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Preface

In the theory of commutative associative algebras A, three of the most important

techniques are:

(i) the homological characterization of A in the category of A-modules,

(ii) forming the ring of quotients for prime or semiprime A and

(iii) localization at prime ideals of A.

While (i) can be successfully transferred to non-commutative associative algebras A

using left (or right) A-modules, techniques (ii) and (iii) do not allow a satifactory

extension to the non-commutative setting. However, some of the basic results in (ii)

and (iii) remain true if the algebras considered are reasonably close to commutative

rings. This closeness is attained by rings with polynomial identities (PI-rings) and

such rings have been studied in great detail by many authors. They behave like

commutative rings, e.g., in a semiprime PI-ring the non-zero ideals intersect with the

centre non-trivially. In particular, the maximal quotient ring of a prime PI-algebra is

obtained by central localization.

One of the reasons that one-sided module theory cannot imitate the commutative

case completely is that one-sided ideals are no longer kernels of ring homomorphisms.

To remedy this, one might consider the R-algebra A as an (A,A)-bimodule which is

tantamount to studying the structure of A as an A⊗R Ao-module (where Ao denotes

the opposite ring). Obviously the A⊗RAo-submodules of A are precisely the ideals in

A, i.e., the kernels of ring homomorphisms, giving us an analogue of the commutative

case. However, in general A is neither projective nor a generator in the category

A⊗RAo-Mod of A⊗RAo-modules and hence homological characterizations of A, which

prove to be so useful in one-sided module theory, are not possible using this technique.

Indeed, the case where A is projective in A ⊗R Ao-Mod is of special interest. Such

algebras are called separable R-algebras (see [58]). Central R-algebras of this type are

in fact generators in A⊗R Ao-Mod and are named Azumaya algebras. Consequently,

only the bimodule structure of both separable and Azumaya algebras has been the

focus of much attention.

Even more serious problems occur in the attempt to make module theory accessible

to non-associative algebras. By definition, a basic property of bimodules M over an

associative algebra A is the associativity condition:

a(mb) = (am)b, for all m ∈M, a, b ∈ A.

This no longer makes sense for non-associative A (since A itself does not satisfy this

condition). Following a suggestion of Eilenberg (in [120]) one might try (and many

authors have) to replace this identity by suitable identities characterizing the variety

vii



viii Preface

of algebras under consideration. For example, a bimodule M over an alternative

algebra A should satisfy the conditions (with (−,−,−) denoting the associator):

(a,m, b) = −(m, a, b) = (b, a,m) = −(b,m, a), for all m ∈M, a, b ∈ A.

These modules are in fact the modules over the universal enveloping algebra over A

(and thus depend on the identities of A). For this type of investigation we refer to

[166] and [41]. Looking for a more effective module theory for non-associative alge-

bras, J.M. Osborn writes in the introduction to [215]: One of the most disconserting

characteristics of the Eilenberg theory when applied to a particular variety is that the

worst-behaved bimodules occur over rings that are the best-behaved in the variety. ...

It is our feeling that the module theory used to obtain structure theory ought to be

independent of which variety the ring is thought of belonging to.

One of the (artificial) handicaps in looking for modules for non-associative alge-

bras was the desire to get a full module category, i.e., a Grothendieck category with

a finitely generated projective generator. This requirement turns out to be too re-

strictive and – for many purposes – superfluous. Indeed, it was already known from

Gabriel’s fundamental paper ([140], 1962) that most of the localization techniques are

available in any Grothendieck category (since it has enough injectives). Consequently,

we may meet our localization needs by finding a Grothendieck category related to A

which does not necessarily have a projective generator. On the other hand, for a homo-

logical characterization of an algebra A it is essential that the objects in the category

used are closely related to A. Both objectives are met in the following construction.

For any R-algebra A we consider the multiplication algebra M(A), i.e., the R-

subalgebra of EndR(A) generated by left and right multiplications by elements of

A and the identity map of A. Then A is a left module over the unital associative

algebra M(A) and we denote by σ[A] the smallest full Grothendieck subcategory of

M(A)-Mod containing A. The objects of σ[A] are just the M(A)-modules which are

submodules of A-generated modules. This category is close enough to A to reflect

(internal) properties of A (see (i)) and rich enough for the constructions necessary

for (ii) and (iii). Moreover, the construction is independent of the variety to which

A belongs. (This will be studied in detail in the second part of this monograph.) In

particular it extends the study of bimodules over associative algebras by M. Artin [57]

and Delale [115] to arbitrary algebras.

It is easy to see that for A finitely generated as an R-module, σ[A] = M(A)-Mod.

Moreover, if A is associative and commutative with unit then σ[A] = A-Mod. Hence

σ[A] generalizes the module theory over associative commutative rings. To measure

how close an algebra A is to an associative commutative algebra, we consider its

behaviour as an M(A)-module instead of the aforementioned polynomial identities.

For example, we may ask if σ[A] = M(A)-Mod, or if HomM(A)(A,U) 6= 0 for non-

zero ideals U ⊂ A. The conditions which determine when these occur do not depend
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on associativity. For associative (and some non-associative) prime algebras they are

conveniently equivalent to A satisfying a polynomial identity.

The use of the multiplication algebra to investigate (bimodule) properties of any

algebra is by no means new. A footnote in Albert [42] says: The idea of studying these

relations was suggested to both Jacobson and the author (Albert) by the lectures of H.

Weyl on Lie Algebras which were given in Fine Hall in 1933. One of the early results

in this context is the observation that a finite dimensional algebra A over a field is a

direct sum of simple algebras if and only if the same is true for M(A) (see Jacobson

[165], 1937; Albert [43], 1942). Later, in Müller [208] separable algebras A over a ring

R were defined by the R-separability of M(A), provided A is finitely generated and

projective as an R-module. A wider and more effective application of module theory

to the structure theory of algebras was made possible through the introduction of

the category σ[A]. In particular, in this case A need not be finitely generated as an

R-module (which would imply σ[A] = M(A)-Mod).

The category σ[A] is a special case of the following more general situation. Let

M be any module over any associative ring A and denote by σ[M ] the smallest full

subcategory of A-Mod which is a Grothendieck category. Its objects are just the

submodules of M -generated modules. Clearly, for M = A we have σ[M ] = A-Mod.

Many results and constructions in A-Mod can be transferred to σ[M ] and this is

done in [11, 40]. In the first part (Chaps. 2, 3) of this monograph we will recall

some of these results and introduce new ones which are of particular interest for the

applications we have in mind. For example, we consider generating and projectivity

properties of M in σ[M ] and also special torsion theories in σ[M ].

The first application is – as mentioned above – the investigation of any algebra A

as a module over its multiplication M(A).

For another application we will use our setting to study the action of a group G

on any algebra A. In the case A is unital and associative we may consider A as a left

module over the skew group algebra A′G. The endomorphism ring of this module is

the fixed ring AG and applying our techniques we obtain relations between properties

of A′GA and AG.

For arbitrary A with unit we observe that the action of G on A can be extended

to an action on M(A). This allows us to consider A as a module over the skew group

algebra M(A)′G. The endomorphism ring of this module consists of the fixed elements

of the centroid.
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Introduction

As pointed out in the preface, the structure of algebras can be studied by methods

of associative module theory. The purpose of this monograph is to give an up-to-

date account of this theory. We begin in Chapter 1 by presenting those topics of the

associative theory which are of relevance to the bimodule structure of algebras.

In Chapter 2 we collect results on modules M over associative algebras A and the

related category σ[M ], a full subcategory of the category of all left A-modules whose

objects are submodules of M -generated modules. In addition to information taken

from the monographs [40] and [11] new notions are introduced which will be helpful

later on. This leads on to Chapter 3 where we outline the localization theory in σ[M ].

If A is an associative algebra over an associative, commutative ring R, every left A-

module M is also an R-module and there is an interplay between the properties of the

A-module M and the R-module M . In particular the tensor product of A-modules

can be formed over R. This facilitates the study of localization of A and M with

respect to multiplicative subsets of R. These techniques are considered in Chapter 4.

Then they are applied in Chapter 5 to obtain local-global characterizations of various

module properties.

Next, in what follows, A will be a not necessarily associative R-algebra. In Chapter

6 some radicals for such algebras are considered. In Chapters 7 to 9 the module

theory presented earlier will be applied to the subcategory σ[A] of M(A)-Mod, where

M(A) denotes the multiplication algebra of A. Generating and projectivity properties

of A as an M(A)-module are considered and Azumaya rings are characterized as

projective generators in σ[A], whereas Azumaya algebras are (projective) generators

in M(A)-Mod. The effectiveness of localization in σ[A] for semiprime algebras A is

based on the observation that such algebras are non-A-singular as M(A)-modules.

This yields in particular an interpretation of Martindale’s central closure of A as the

injective envelope of A in σ[A].

In Chapter 10 the module theoretic results are used to study the action of groups

on any algebra A. If A is associative and unital we consider A as an algebra over the

skew group ring A′G. In particular we ask when A′GA is a self-generator or when it is

self-projective and what are the properties of the fixed ring AG (which is isomorphic

to the endomorphism ring of A′GA). This generalizes the case when A is a projective

generator in A′G-Mod, a property which has attracted interest in connection with

Galois theory for rings.

For arbitrary A with unit we use the fact that the action of G on A induces an

action on the multiplication algebra M(A). Hence we have A as module over the skew

group algebra M(A)′G whose endomorphism ring consists of the fixed elements of the

xi



xii Introduction

centre. As a counterpart to the central closure of prime rings, we obtain a central

quotient ring for G-semiprime algebras.

Throughout the monograph R will denote a commutative associative ring with

unit. A will be any R-algebra which in some chapters is assumed to be associative

or to have a unit. For the general properties of σ[A] associativity of A is of no

importance. However, any (polynomial) identity on A may imply special properties

of A as an M(A)-module.

For the readers convenience, each section begins with a listing of its paragraph

titles. Most of the sections are ended by exercises which are intended to point out

further relationships and to draw attention to related results in the literature.

I wish to express my sincere thanks to all the colleagues and friends who helped

to write this book. In particular I want to mention Toma Albu, John Clark, Maria

José Arroyo Paniagua, José Ŕıos Montes and my students for their interest and the

careful reading of the manuscript. Several interesting results around semiprime rings

were obtained in cooperation with Kostja Beidar and Miguel Ferrero. Moreover I am

most indebted to Bernd Wilke for the present form of Chapter 10 and to Vladislav

Kharchenko for many helpful comments.

