlachányi, K., Weak Hopf algebras. I., Integral
theory and C∗-structure, J. Algebra 221(2), 385-438 (1999)

[9] Borceux, F., Handbook of categorical algebra. 2: Categories and struc-
tures, Encyclopedia of Mathematics and Its Applications 51, Cambridge
Univ. Press. (1994)

[10] Borceux, F. and Vitale, E., Azumaya categories, Appl. Categ. Struct.
10(5), 449-467 (2002)

[11] Bruguières, A. and Virelizier, A., Hopf monads, arXiv:math.QA/0604180
(2006)
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