Düsseldorf, January 1996

Robert Wisbauer



Notation

R commutative associative ring with unit

M set of maximal ideals of R

B(R) Boolean ring of idempotents of R

X set of maximal ideals of B(R)

A associative or non-associative R-algebra

M(A) / M∗(A) multiplication algebra / ideal of A

C(A) / Z(A) centroid / centre of A

ZA(M) centre of an M(A)-module M

σ[A] subcategory of M(A)-Mod subgenerated by A

Â injective hull of A in σ[A]

BMcA Brown-McCoy radical of A

JacA Jacobson radical of A

Qmax(A) maximal left quotient ring of A

A[G] group algebra of a group G over A

A′G skew group algebra of a group G acting on A

AG fixed ring of the group G acting on A

trG trace map A→ AG

acc / dcc ascending / descending chain condition

E(N) injective hull of a module N

σ[M ] subcategory of A-Mod subgenerated by a module M

N̂ , IM(N) M -injective hull of a module N ∈ σ[M ]

Im f / Ke f image / kernel of a map f

Tr(U,L) trace of a module U in L

AnA(M) annihilator of an A-module M

K ⊂M K is a subset/submodule or equal to M

K �M K is an essential submodule of M

K �M K is a superfluous submodule of M

SocM socle of M

RadM radical of M

Mx Pierce stalks of a module M

lim
−→

Mi direct limit of modules Mi

SM / S class of singular modules in σ[M ] / in A-Mod

S2
M / S2 Goldie torsion class in σ[M ] / in A-Mod

xiii
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Chapter 1

Basic notions

1 Algebras

1.Algebra. 2.Algebra morphism. 3.Category of R-algebras. 4.Products of algebras.

5.Ideals. 6.Properties of ideals. 7.Factorization Theorem. 8.Isomorphism Theorems.

9.Embedding into algebras with units. 10.A as (subdirect) product of rings. 11.Nu-

cleus and centre.

R will always denote an associative and commutative ring with unit 1. For module

theory over associative rings we mainly refer to [40]. The basic facts can also be found

in Anderson-Fuller [1], Kasch [21], Faith [12, 13], Pierce [32], Bourbaki [6].

1.1 Algebra. Definition.

A unital R-module A with an R-bilinear map µ : A×A→ A is called an R-algebra.

µ can also be described by an R-linear map µ′ : A ⊗R A → A and is said to be the

multiplication on A.

An R-submodule B ⊂ A is a subalgebra if µ(B ×B) ⊂ B.

Writing µ(a, b) = ab for a, b ∈ A, we deduce from the above definition the following

rules for all a, b, c ∈ A, r ∈ R:

a(b+ c) = ab+ ac,

(b+ c)a = ba+ ca,

r(ab) = (ra)b = a(rb).

These conditions are in fact sufficient for a map A × A → A, (a, b) 7→ ab, to be

R-bilinear and hence may be used for the definition of an R-algebra.

A is called associative if (ab)c = a(bc) for all a, b, c ∈ A.

Algebras over R = ZZ are called (non-associative) rings. In fact any R-algebra is

a ZZ-algebra, i.e., a ring.

An element e ∈ A is called a left (right) unit if ea = a (ae = a) for all a ∈ A.

e ∈ A is a unit if it is a left and right unit. If A has such an element we call A an

algebra with unit or a unital algebra. Of course, there can be at most one unit in A.

For non-empty subsets I, J ⊂ A we define:

I + J := {a+ b | a ∈ I, b ∈ J} ⊂ A,

IJ := {∑i≤k aibi | ai ∈ I, bi ∈ J, k ∈ IN} ⊂ A.

1



2 Chapter 1. Basic notions

1.2 Algebra morphism. Definition.

Let A, B be R-algebras. A map f : A→ B is called an (algebra) homomorphism

or (algebra) morphism if f is R-linear (R-module morphism) and

f(ab) = f(a)f(b) for all a, b,∈ A.

Such an f is called an isomorphism if it is injective and surjective.

In case A and B are algebras with units, then f is said to be unital if it maps

the unit of A to the unit of B. It is easily seen that any surjective algebra morphism

between unital algebras is unital.

1.3 Category of R-algebras.

The class of R-algebras as objects and the algebra homomorphisms as morphisms

form a category which we denote by R-Alg.

Observe that R-Alg is not an additive category since the sum of two algebra mor-

phisms need not be an algebra morphism.

1.4 Products of algebras. Definitions.

Consider a family {Aλ}Λ of R-algebras.

(1) Defining the operations by components, the cartesian product
∏

ΛAλ becomes

an R-algebra, called the (algebra) product of the Aλ’s, and the canonical projections

and injections (as defined for R-modules)

πµ :
∏

Λ
Aλ → Aµ, εµ : Aµ →

∏
Λ
Aλ,

are algebra morphisms.
∏

ΛAλ has a unit if and only if every Aλ has a unit.

(2) The weak (algebra) product
⊕

ΛAλ of the Aλ’s is defined as subalgebra of
∏

ΛAλ
consisting of elements with only finitely many non-zero components.

(3) A subdirect product of the Aλ’s is a subalgebra B ⊂ ∏
ΛAλ for which the

restrictions of the projections to B, πµ|B : B → Aµ, are surjective for every µ ∈ Λ.

It is easy to check that
∏

ΛAλ together with the projections πλ form a product in

the category R-Alg (e.g., [40, 9.1]):

For every family of algebra morphisms {fλ : X → Aλ}Λ there is a unique algebra

morphism f : X → ∏
ΛAµ making the following diagram commutative for any λ ∈ Λ:∏

ΛAµ
πλ−→ Aλ

f ↖ ↗fλ

X .

The weak product
⊕

ΛAλ is the coproduct in the category of R-modules but not

the coproduct in the category R-Alg. It is a special case of a subdirect product. For

infinite sets Λ the weak product cannot have a unit.



1. Algebras 3

1.5 Ideals. Definitions. A subset I ⊂ A of an R-algebra A is called a

left (right) algebra ideal if I is an R-submodule and AI ⊂ I (resp. IA ⊂ I),

left (right) ring ideal if I is a ZZ-submodule and AI ⊂ I (resp. IA ⊂ I),

algebra (ring) ideal if I is a left and right algebra (ring) ideal.

If no ambiguity arises we will just say ideal instead of algebra or ring ideal. Let us

collect some basic statements about ideals:

1.6 Properties of ideals. Let A be an R-algebra.

(1) Any intersection of (left, right) ideals is again a (left, right) ideal.

(2) A2 is an ideal in A.

(3) IJ ⊂ I ∩ J for any ideals I, J ⊂ A but IJ need not be an ideal.

(4) Every (left, right) algebra ideal is a (left, right) ring ideal in A.

(5) If A has a unit, every (left, right) ring ideal is a (left, right) algebra ideal in A.

Proof. (5) Let e ∈ A denote the unit of A and I a (left, right) ring ideal. It is to

show that I is an R-module. For any r ∈ R we have re ∈ A and rI = (re)I ⊂ I.

The other assertions are evident. 2

The kernel of an algebra morphism f : A→ B is defined as

Ke f = {a ∈ A | f(a) = 0}.

Obviously, Ke f is an algebra ideal. On the other hand, for every algebra ideal I ⊂ A

an algebra structure on the factor module A/I is obtained with the multiplication

(a+ I)(b+ I) = ab+ I for a, b ∈ A.

Then I is the kernel of the algebra morphism defined by the projection pI : A→ A/I

and we get the

1.7 Factorization Theorem.

Assume f : A→ B is an an algebra morphism and I an ideal of A with I ⊂ Kef .

Then there is a unique algebra morphism f̄ : A/I → B making the following diagram

commutative:
A

f−→ B

pI ↘ ↗f̄

A/I

If I = Kef , then f̄ is injective. If f is surjective, then f̄ is also surjective.

From this we derive the
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1.8 Isomorphism Theorems.

(1) Let I, J be ideals in the algebra A with I ⊂ J . Then J/I is an ideal in the

algebra A/I and there is an algebra isomorphism

(A/I) / (J/I) ' A/J.

(2) Let B be a subalgebra and I an ideal in the algebra A. Then I is an ideal in

B + I, I ∩B is an ideal in B, and there is an algebra isomorphism

(B + I) /I ' B / (I ∩B).

Every R-algebra can be embedded into an R-algebra with unit. We can achieve

this with the construction of the Dorroh overring (see [40, 1.5]):

1.9 Embedding into algebras with units. Let A be an R-algebra.

(1) The R-module R× A becomes an R-algebra with unit (1, 0) by defining

(s, a)(t, b) = (st, sb+ ta+ ab) for s, t ∈ R, a, b ∈ A.

This algebra is called the Dorroh overring and is denoted by A∗.

(2) The map

ε : A→ A∗, a 7→ (0, a),

is an injective algebra morphism and ε(A) is an algebra ideal in A∗.

(3) If B is an R-algebra with unit e and f : A → B an algebra morphism, then

there is a unique unital algebra morphism f ∗ : A∗ → B with f = f ∗ε, namely

f ∗(s, a) = se+ f(a) for (s, a) ∈ A∗.

Since ideals are just kernels of morphisms we obtain by the universal property of

products:

1.10 A as (subdirect) product of rings. Let A be an R-algebra.

(1) For any family of ideals {Iλ}Λ in A the canonical mappings

pIλ : A→ A/Iλ yield an algebra morphism

γ : A→
∏

Λ
A/Iλ, a 7→ (a+ Iλ)Λ,

with Ke γ =
⋂

Λ Iλ. Hence γ is injective if and only if
⋂

Λ Iλ = 0. In this case A

is a subdirect product of the algebras A/Iλ.

(2) Chinese Remainder Theorem.

If A has a unit, for ideals I1, · · · , In in A, the following are equivalent:

(a) The canonical map κ : A→ ∏
i≤nA/Ii is surjective (and injective);

(b) for every j ≤ n, Ij +
⋂
i 6=j Ii = A (and

⋂
i≤n Ii = 0).
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For the proof we refer to [40, 3.12 and 9.12].

1.11 Nucleus and centre. Definitions. Let A be an R-algebra. We define the

associator (a, b, c) = (ab)c− a(bc),

commutator [a, b] = ab− ba for a, b, c ∈ A;

left nucleus of A, Nl(A) = {c ∈ A | (c, a, b) = 0 for all a, b ∈ A},
right nucleus of A, Nr(A) = {c ∈ A | (a, b, c) = 0 for all a, b ∈ A},

middle nucleus of A, Nm(A) = {c ∈ A | (a, c, b) = 0 for all a, b ∈ A},
nucleus of A, N(A) = Nl(A) ∩Nm(A) ∩Nr(A),

centre of A, Z(A) = {c ∈ N(A) | [c, a] = 0 for all a ∈ A}.

By definition, A is an associative algebra if and only if (a, b, c) = 0 for all a, b, c ∈ A,

and A is commutative if and only [a, b] = 0 for all a, b ∈ A.

It is easy to check that the left, right and middle nucleus all are associative subal-

gebras of A. The centre of A is a commutative and associative subalgebra containing

at least the zero of A and may be described by

Z(A) = {c ∈ A | (a, b, c) = (a, c, b) = [a, c] = 0 for all a, b ∈ A}.

If A has a unit e, then obviously e ∈ Z(A).

Any surjective algebra morphism maps the (left, right) nucleus into the (left, right)

nucleus and the centre into the centre of the image.
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2 Multiplication algebras

1.Multiplication algebra. 2.Change of base ring. 3.Morphisms and multiplication

algebras. 4.Module structures on A. 5.Associative algebras. 6.Centroid. 7.Proper-

ties of the centroid. 8.Connection between centre and centroid. 9.Central algebras.

10.Centroid and M∗(A). 11.A finitely generated as module. 12.Module finite algebras.

13.Exercises.

To any algebra A there is a closely related associative algebra which provides a

good deal of information about the structure of A. In this section we introduce this

algebra and consider A as a module over it.

2.1 Multiplication algebra. Definitions.

Let A be an R-algebra. The left and right multiplication by any a ∈ A,

La : A→ A, x 7→ ax,

Ra : A→ A, x 7→ xa,

define R-endomorphisms of A, i.e., La, Ra ∈ End(RA).

The R-subalgebra of End(RA) generated by all left multiplications in A (and the

identity map idA) is called the left multiplication ideal (algebra) of A, i.e.,

L∗(A) = < {La | a ∈ A} >,
L(A) = < {La | a ∈ A} ∪ {idA} >⊂ End(RA).

Similarly the right multiplication ideal and algebra, R∗(A) and R(A), are defined.

The R-subalgebra of End(RA) generated by all left and right multiplications (and

idA) is called the multiplication ideal (algebra) of A, i.e.,

M∗(A) = < {La, Ra | a ∈ A} >,
M(A) = < {La, Ra | a ∈ A} ∪ {idA} >⊂ End(RA).

Obviously, L(A), R(A) and M(A) are associative R-algebras with unit, and M∗(A)

is an ideal in M(A).

By definition, M(A) = R · idA +M∗(A) and we have the elementary equalities

M(A)A = A and M∗(A)A = A2.

Observe that the definition of M(A) depends on the ring R. To indicate this we

sometimes write M(RA) or M∗(RA) to avoid confusion. However, the definition of

M∗(A) is in fact independent of R:

2.2 Change of base ring.

Let S be an associative and commutative R-algebra with unit. Let A be an S-

algebra. Then A is also an R-algebra and
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(1) M∗(RA) is an S-algebra;

(2) M∗(RA) = M∗(SA);

(3) M(SA) = S ·M(RA).

Proof. (1) This follows from sLa = Lsa and sRa = Rsa for any s ∈ S, a ∈ A.

(2) and (3) are immediate consequences of (1). 2

2.3 Morphisms and multiplication algebras.

(1) Any surjective algebra morphism f : A→ B induces an surjective algebra mor-

phisms

fm : M∗(A)→M∗(B).

(2) For any finite family of R-algebras {A1, . . . , An},

M∗(
∏m

i=1
Ai) '

∏n

i=1
M∗(Ai).

Proof. (1) For a ∈ A put fm(La) := Lf(a) and fm(Ra) := Rf(a).

We have to verify that this definition extends to M∗(A). Assume ν ∈ M∗(A)

to be a linear combination of a composition of left and right multiplications in A

representing the zero map, i.e., νa = 0 for all a ∈ A. Since f is an algebra morphism,

0 = f(νa) = fm(ν)f(a). f being surjective this implies fm(ν) = 0.

(2) By (1), for every j ≤ n the canonical algebra morphism
∏n
i=1Ai → Aj yields an

algebra morphism M∗(
∏n
i=1Ai) → M∗(Aj). Now the isomorphism stated is obtained

by the universal property of the product of algebras. 2

2.4 Module structures on A.

Consider the R-algebra A as a left module over the R-algebra End(RA). Then

A may be regarded as a faithful left module over the rings L(A), R(A), M(A) and

M∗(A).

(1) The L(A)-submodules are the left algebra ideals of A,

the R(A)-submodules are the right algebra ideals of A.

(2) The M(A)-submodules are the (two-sided) algebra ideals of A,

the M∗(A)-submodules are the ring ideals of A.

(3) For any subset X ⊂ A the algebra ideal in A generated by X can be written as

M(A)X.

For associative algebras A we observe close connections between A and M(A). Let

Ao denote the opposite algebra of A, i.e., the algebra with the same additive group as

A but with reversed multiplication. Right modules over A may be considered as left

modules over Ao.
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2.5 Associative algebras.

Let A be an associative R-algebra. Then A is a left module over the R-algebra

A⊗R Ao by defining

(a⊗ b)x = axb for a, b, x ∈ A.

There is a surjective algebra morphism

ρ : A⊗R Ao →M∗(A), a⊗ b 7→ LaRb.

(1) ρ is injective if and only if A is a faithful A⊗R Ao-module.

(2) If A has a unit ρ : A⊗R Ao →M(A) is surjective.

(3) If A is generated as an R-module by a1, . . . , an, then M∗(A) is generated as

R-module by

{Lai , Rai , LaiRaj | i, j ∈ {1, . . . , n} },

and M(A) is generated by the union of this set with {idA}.

Studying modules the endomorphism rings play an important part:

2.6 Centroid.

Let A be any R-algebra. The endomorphism ring of the M(A)-module A is called

the centroid C(A) of A, i.e., C(A) = EndM(A)(A).

Writing morphisms of left modules on the right, A is a right module over C(A)

and

C(A) = {ϕ ∈ End(ZZA) |ϕψ = ψϕ, for all ψ ∈M(A)}
= {ϕ ∈ End(RA) | (ab)ϕ = a(bϕ) = (aϕ)b, for all a, b ∈ A}.

2.7 Properties of the centroid.

Let A be an R-algebra with centroid C(A).

(1) For any α, β ∈ C(A), A2(αβ − βα) = 0.

(2) If HomM(A)(A/A
2, A) = 0, then C(A) is a commutative algebra.

(3) If I2 = I for every ideal I ⊂ A, then C(A) is a regular ring.

(4) If C(A) is not commutative, then there exists a non-zero ideal I ⊂ A with

IA = AI = 0.

(5) If C(A) is a division ring, then C(A) is commutative.

Proof. (1) For any a, b ∈ A,

(ab)αβ = [(aα)b]β = (aα)(bβ) = [a(bβ)]α = (ab)βα.



2. Multiplication algebras 9

(2) By (1), for α, β ∈ C(A) the commutator [α, β] annihilates A2 and hence has

to be zero by the condition in (2), i.e., C(A) is commutative.

(3) We have to show that for every α ∈ C(A), Imα and Keα are direct summands

in A (see [40, 37.7]).

By assumption, Aα = (Aα)(Aα) = (A2)α2 = Aα2. Hence for every a ∈ A, there

exists b ∈ A such that (a)α = (b)α2. So a = (b)α + (a− (b)α) with (a− (b)α)α = 0,

implying A = Imα + Keα.

Since Aα ∩Keα = (Aα ∩Keα)2 = 0, A = Imα⊕Keα.

(4) We know by (2) that there exists a non-zero α ∈ C(A) with 0 = (A2)α =

A(A)α = (A)αA and (A)α is a non-zero ideal in A.

(5) Without restriction let A be a faithful R-module. Assume C(A) to be a non-

commutative division ring. Since every non-zero map in C(A) is invertible, it follows

from the proof of (4) that A2 = 0. This implies M(A) = R · idA and R ⊂ End(RA) =

C(A).

Since C(A) is a division ring, R is an integral domain contained in the centre of

C(A), and the quotient field Q of R is also contained in the centre of C(A). We

conclude End(RA) ' End(QA), which is a division ring only if dimQA = 1 and so

C(A) ' Q, i.e., C(A) is commutative. 2

2.8 Connection between centre and centroid.

Let A be an R-algebra with centre Z(A) and centroid C(A).

(1) There exists an R-algebra morphism

ν : Z(A)→ C(A), a 7→ La.

(2) If A is a faithful Z(A)-module, then ν is injective.

(3) Z(A) is a right C(A)-module.

(4) If A has a unit, then ν is an isomorphism.

Proof. (1) and (2) are easily verified.

(3) For any a ∈ Z(A) and γ ∈ C(A), (a)γ ∈ Z(A).

(4) For the unit e ∈ A, the map C(A)→ Z(A), γ 7→ (e)γ, is inverse to ν. 2

2.9 Central algebras. Let A be an R-algebra with centroid C(A).

(1) For any r ∈ R the multiplication Lr : A → A, x 7→ rx, belongs to C(A) and

there is a ring morphism

ϕ : R→ C(A), r 7→ Lr.

(2) ϕ is injective if and only if A is a faithful R-module.
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(3) In case ϕ is an isomorphism, A is called a central R-algebra.

(4) If A is a central R-algebra, every algebra ideal is a fully invariant M(A)-

submodule of A.

(5) If C(A) is commutative then A is a central C(A)-algebra.

(6) If A has a unit e, then ϕ may be replaced by R→ Z(A), r 7→ re.

Proof. (5) By commutativity of C(A), any γ ∈ C(A) is in fact a C(A)-module

homomorphism. From this it follows that C(A) is the centroid of A as C(A)-algebra

(see 2.6).

The other assertions are obvious. 2

The relationship between M∗(A) and C(A) is displayed in

2.10 Centroid and M∗(A).

Let A be any R-algebra with centroid C(A) and centre Z(A).

(1) Assume C(A) is commutative. Then:

(i) M∗(A) is a C(A)-algebra;

(ii) M∗(RA) = M∗(C(A)A);

(iii) M(C(A)A) = C(A) ·M(RA);

(iv) C(A) is isomorphic to the centre of M(A).

(2) If A has a unit the centre of M(A) is isomorphic to Z(A).

Proof. (1) If C(A) is commutative A is a C(A)-algebra and the assertion follows

from 2.2. (ii) tells us that the multiplication ideal of A as an R-algebra is equal to

the multiplication ideal of A as a C(A)-algebra.

(iv) Since M(A) has idA as unit we conclude from (1) that C(A) ' C(A)idA is a

subalgebra of M(A) contained in the centre of M(A).

Clearly every element of the centre of M(A) belongs to C(A) by definiton and so

we can identify these two algebras.

(2) For unital algebras A, C(A) = Z(A) by 2.8. 2

For example, let A be a finite dimensional algebra over an algebraically closed

field K. If A has no nilpotent elements, then M∗(A) = M(A). This is shown in

Farrand-Finston [127].

From 2.8 we see in particular that the centroid of an algebra with unit is isomorphic

to a subalgebra of A, namely the centre of A. A more general situation is described

in
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2.11 A finitely generated as module.

Let A be an R-algebra with M(A) and C(A) defined as above.

(1) If A is finitely generated as an M(A)-module, then C(A) is isomorphic to a

C(A)-submodule of a finite direct sum An, n ∈ IN .

(2) If A is finitely generated as right a C(A)-module, then M(A) is isomorphic to

an M(A)-submodule of a finite direct sum Ak, k ∈ IN .

Proof. (1) Assume A is generated as an M(A)-module by a1, . . . , an. Then the map

C(A)→ An, γ 7→ (a1, . . . , an)γ = (a1γ, . . . , anγ),

is a C(A)-monomorphism: Assume aiγ = 0 for i = 1, . . . , n. Then for any a =
∑
νiai

in A, νi ∈M(A), we have

aγ = (
∑

νiai)γ =
∑

νi(aiγ) = 0,

i.e., γ = 0 and the map is injective.

(2) Starting with a generating set b1, . . . , bk of A as C(A)-module, the proof is

symmetric to the above argument. 2

Recall that A 'M(A) ' C(A) for any associative commutative ring A with unit.

This is a special case of the following situation:

2.12 Module finite algebras.

Let A be an R-algebra which is finitely generated as an R-module. Then:

(1) C(A) ⊂ AnC(A) and M(A) ⊂ M(A)A
k for some n, k ∈ IN.

(2) If R is a noetherian ring, then the algebras M(A) and C(A) are finitely generated

as R-modules. A, M(A) and C(A) have the ascending chain condition on (left,

right) ideals.

(3) If R is an artinian ring, then the algebras A, M(A) and C(A) satisfy the de-

scending chain condition on (left,right) ideals.

Proof. (1) The given condition implies that A is both finitely generated as M(A)-

module and as C(A)-module and the assertion follows from 2.11.

(2) An is a noetherian R-module for any n ∈ IN . By (1), this implies that

M(A) and C(A) are noetherian R-modules. Since all (left) ideals are in particu-

lar R-submodules we have the ascending chain condition for (left) ideals in all these

algebras.

(3) An artinian ring R is also noetherian and finitely generated modules over

artinian rings are again artinian. Hence the assertion follows from (2). 2
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2.13 Exercises.

(1) Let A be an R-algebra with right nucleus Nr(A). Prove that

δ : Nr(A)→ End(L(A)A), a 7→ Ra,

is a ring morphism. If A has a right unit then δ is surjective; if A has a unit then δ

is an isomorphism.

(2) [135] Let A be an R-algebra with multiplication algebra M(A).

For any ideal I ⊂ A put (I : A) := {µ ∈M(A) |µA ⊂ I};
for a left ideal I ⊂M(A) put I(A) :=

∑
α∈I αA.

Show for ideals I, J ⊂ A and left ideals I,J ⊂M(A):

(i) (I : A) is a two-sided ideal in M(A); I(A) is a two-sided ideal in A;

(ii) I ⊂ J implies (I : A) ⊂ (J : A); I ⊂ J implies I(A) ⊂ J (A);

(iii) (I : A)(A) ⊂ I; (I(A) : A) ⊃ I;

(iv) (I : A) = ((I : A)(A) : A); I(A) = (I(A) : A)(A);

(v) M(A/I) 'M(A)/(I : A).

(3) Let A be an algebra over a field K. Prove ([222]):

(i) For a maximal ideal I ⊂M(A) there are three possibilities:

(α) I(A) = A, (β) I = M∗(A), (γ) I(A) is a maximal ideal in A.

(ii) For maximal ideals I1, . . . , Ik in M(A),
⋂k
i=1Ii(A) = (

⋂k
i=1Ii)(A).

(4) Let A be an R-algebra such that M(A) is a division algebra. Show that A is

commutative and associative and M(A) is commutative.

(5) Consider a four dimensional algebra A with basis a1, a2, a3, a4 over a field K

given by the multiplication table ([135])

a1 a2 a3 a4

a1 0 0 a1 0

a2 0 0 0 0

a3 0 0 0 0

a4 0 0 0 a2

Show that

M(A) = {


b 0 a 0

0 b 0 c

0 0 b 0

0 0 0 b

 | a, b, c ∈ K},
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C(A) = {


α 0 0 0

0 α β 0

0 0 α 0

0 0 0 α

 | α, β ∈ K},

and hence C(A) 6⊂M(A).

References: Courter [111], Farrand [126], Farrand-Finston [127], Finston [135],

Müller [208], Pritchard [222], Röhrl [229], Schafer [37], Wisbauer [267, 268].
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3 Identities for algebras

1.Alternative algebras. 2.Moufang identities. 3.Bruck-Kleinfeld map. 4.Artin’s The-

orem. 5.Multiplications in alternative algebras. 6.Generating sets in alternative al-

gebras. 7.Module finite alternative algebras. 8.Simple alternative algebras. 9.Jordan

algebras. 10.Special Jordan algebras. 11.Identity. 12.Generating sets in Jordan al-

gebras. 13.Module finite Jordan algebras. 14.Lie algebras. 15.Generating sets in Lie

algebras. 16.Special Lie algebras. 17.Malcev algebras. 18.Simple Malcev algebras.

19.Exercises.

In this section we study classes of algebras defined by some identities replacing

associativity. One of our purposes is to show how such identities can be used to get

information about the multiplication algebra.

3.1 Alternative algebras. Definition. An algebra A is called

left alternative if a2b = a(ab),

right alternative if ab2 = (ab)b,

flexible if a(ba) = (ab)a for all a, b ∈ A,

alternative if it is left and right alternative (and flexible).

Using the associator defined in 1.11 we can express these identies by

(a, a, b) = 0, (a, b, b) = 0, (a, b, a) = 0.

Hence alternative algebras are characterized by the fact that the associator yields an

alternating map

(−,−,−) : A× A× A→ A.

The identities above are of degree 2 in a or b. We can derive multilinear identities

from these by linearization. In our case this can be achieved by replacing a by a+ d

in the first identity

(a+ d)2b = (a+ d)[(a+ d)b].

Evaluating this equality and referring again to the first identity in the form a2b = a(ab)

and d2b = d(db) we obtain the multilinear identity

(ad+ da)b = a(db) + d(ab).

Putting b = a we obtain a new relation for left alternative rings

(ad+ da)a = a(da) + da2.

Now applying the second identiy (right alternative) we have (ad)a = a(da) and thus:

Left and right alternative implies flexible.
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In an alternative algebra we also have

[a(ab)]b− a[(ab)b] = a2b2 − a2b2 = 0,

which means (a, ab, b) = 0 for all a, b ∈ A.

Linearizing with respect to b, i.e., replacing b by b+ c, we derive

0 = (a, ab, c) + (a, ac, b) = −(ab, a, c)− (a, b, ac)

= −[(ab)a]c+ (ab)(ac)− (ab)(ac) + a[b(ac)]

= a[b(ac)]− [(ab)a]c.

This identity is named after Ruth Moufang who studied alternative fields in the context

of geometric investigations (see [207]). By similar computations we obtain further

identities of this kind:

3.2 Moufang identities.

In an alternative algebra we have the
left Moufang identity (aba)c = a[b(ac)],

right Moufang identity c(aba) = [(ca)b]a,

middle Moufang identity a(bc)a = (ab)(ca).

Using the associator we have for all a, b, c ∈ A:

(a, b, ca) = a(b, c, a),

(ab, c, a) = (a, b, c)a,

(b, a2, c) = a(b, a, c) + (b, a, c)a.

It was observed in Bruck-Kleinfeld [92] that the following map is helpful for proving

our next theorem:

3.3 Bruck-Kleinfeld map.

Let A be an alternative algebra. For the map

f : A4 → A, (a, b, c, d) 7→ (ab, c, d)− (b, c, d)a− b(a, c, d),

we have
(1) f(a, b, c, d) = −f(d, a, b, c) and

(2) f(a, b, c, d) = 0 in case any two arguments coincide.

Proof. It is easy to verify that for a, b, c, d in any algebra A,

(ab, c, d)− (a, bc, d) + (a, b, cd) = a(b, c, d) + (a, b, c)d.

For alternative algebras this yields

(ab, c, d)− (bc, d, a) + (cd, a, b) = a(b, c, d) + (a, b, c)d.
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Forming the map

F (a, b, c, d) := f(a, b, c, d)− f(b, c, d, a) + f(c, d, a, b)

= [a, (b, c, d)]− [b, (c, d, a)] + [c, (d, a, b)]− [d, (a, b, c)],

we conclude from above

0 = F (a, b, c, d) + F (b, c, d, a) = f(a, b, c, d) + f(d, a, b, c),

proving (1).

By definition, f(a, b, c, d) = −f(a, b, d, c) and f(a, b, c, c) = 0. This together with

(1) yields (2). 2

3.4 Artin’s Theorem.

An algebra A is alternative if and only if any subalgebra of A generated by two

elements is associative.

Proof. (1) (compare [92]) One implication is clear. Now assume that A is alternative.

For D := {a, b} we define in obvious notation

K := {k ∈ A | (D,D, k) = 0},
M := {m ∈ K | (D,m,K) = 0 and mK ⊂ K},
S := {s ∈M | (s,M,K) = 0}.

It suffices to show that S is an associative subalgebra and D ⊂ S.

Obviously, K,M and S are R-submodules of A and (D,D,K) = 0. Since D con-

tains only two distinct elements, we have (D,D,D) = 0 and by 3.3, f(D,K,D,D) =

0. This yields (D,D,DK) = 0 and so

DK ⊂ K, D ⊂M and D ⊂ S.

Since S ⊂M ⊂ K this means (S, S, S) = 0, i.e., S is associative.

It remains to show that SS ⊂ S. From (S,M,K) = 0 and S ⊂ M we derive

(K,S, S) = 0 = (MK,S, S). By 3.3,

f(s, s′,m, k) = f(m, k, s, s′) for all s, s′ ∈ S, m ∈M, k ∈ K.

This yields (SS,M,K) = 0, in particular, (D,SS,K) = −(SS,D,K) = 0. We have

SS ⊂ K and (SS)K = S(SK) ⊂ K. Hence we conclude SS ⊂M and SS ⊂ S. 2

A different proof, using an induction argument, is given in [244].

The following generalized form of Artin’s Theorem is proved in [92]:

Let A be an alternative algebra and a, b, c ∈ A with (a, b, c) = 0. Then the subal-

gebra of A generated by {a, b, c} is associative.
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We see from Artin’s theorem that, in particular, in an alternative algebra every

subalgebra generated by one element is associative. Algebras with this property are

called power-associative.

We are now going to investigate the effect of identities of an algebra on the mul-

tiplication algebra. For this we consider left and right multiplications in alternative

algebras:

3.5 Multiplications in alternative algebras.

For any elements a, b in an alternative algebra A we have:

left alternative La2 = LaLa,

right alternative Ra2 = RaRa,

flexible RaLa = LaRa,

left Moufang identity Laba = LaLbLa,

right Moufang identity Raba = RaRbRa,

middle Moufang identities RaLaLb = LabRa,

RaLaRb = RbaLa.
Recalling that the associator is alternating we derive from this

Lab = LaLb − [Lb, Ra], Rab = RbRa − [La, Rb],

LaLb + LbLa = Lab+ba, RaRb +RbRa = Rab+ba.

These identities show, for example, that Rab and Lab belong to the subalgebra

generated by La, Lb, Ra and Rb and we conclude:

3.6 Generating sets in alternative algebras.

Let A be an alternative R-algebra.

(1) If A is generated by {aλ}Λ as an R-algebra, then M(A) is generated as an R-

algebra by

{Laλ , Raλ , idA | λ ∈ Λ}.

(2) If A is finitely generated as an R-algebra, then M(A) is also finitely generated

as an R-algebra.

We have seen in 2.5 that for an associative module finite R-algebra the multipli-

cation algebra is also module finite. This remains true for alternative algebras:

3.7 Module finite alternative algebras.

Let A be an alternative R-algebra which is finitely generated as an R-module. Then

M(A) is also finitely generated as an R-module.
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Proof. Assume a1, . . . , an to generate A as an R-module. We want to show that

M(A) is generated as an R-module by monomials of the form

Lε1a1
Lε2a2
· · ·LεnanR

δ1
a1
Rδ2
a2
· · ·Rδn

an , εi, δi ∈ {0, 1},

where, by convention, L0
a = idA = R0

a for any a ∈ A.

First observe that every a ∈ A can be written as a finite sum a =
∑
riai with

ri ∈ R and hence La =
∑
riLai . Therefore it suffices to show that every product

of Laj ’s and Rai ’s can be represented in the given form. This can be achieved by

substituting according to 3.5 (with appropriate sk, tl ∈ R):

(i) RaiLaj = LajRai + Laiaj − LaiLaj ;
(ii) LaiLaj = −LajLai + Laiaj+ajai = −LajLai +

∑
skLak if i > j;

(iii) Laki = Lkai =
∑
tlLal (by Artin’s Theorem).

Similar operations can be applied to the Rai ’s. 2

The structure theory of alternative algebras is closely related to associative alge-

bras partly due to the following observation (by Kleinfeld [180], see [41, Chap. 7]):

3.8 Simple alternative algebras.

Let A be a simple alternative algebra which is not associative. Then the centre of

A is a field and A is a Cayley-Dickson algebra (of dimension 8) over its centre.

Interest in alternative rings arose first in axiomatic geometry. For an incidence

plane in which Desargues’ theorem holds the coordinate ring is an associative division

ring. A weaker form of Desargues’ theorem, the Satz vom vollständigen Vierseit, is

equivalent to the coordinate ring being an alternative division ring (see [206]).

The motivation for the investigation of the next type of algebras came from quan-

tum mechanics. In 1932 the physicist Pascual Jordan draw attention to this class of

algebras. Later on they turned out to be also useful in analysis. For example, in [177]

the reader may find an account of their role for the description of bounded symmetric

domains.

3.9 Jordan algebras. Definition.

An algebra A over a ring R with 2 invertible in R is called a (linear) Jordan algebra

if it is commutative and, for all a, b,∈ A,

a(a2b) = a2(ab) (Jordan identiy).

In a commutative algebra A the left multiplication algebra L(A) coincides with

the multiplication algebra M(A) and the Jordan identity can also be written in the

following forms

(a, b, a2) = 0, LaLa2 = La2La, [La, La2 ] = 0.
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The condition 1
2
∈ R is not necessary for the definition of a Jordan algebra.

However, especially for producing new identities by linearization it is quite often

useful to divide by 2. Hence it makes sense to include the condition 1
2
∈ R already in

the definition. Over rings with 2 not invertible it is preferable to consider quadratic

Jordan algebras instead of linear Jordan algebras (e.g., Jacobson [20]). Important

examples of Jordan algebras can be derived from associative algebras:

3.10 Special Jordan algebras.

Let (B,+, ·) be an associative algebra over the ring R with 2 invertible. Then the

new product for a, b ∈ B,

a× b =
1

2
(a · b+ b · a),

turns (B,+,×) into a Jordan algebra.

Algebras isomorphic to a subalgebra of an algebra of type (B,+,×) are called spe-

cial Jordan algebras.

Proof. Obviously, the new multiplication is commutative. Denoting by La the left

multiplication b 7→ a× b, it is easy to check that

LaLa2(b) = La2La(b) for all a, b ∈ B.

2

Not every Jordan algebra is a special Jordan algebra.

Consider a Jordan algebra A. In the Jordan identity [La, La2 ] = 0 the element a

occurs with degree 3. Let us try to gain linear identities from this.

Replacing a by a+ rb with r ∈ R, b ∈ A, we obtain

0 = [La+rb, L(a+rb)2 ]

= r(2[La, Lab] + [Lb, La2 ]) + r2(2[Lb, Lab] + [La, Lb2 ]).

Putting r = 1 and r = 1
2

and combining the resulting relations we derive

[Lb, La2 ] + 2[La, Lab] = 0.

Again linearizing by replacing a by a+ c we obtain

[La, Lbc] + [Lb, Lac] + [Lc, Lab] = 0.

Applying this to an x ∈ A we have

a[(bc)x] + b[(ac)x] + c[(ab)x] = (bc)(ax) + (ac)(bx) + (ab)(cx).

Interpreting this as a transformation on a for fixed b, c, x ∈ A and renaming our

elements we conclude
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3.11 Identity. In any Jordan algebra we have the identity

L(ab)c = LabLc + LbcLa + LcaLb − LaLcLb − LbLcLa.

This shows that L(ab)c belongs to the subalgebra of M(A) generated by left mul-

tiplications with one, or products of two, of the elements {a, b, c}. Hence, similar to

the alternative case considered in 3.6, we have the following relationship between A

and M(A):

3.12 Generating sets in Jordan algebras.

Let A be a Jordan algebra over the ring R in which 2 is invertible.

(1) If A is generated by {aλ}Λ as an R-algebra, then M(A) is generated as an

R-algebra by

{Laλaµ , Laλ , idA | λ, µ ∈ Λ}.

(2) If A is finitely generated as R-algebra, then M(A) is also finitely generated as

an R-algebra.

Proof. Every a ∈ A is a linear combination of finite product of aλ’s. By 3.11, La
is a linear combination of products of Laλaµ ’s and Laν ’s and hence belongs to the

subalgebra generated by these elements. 2

3.13 Module finite Jordan algebras.

Let A be a Jordan algebra over the ring R with 1
2
∈ R. If A is finitely generated

as an R-module, then M(A) is also finitely generated as an R-module.

Proof. Let the R-module A be generated by a1, . . . , an. Every element in M(A) is a

linear combination of products of Lai ’s. We show that the finitely many products of

the form

Lε1a1
Lε2a2
· · ·LεnanL

δ1
aσ(1)

Lδ2aσ(2)
· · ·Lδnaσ(n)

, εi ∈ {0, 2}, δi ∈ {0, 1}, σ ∈ Sn,

where Sn denotes the group of permutations of n elements, generate the R-module

M(A).

We see from 3.11 that a product of the form LaiLajLak can be replaced by

LakLajLai plus expressions of lower degree in the Lai ’s. Hence, if Lai occurs several

times in a product, we finally arrive at partial products of the form L2
ai

, LaiLajLai or

L3
ai

.

Again referring to 3.11, the last two expressions can be replaced by formulas of

lower degree and the L2
ai

can be collected at the left side with increasing indices. 2
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Remark. The linear factors could be arranged such that the next but one factors

have a higher index. In fact, by careful analysis one obtains that M(A) can be

generated as an R-module by ≤
(

2n+1
n

)
elements (compare Theorem 13 in Chapter II

of [19]).

The interest in the next class of algebras - named after the mathematician Sophus

Lie - stems from their relationship to topological groups (Lie groups). For a detailled

study of this interplay see, for example, [34].

3.14 Lie algebras. Definiton.

An algebra A over a ring R is called a Lie algebra if for all a, b, c ∈ A,

a2 = 0 and a(bc) + b(ca) + c(ab) = 0 (Jacobi identity).

These properties imply in particular

0 = (a+ b)2 = ab+ ba, i.e., ab = −ba (anti-commutativity).

Hence the multiplication algebra M(A) coincides with the left multiplication algebra

L(A) and the Jacobi identity can be written as

Lab = LaLb − LbLa, or [La, Lb] = Lab.

From this the following is obvious:

3.15 Generating sets in Lie algebras.

Let A be a Lie algebra which is generated by {aλ}Λ as an R-algebra. Then M(A)

is generated as an R-algebra by

{Laλ , idA | λ ∈ Λ}.

By our next observations Lie algebras are intimately related to associative algebras.

3.16 Special Lie algebras.

Let (B,+, · ) be an associative algebra over the ring R. Then the new product for

a, b ∈ B,

[a, b] = a · b− b · a,

turns (B,+, [ , ]) into a Lie algebra.

Algebras isomorphic to a subalgebra of an algebra of type (B,+, [ , ]) are called

special Lie algebras.

Proof. It is straightforward to verify the identities required. 2
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It follows from the Poincare-Birkhoff-Witt Theorem that every Lie algebra A over

R which is free as an R-module is in fact a special Lie algebra (e.g., [4]).

Let M be any finitely generated free R-module, i.e., M ' Rn, for n ∈ IN . Then

the Lie algebra (EndR(M),+, [ , ]) is denoted by gl(M,R) or gl(n,R) (the general

linear group). Subalgebras of gl(n,R) are called linear Lie algebras. The matrices

with trace zero form such a subalgebra (denoted by sl(n,R)). Other subalgebras of

gl(n,R) are (upper) triangular matrices (with trace zero, or diagonal zero) and skew

symmetric matrices.

For any non-associative R-algebras (A,+, · ), the commutator defines a new R-

algebra (A,+, [ , ]) which is usually denoted by A(−). Obviously this is always an

anti-commutative algebra but other identities depend on properties of (A,+, · ).
In particular, the algebra A is called Lie admissible if A(−) is a Lie algebra.

As noticed in 3.16, any associative algebra is Lie admissible. An algebra A is called

left symmetric ([155]) if

(a, b, c) = (b, a, c) for all a, b, c ∈ A.

Left symmetric algebras are Lie admissible (see Exercise (7)). See [61] for a connection

between left symmetric products and flat structures on a Lie algebra.

Notice that alternative algebras need not be Lie admissible. For an alternative

algebra A, the algebra A(−) satisfies identities which define a new class of algebras

containing all Lie algebras:

3.17 Malcev algebras. Definiton.

An R-algebra A is called a Malcev algebra if for all a, b, c, d ∈ A,

a2 = 0 and (ab)(ac) = ((ab)c)a+ ((bc)a)a+ ((ca)a)b.

Notice that the characterizing identity is quadratic in a. If 2 is invertible in R,

Malcec algebras can be characterized by a multilinear identity (in 4 variables, see

Exercise (6)).

Every Lie algebra is a Malcev algebra. The structure of Malcev algebras is closely

related to Lie algebras based on the following fact (from [133]):

3.18 Simple Malcev algebras.

Let A be a central simple Malcev R-algebra which is not a Lie algebra, and assume

R is a field of characteristic 6= 2, 3. Then A is of the form D(−)/R, where D is a

Cayley-Dickson algebra over R.

An R-algebra A is called Malcev admissible if the attached algebra A(−) is a Mal-

cev algebra. As mentioned above, every alternative algebra is Malcev admissible (see

[29, Proposition 1.4]). For a detailled study of these algebras we refer to [29].
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3.19 Exercises.

(1) Let A be an alternative algebra. Prove that the product of any two ideals is

again an ideal in A.

(2) For an alternative algebra A, consider the map (see 3.3)

f : A4 → A, (a, b, c, d) 7→ (ab, c, d)− (b, c, d)a− b(a, c, d).

Prove:

(i) 3f(a, b, c, d) = [a, (b, c, d)]− [b, (c, d, a)] + [c, (d, a, b)]− [d, (a, b, c)];

(ii) f(a, b, c, d) = ([a, b], c, d) + ([c, d], a, b).

(3) Let A be an R-module over a ring R, with 2 invertible in R.

Assume β : A × A → R to be a symmetric bilinear form and e ∈ A satisfying

β(e, e) = 1. Prove that the product of a, b ∈ A,

a · b := β(e, a)b+ β(e, b)a− β(a, b)e,

turns A into a Jordan algebra with unit e.

(4) Consider an eight dimensional algebra A with basis 1, a1, a2, . . . , a7, over a field

K with char K 6= 2, given by the multiplication table ([41])

a1 a2 a3 a4 a5 a6 a7

a1 α a3 αa2 a5 αa4 −a7 −αa6

a2 −a3 β −βa1 a6 a7 βa4 βa5

a3 −αa2 βa1 −αβ a7 αa6 −βa5 −αβa4

a4 −a5 −a6 −a7 γ −γa1 −γa2 −γa3

a5 −αa4 −a7 −αa6 γa1 −αγ γa3 αγa2

a6 a7 −βa4 βa5 γa2 −γa3 −βγ −βγa1

a7 αa6 −βa5 αβa4 γa3 −αγa2 βγa1 αβγ

with non-zero α, β, γ ∈ K. Show that A is an alternative central simple algebra which

is not associative (Cayley-Dickson algebra).

(5) Let A be any R-algebra. An R-linear map D : A→ A is called a derivation if

D(ab) = D(a)b+ aD(b), for any a, b ∈ A.

Show that the set of derivations of A is a subalgebra of the Lie algebra EndR(A)(−).
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(6) Let A be an anti-commutative R-algebra and assume 2 to be invertible in R.

Put

J(a, b, c) := (ab)c+ (bc)a+ (ca)b (Jacobian).

Prove that the following are equivalent ([238]):

(a) A is a Malcev algebra;

(b) J(a, b, ac) = J(a, b, c)a, for all a, b, c ∈ A;

(c) J(a, ab, c) = J(a, b, c)a, for all a, b, c ∈ A;

(d) (ab)(cd) = a((db)c) + d((bc)a) + b((ca)d) + c((ad)b), for all a, b, c, d ∈ A.

(7) Show that an algebra A is Lie admissible if and only if for all a, b, c ∈ A,

(a, b, c) + (b, c, a) + (c, a, b)− (a, c, b)− (c, b, a)− (b, a, c) = 0 .

References: Bakhturin [3], Baues [61], Bruck-Kleinfeld [92], Filippov [133, 134],

Grabmeier-Wisbauer [147], Helmstetter [155], Jacobson [19, 20], Kaup [177], Klein-

feld [180], Moufang [207], Myung [29], Schafer [37], Smiley [244], Wisbauer [267],

Zhevlakov-Slinko-Shestakov-Shirshov [41].



Chapter 2

Modules over associative algebras

In this chapter A will always denote an associative R-algebra with unit.

4 Generalities

1.Modules over algebras. 2.Bimodules. 3.The category σ[M ]. 4.Properties of σ[M ].

Any module over an R-algebra may be considered as R-module. Related to this

there are some canonical operations we want to describe.

4.1 Modules over algebras.

A unital left module over A is an abelian group (M,+) with a ring homomorphism

ϕ : A → End(ZZM). As usual we write ϕ(a)m = am for a ∈ A, m ∈ M (e.g. [40,

6.1]). Together with the map R→ A, r 7→ r1, we have a ring homomorphism

R→ A→ End(ZZM),

which makes M a (left) R-module. We write morphisms of left modules on the right,

i.e., we consider M as right module over End(AM).

The multiplication with elements of R, Lr : M → M, m 7→ rm obviously yields

an A-endomorphism and we obtain a ring homomorphism

α : R→ End(AM), r 7→ Lr,

whose image is in fact in the centre of End(AM) and hence turns End(AM) into an

R-algebra. α makes M a right R-module in a canonical way and rm = mr for all

r ∈ R, m ∈M .

Obviously α maps idempotents of R to central idempotents of End(AM). We say

that α is epic on central idempotents if every central idempotent in End(AM) is in

the image of α. For example, this is the case if α is an isomorphism between R and

the centre of End(AM).

From the above it is obvious that a unital R-module M is a module over the

R-algebra A if and only if there exists an R-algebra morphism

ϕ : A→ End(RM).

25
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In this case the R-module structure of M defined by R→ A, r 7→ r1, coincides with

the given R-module structure of M .

4.2 Bimodules.

Assume A and B are unital associative R-algebras. An abelian group M is called

an (A,B)-bimodule if M is a left A-module, a right B-module and

a(mb) = (am)b and rm = mr, for all a ∈ A, b ∈ B, m ∈M , r ∈ R.

In this case right multiplication of M with elements of B yields A-endomorphisms of

M , and left multiplication of M with elements of A yields B-endomorphisms of M .

For a left A-module M , denote B = End(AM). Then M is a right B-module,

in fact M is an (A,B)-bimodule or - equivalently - a left module over the R-algebra

A⊗R Bo. End(A⊗BoM) is equal to the centre of B, since

End(A⊗BoM) = {f ∈ End(RM) | (a⊗ b)(m)f = (amb)f for m ∈M,a ∈ A, b ∈ B}
= {f ∈ B | (m)bf = (mb)f = (m)fb for m ∈M, b ∈ B} = Z(B) .

The A⊗RBo-submodules are the fully invariant submodules of AM , and the direct

A⊗RBo-summands U of M are of the form U = Me, for a central idempotent e ∈ B.

The category of all unital left A-modules will be denoted by A-Mod. Let M and

N be A-modules. N is called M-generated if it is a homomorphic image of a direct

sum of copies of M .

4.3 The category σ[M ].

For any A-module M , we denote by σ[M ] the full subcategory of A-Mod whose

objects are submodules of M -generated modules.

σ[M ] is the smallest subcategory of A-Mod which contains M and is closed under

direct sums, factor modules and submodules.

So internal properties of the module M are closely related to properties of the

category σ[M ]. This is the starting point for homological characterizations of modules.

In particular, there are enough injectives in σ[M ] and hence localizaton techniques

known from module (or Grothendieck) categories apply.

For the convenience of the reader we shall collect old and new results about the

category σ[M ] in the next sections. Here we recall some basic facts:
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4.4 Properties of σ[M ]. Let M be an A-module.

(1) Morphisms in σ[M ] have kernels and cokernels.

(2) For any family {Nλ}Λ in σ[M ], the coproduct (direct sum)
⊕

ΛNλ in A-Mod

belongs to σ[M ] and is the coproduct in σ[M ].

(3) The finitely generated (cyclic) submodules of M (IN) form a set of generators in

σ[M ]. The direct sum of these modules is a generator in σ[M ].

(4) Objects in σ[M ] are finitely (co-) generated in σ[M ] if and only if they are

finitely (co-) generated in A-Mod.

(5) For a family {Nλ}Λ in σ[M ], let
∏

ΛNλ denote the product in A-Mod (cartesian

product). Then
M∏
Λ

Nλ := Tr(σ[M ],
∏
Λ

Nλ)

is the product of {Nλ}Λ in σ[M ].

(6) Every simple module in σ[M ] is a subfactor of M .

(7) If M is a faithful A-module and finitely generated as EndA(M)-module, then

σ[M ] = A-Mod.

Proof. See 15.1, 15.4 and the proof of 18.5 in [40]. 2
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5 Projectivity and generating

1.Projective modules. 2.Self-generators. 3.M as a generator in σ[M ]. 4.Density Theo-

rem. 5.Generators in A-Mod. 6.Examples. 7.Intrinsically projective modules. 8.Prop-

erties of intrinsically projective modules. 9.Ideal modules. 10.Self-progenerator.

11.Properties of the trace. 12.The socle of a module. 13.Exercises.

5.1 Projective modules.

Let M and P be A-modules. P is said to be M-projective if every diagram in

A-Mod with exact row
P

↓
M

g−→ N −→ 0

can be extended commutatively by some morphism P →M .

So, P is M -projective if and only if HomA(P,−) is exact with respect to all exact

sequences 0→ K →M → N → 0 in A-Mod.

If M is M -projective, then it is also called self- (or quasi-) projective.

Assume M is self-projective and K ⊂ M is a fully invariant submodule, i.e., for

any f ∈ End(AM), Kf ⊂ K. Then M/K is also self-projective.

A finitely generated self-projective module M is also N -projective for every N ∈
σ[M ], i.e., it is projective in σ[M ] (see [40, Section 18]).

A submodule K of M is superfluous or small in M , written K �M , if, for every

submodule L ⊂M , K + L = M implies L = M .

Let N ∈ σ[M ]. By a projective cover of N in σ[M ] we mean an epimorphism

π : P → N with P projective in σ[M ] and Keπ � P .

Definitions. M is called a self-generator if it generates all its submodules. A

module N ∈ σ[M ] is a generator in σ[M ] if N generates all modules in σ[M ].

5.2 Self-generators.

For an A-module M with B = End(AM), the following are equivalent:

(a) M is a self-generator;

(b) for every A-submodule U ⊂M , U = MHomA(M,U);

(c) the map U 7→ HomA(M,U) from submodules of M to left ideals of B is injective.

Assume M is a self-generator. Then:

(1) For any m ∈M , β ∈ End(MB), there exists a ∈ A with β(m) = am.

Hence A-submodules of M are precisely its End(MB)-submodules.
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(2) If K ⊂M is a fully invariant submodule, then M/K is also a self-generator.

Proof. The equivalences are easily derived from the fact that a submodule U ⊂ M

is M -generated if and only if U = MHomA(M,U).

(1) follows from the proof of the Density Theorem (e.g., [40, 15.7]).

(2) A submodule in M/K is of the form L/K, for some submodule L with K ⊂ L ⊂
M . By assumption, there exists an epimorphism M (Λ) → L. Since every component

of this map is an endomorphism of M , we see that the submodule K(Λ) ⊂ M (Λ) is

contained in the kernel of the epimorphism

M (Λ) → L→ L/K.

Hence L/K is generated by M/K. 2

The following properties of generators are shown in [40, 15.5 and 15.9].

5.3 M as a generator in σ[M ].

For an A-module M with B = End(AM), the following are equivalent:

(a) M is a generator in σ[M ];

(b) the functor HomA(M,−) : σ[M ]→ B-Mod is faithful;

(c) M generates every (cyclic) submodule of M (IN);

(d) M (IN) is a self-generator;

(e) for every (cyclic) submodule U ⊂M (IN), U = MHomA(M,U).

If M is a generator in σ[M ], then M is a flat End(AM)-module.

There is another important property of generators and cogenerators (see 6.3) in

σ[M ] shown in [40, 15.7 and 15.8]:

5.4 Density Theorem.

Let M be an A-module with B = End(AM) having one of the following properties:

(i) M is a generator in σ[M ], or

(ii) for any cyclic submodule U ⊂ Mn, n ∈ IN , the factor module Mn/U is

cogenerated by M. Then:

(1) For any finitely many m1, . . . ,mn in M and α ∈ End(MB), there exists a ∈ A
with α(mi) = ami for all i = 1, . . . , n.

In this case A/AnA(M) is said to be a dense subring of End(MB).

(2) Every A-submodule of M (Λ) is an End(MB)-submodule of M (Λ).

(3) If M is finitely generated over End(AM), then A/AnA(M) ' End(MB).
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Generators in the full module category have additional chacterizations:

5.5 Generators in A-Mod.

Let M be an A-module and B = End(AM).

(1) M is a generator in A-Mod if and only if

(i) MB is finitely generated and B-projective;

(ii) A ' End(MB).

(2) Assume M is a generator in A-Mod and B is commutative. Then M is a finitely

generated and projective A-module.

Proof. (1) See, for example, [40, 18.8].

(2) By (1), MB is finitely generated, projective and faithful. Since B is commuta-

tive this implies that MB is a generator in Mod-B (see [40, 18.11]). Now applying (1)

to the module MB, we conclude that M is finitely generated and projective as module

over A ' End(MB). 2

Studying the relationship between submodules of M and left ideals of the endo-

morphism ring a weak form of projectivity (introduced in Brodskii [90]) turns out to

be of interest:

An A-module M is said to be intrinsically projective if every diagram with exact

row
M

↓
Mn −→ N −→ 0 ,

where n ∈ IN and N ⊂M , can be extended commutatively by some M →Mn.

M is called semi-projective if the above condition (only) holds for n = 1. As easily

seen, M is semi-projective if and only if for every cyclic left ideal I ⊂ End(AM),

I = HomA(M,MI) (see [40], before 31.10).

Of course every self-projective module is intrinsically projective. However there

are also other types of examples:

5.6 Examples. Let M be an A-module with B = End(AM).

(1) If kernels of endomorphisms of M are M -generated and B is a left PP ring, then

M is semi-projective.

(2) If MB is flat and B is left semihereditary, then M is intrinsically projective.

(3) If B is a regular ring, then M is intrinsically projective.
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Proof. (1) For any f ∈ B, Bf is projective, and by [40, 39.10], Tr(M,Ke f) is a

direct summand in M . By our condition Tr(M,Ke f) = Ke f .

(2) Since MB is flat, the kernel of any g : Mk →Mk, k ∈ IN , is M -generated (see

[40, 15.9]). Since B is left semihereditary, End(AM
k) is left PP (semihereditary) by

[40, 39.13] and we see from (1) that Ke g is a direct summand in Mk.

From this we conclude that the exact sequence in the diagram for the definition

of intrinsically projective is in fact splitting. Hence M is intrinsically projective.

(3) This is a special case of (2). 2

Now we turn to general properties of the modules just introduced.

5.7 Intrinsically projective modules.

For an A-module M with B = End(AM), the following are equivalent:

(a) M is intrinsically projective;

(b) I = HomA(M,MI) for every finitely generated left ideal I ⊂ B.

If AM is finitely generated, then (a), (b) are equivalent to:

(c) I = HomA(M,MI) for every left ideal I ⊂ B;

(d) the map I 7→MI from left ideals in B to submodules of M is injective.

Proof. (a)⇒ (b) Consider a left ideal I ⊂ B generated by γ1, . . . , γk ∈ B. From the

exact sequence

Mk

∑
γi−→ MI −→ 0

the functor HomA(M,−) yields the sequence

HomA(M,Mk)

∑
Hom(M,γi)−→ HomA(M,MI) −→ 0,

which is also exact by (a). Since Bk ' HomA(M,Mk), this means that γ1, . . . , γk
generate HomA(M,MI) as B-module. Hence I = HomA(M,MI).

(b)⇒ (a) Consider an exact sequence of A-modules

Mk f−→ U −→ 0 with k ∈ IN, U ⊂M.

With the canonical injections εi : M → Mk, we form the left ideal I =
∑
Bεif ⊂ B.

Then U = MI and the lower row in the following diagram is exact

HomA(M,Mk)
Hom(M,f)−→ HomA(M,U)

↓' ↓'
Bk

∑
εif−→ I −→ 0.
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From this we see that HomA(M, f) is epic, i.e., M is intrinsically projective.

(a) ⇒ (c) Assume M is intrinsically projective and finitely generated. Then it is

easy to see that HomA(M,−) is exact on all exact sequences

M (Λ) −→ U −→ 0 , where U ⊂M, Λ any set.

Hence the assertion is shown with the same proof as (a)⇒ (b).

(c)⇒ (a) and (c)⇒ (d) are obvious.

(d)⇒ (c) This is an immediate consequence of the equalityMI = MHomA(M,MI),

for any left ideal I ⊂ B. 2

5.8 Properties of intrinsically projective modules.

Let M be an intrinsically projective A-module, which is finitely generated by ele-

ments m1, . . . ,mk ∈M , and denote B = End(AM). Then the map

B →Mk, s 7→ (m1, . . . ,mk)s,

is a monomorphism of right B-modules.

(1) For every left ideal I ⊂ B, (m1, . . . ,mk)B ∩MkI = (m1, . . . ,mk)I.

(2) For every proper left ideal I ⊂ B, MI 6= M .

(3) If MB is flat, then (m1, . . . ,mk)B is a pure submodule of Mk
B.

(4) If MB is projective, then B is isomorphic to a direct summand of Mk
B and hence

MB is a generator in Mod-B.

Proof. (1) Certainly the right hand side is contained in the left hand side.

Assume (m1, . . . ,mk)f ∈ MkI = (MI)k for f ∈ B. Then Mf =
∑
iAmif ⊂ MI

and hence f ∈ Hom(M,MI) = I (since M is intrinsically projective).

(2) This is an obvious consequence of (1)

(3) If MB is flat, then Mk
B is also flat and by (1), (m1, . . . ,mk)B ' B is a pure

submodule of Mk
B (e.g., [40, 36.6]).

(4) SinceMk
B is projective, the factor moduleMk

B/(m1, . . . ,mk)B is pure-projective

(see [40, 34.1]) and hence projective by (3). So B is isomorphic to a direct summand

of Mk
B. 2

Definitions. Let A,B denote associative unital R-algebras. An (A,B)-bimodule

M is said to be a B-ideal module if the map I 7→MI defines a bijection between the

left ideals of B and the A-submodules of M (with inverse K 7→ {b ∈ B |Mb ⊂ K}).
An A-module M is called ideal module if - considered as (A,End(AM))-module -

M is an End(AM)-ideal module, i.e., if the map I 7→MI is a bijection between the left

ideals of End(AM) and the A-submodules of M (with inverse K 7→ HomA(M,K)).

For these modules we have interesting characterizations (compare [276, Proposition

2.6], [139, Lemma 2.4]):
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5.9 Ideal modules.

Let A,B denote associative unital R-algebras and M an (A,B)-bimodule, which is

finitely generated as A-module.

(1) The following are equivalent:

(a) M is a B-ideal module;

(b) every submodule of AM is of the form MI for some left ideal I ⊂ B, and

MB is faithfully flat.

For B = End(AM), (a)-(b) are equivalent to:

(c) M is intrinsically projective and a self-generator.

(2) If M is a B-ideal module then for any multiplicative subset S ⊂ R, the

(AS−1, BS−1)-bimodule MS−1 is a BS−1-ideal module (see 16.5).

(3) Assume B = End(AM) and M is an ideal module. Then:

(i) B is isomorphic to a pure submodule of Mk
B, k ∈ IN .

(ii) If B is right perfect, then MB is a generator in Mod-B and

AM is a projective generator in σ[M ].

Proof. (1) (a)⇒ (b) We show that MB is faithfully flat. Without restriction, for any

f ∈ B we may assume f ∈ End(AM) and we have the exact commutative diagram

with canonical map µf

M ⊗B HomA(M,Ke f) → M ⊗B B → M ⊗B Bf → 0

↓ ↓' ↓µf
0 → Kef → M → Mf → 0 .

Since Kef is M -generated the first vertical map is epic and hence µf is an isomor-

phism.

Using the relation M(I ∩ J) = MI ∩MJ for left ideals I, J of B, it is straight-

forward to show by induction (on the number of generators of I as B-module) that

µI : M⊗B I →MI is an isomorphism for every finitely generated left ideal I ⊂ B and

therefore MB is flat. Since MI 6= M for every proper left ideal I ⊂ B, the B-module

MB is faithfully flat.

(b) ⇒ (a) We prove that I 7→ MI is injective. Assume MI = MJ for left ideals

I, J ⊂ B. Without restriction we may assume J ⊂ I. Then M⊗B I/J 'MI/MJ = 0

and hence I = J since MB is faithfully flat.

(a)⇔ (c) follows immediately from 5.2 and 5.7.

(2) Assume M is a B-ideal module. Every AS−1-submodule U ⊂ MS−1 is of the

form U ′S−1 for some submodule U ′ ⊂ M (see 16.5). Since U ′ = MI for some left

ideal I ⊂ B, we conclude

U = U ′S−1 = MIS−1 = MS−1IS−1.
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Since MB is a faithfully flat B-module, MS−1 is a faithfully flat BS−1-module.

Now the assertion follows from (1).

(3) (i) By (1), MB is a flat module and the assertion follows from 5.8(3).

(ii) Since B is right perfect, MB is projective (by (1)), and MB is a generator

in Mod-B by 5.8(4). Hence M is (finitely generated and) projective over its biendo-

morphism ring End(MB) (see 5.5). Since the A-module structure of M is identical to

its End(MB)-module structure (see 5.2) we conclude that M is self-projective as an

A-module and, by [40, 18.5], M is a projective generator in σ[M ]. 2

Definitions. A finitely generated, projective generator N in σ[M ] is called a

progenerator in σ[M ]. If M is a progenerator in σ[M ] we call it a self-progenerator.

Of course, every self-progenerator is an ideal module.

The importance of this notion is clear by the following characterizations:

5.10 Self-progenerator.

For a finitely generated A-module M with B = End(AM), the following are equiv-

alent:

(a) M is a self-progenerator;

(b) M is a generator in σ[M ] and MB is faithfully flat;

(c) (i) for every left ideal I ⊂ B, MI 6= M and

(ii) for every finitely M-generated A-module U , the canonical map

M ⊗B HomA(M,U)→ U is injective (bijective);

(d) there are functorial isomorphisms

(i) idB−Mod ' HomA(M,M ⊗B −) and

(ii) M ⊗B HomA(M,−) ' idσ[M ];

(e) HomA(M,−) : σ[M ]→ B-Mod is an equivalence of categories.

Proof. (a)⇔ (b)⇔ (e) follow from [40, 18.5 and 46.2].

For any A-submodule K ⊂ Mn, we put U = Mn/K and form the commutative

diagram with exact lower row,

M ⊗B HomA(M,K) → M ⊗B HomA(M,Mn) → M ⊗B HomA(M,U) → 0

↓ ϕ1 ↓' ↓ ϕ2

0→ K → Mn → U → 0.

(a)⇒ (c) Since M is self-projective, the upper row is also exact, and by the Kernel

Cokernel Lemma, ϕ2 is injective if and only if ϕ1 is surjective.

MB being flat, property (i) is equivalent to MB being faithfully flat. We know this

from (a)⇔ (b).
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(c)⇒ (b) Since ϕ2 is an isomorphism, the upper row is exact. Again by the Kernel

Cokernel Lemma, ϕ1 is surjective and M is a generator in σ[M ].

(d)⇔ (e) This characterizes HomB(M,−) to be an equivalence (e.g., [40, Section

46]). 2

Let U be a class of A-modules and N an A-module. N is said to be U-generated,

if there exists an epimorphism
⊕

Λ Uλ → N with Uλ ∈ U .

The sum of all U -generated submodules of N is called the trace of U in N,

Tr (U , N) =
∑
{Imh | h ∈ Hom(U,N), U ∈ U}.

If U = {U} we simply write Tr(U,L) = Tr({U}, L).

From [40, 13.5] we obtain:

5.11 Properties of the trace.

Let U and N be A-modules.

(1) Tr(U,N) is the largest submodule of N generated by U .

(2) N = Tr(U,N) if and only if N is U-generated.

(3) Tr(U,N) is an End(AN)-submodule of N.

As a special case we consider the trace of all simple modules in M .

5.12 The socle of a module.

The socle of an A-module M is defined as the sum of all simple (minimal) sub-

modules of M and we have the characterization (e.g., [40, 21.1 and 21.2])

Soc(M) =
∑{K ⊂M |K is a simple submodule in M}

=
⋂ {L ⊂M | L is an essential submodule in M}.

and the following properties:

(1) For any morphism f : M → N , Soc(M)f ⊂ Soc(N).

(2) For any submodule K ⊂M , Soc(K) = K ∩ Soc(M).

(3) Soc(M) �M if and only if Soc(K) 6= 0 for every non-zero submodule K ⊂M .

(4) Soc(M) is also an End(AM)-submodule of M (fully invariant).

(5) Soc(
⊕

ΛMλ) =
⊕

ΛSoc(Mλ).
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5.13 Exercises.

(1) Let M be a finitely generated A-module which is a generator in σ[M ]. Assume

that End(AM) is a left semihereditary ring. Prove that M is self-projective (and hence

a progenerator in σ[M ]).

(2) Let M,N be A-modules and B = End(AM).

N is called restricted M -projective if the functor HomA(N,−) is exact on exact se-

quences of the form

Mn → L→ 0, where L ⊂Mk, n, k ∈ IN .

Prove:

(i) If MB is FP-injective and N is restricted M -projective, then HomA(N,M)B
is FP-injecticve.

(ii) If HomA(N,M)B is FP-injecticve, then N is restricted M -projective.

(iii) The following are equivalent:

(a) Every A-module is restricted M -projective;

(b) MB is flat and B is left semihereditary.

References: Brodskii [90], Fuller [139], Wisbauer [40, 275].
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6 Injectivity and cogenerating

1.Injective modules. 2.Socles of weakly injective modules. 3.Self-cogenerators. 4.Weak

cogenerators. 5.Quasi-Frobenius modules. 6.M as a cogenerator in σ[M ]. 7.Cogenera-

tor with commutative endomorphism ring. 8.Self-projective cogenerators. 9.Semisim-

ple modules. 10.Noetherian QF modules. 11.Examples. 12.Intrinsically injective mod-

ules. 13.Finitely cogenerated modules. 14.Radical of modules. 15.Quasi-regularity.

16.The Jacobson radical. 17.Relation between radicals. 18.Co-semisimple modules.

19.Exercises.

6.1 Injective modules.

Let U and M be A-modules. U is said to be M-injective if every diagram in A-Mod

with exact row
0 −→ K

f−→ M

↓
U

can be extended commutatively by a morphism M → U .

Clearly U is M -injective if and only if HomA(−, U) is exact with respect to all

exact sequences 0→ K →M → N → 0.

If U is M -injective, then it is also N -injective for every N ∈ σ[M ] (see [40, Section

16]). In case U belongs to σ[M ], it is M -injective if and only if every exact sequence

0 → U → L → N → 0 in σ[M ] splits, i.e., U is injective in σ[M ]. As a consequence

we observe that every injective module in σ[M ] is M -generated.

M is said to be self-injective (or quasi-injective) if it is M -injective.

A submodule K ⊂ M is called essential or large in M if, for every non-zero

submodule L ⊂M , K ∩ L 6= 0. Then M is an essential extension of K and we write

K �M .

A monomorphism f : L→M is called essential if Imf �M .

Consider N ∈ σ[M ]. An injective module E in σ[M ] together with an essential

monomorphism ε : N → E is called an injective hull of N in σ[M ] or an M-injective

hull of N and is usually denoted by N̂ . Every module N in σ[M ] has an injective hull

N̂ in σ[M ]. Injective hulls are unique up to isomorphism.

An A-module U is called weakly M-injective if every exact diagram in A-Mod,

0 −→ K −→ M (IN)

↓
U ,

with K finitely generated, can be extended commutatively by a morphism M (IN) → U .
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Any direct sum of weaklyM -injective modules is again weaklyM -injective. Weakly

M -injective modules in σ[M ] are M -generated (see [40, 16.10 and 16.11]).

Weakly R-injective modules are also called FP-injective.

6.2 Socles of weakly injective modules.

For a weakly M-injective A-module M with B = End(AM),

Soc AM ⊂ SocMB.

Proof. Let m ∈ Soc AM with Am a simple A-module. Then mB is a simple B-

module. Indeed, take any f ∈ B with mf 6= 0. Then for each g ∈ B we have the

diagram with exact row,

0 −→ Am
f−→ M

↓ g
M ,

which can be extended commutatively by some t ∈ B, and mg = mft ∈ mf B. Hence

mB is simple and Soc AM is a sum of simple B-modules. 2

Definitions. An A-module is said to be cogenerated by the A-module M if it can

be embedded into a product of copies of M .

M is called a self-cogenerator if it cogenerates all its factor modules. N ∈ σ[M ] is

a cogenerator in σ[M ] if it cogenerates all modules in σ[M ].

M is said to be a weak cogenerator (in σ[M ]) if for every finitely generated sub-

module K ⊂Mn, n ∈ IN , the factor module Mn/K is cogenerated by M .

For any submodule U ⊂M , we identify

HomA(M/U,M) = {f ∈ End(AM) |Uf = 0}.

This a right ideal in End(AM).

For any subset I ⊂ End(AM), we use the notation

Ke I =
⋂
{Ke f | f ∈ I}.

6.3 Self-cogenerators.

For an A-module M with B = End(AM), the following are equivalent:

(a) M is a self-cogenerator;

(b) for every submodule U ⊂M , U = Ke HomA(M/U,M);

(c) the map U 7→ HomA(M/U,M) from submodules of M to right ideals of B is

injective.

Assume M is a self-cogenerator. Then:
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(1) For every m ∈ M and β ∈ End(MB), there exists a ∈ A with β(m) = am.

Hence A-submodules are End(MB)-submodules in M .

(2) If K ⊂M is a fully invariant submodule, then K is also a self-cogenerator.

Proof. The equivalences are shown with arguments dual to those used in 5.2.

(1) This is obtained by the proof of the Density Theorem [40, 15.7].

(2) Dualize the proof of 5.2(1). 2

From [40, 48.1] we recall the following observation:

6.4 Weak cogenerators.

For any A-module M with B = End(AM), the following are equivalent:

(a) M is a weak cogenerator (in σ[M ]);

(b) MB is weakly MB-injective, and every finitely generated submodule K ⊂ Mn,

n ∈ IN , is M-reflexiv.

If AM is a finitely generated weak cogenerator, then MB is FP-injective.

A weakly M -injective weak cogenerator M is called a Quasi-Frobenius (QF) mod-

ule. For such modules we have the following characterizations:

6.5 Quasi-Frobenius modules.

For a faithful A-module M with B = End(AM), the following are equivalent:

(a) AM is a QF-module;

(b) (i) AM is weakly AM-injective,

(ii) MB is weakly MB-injective and

(iii) A is dense in EndB(M);

(c) MB is a QF-module and A is dense in EndB(M);

(d) AM and MB are weak cogenerators in σ[AM ], resp. σ[MB].

For any QF-module AM , Soc AM = SocMB.

Proof. The equivalences are given in [40, 48.2].

The final assertion follows from 6.2 applied to AM and MB. 2

The following properties of cogenerators are collected from [40], 14.6, 15.7, 15.9,

17.12 and 47.7:

6.6 M as a cogenerator in σ[M ].

For an A-module M with B = End(AM), the following are equivalent:

(a) M is a cogenerator in σ[M ];



40 Chapter 2. Modules over associative algebras

(b) the functor HomA(−,M) : σ[M ]→ Mod-B is faithful;

(c) M cogenerates injective hulls of simple modules in σ[M ].

If M is a cogenerator in σ[M ], then

(1) M is an FP-injective right B-module and

(2) A/AnA(M) is dense in End(MB) (see 5.4).

We have seen in 5.5 that a generator in A-Mod with a commutative endomorphism

ring is a projective A-module. For cogenerators with this property we have even

stronger consequences:

6.7 Cogenerator with commutative endomorphism ring.

Let M be an A-module and assume B = End(AM) to be commutative. Choose

{Eλ}Λ as a minimal representing set of simple modules in σ[M ], and denote by Êλ
the injective hull of Eλ in σ[M ]. Then the following statements are equivalent:

(a) M is a cogenerator in σ[M ];

(b) M is self-injective and self-cogenerator;

(c) M '⊕ΛÊλ;

(d) M is a direct sum of indecomposable modules N which are cogenerators in σ[N ].

Under these conditions we have:

(1) Every A-submodule of M is fully invariant and Soc AM = SocMB.

(2) For every λ ∈ Λ, in σ[Êλ] all simple modules are isomorphic.

(3) B =
∏

ΛBλ with local rings Bλ := EndA(Êλ) ' Bmλ, where mλ is the kernel of

the restriction map B → EndA(Eλ).

(4) If the Êλ’s are finitely generated A-modules, then M generates all simple modules

in σ[M ].

(5) If M is projective in σ[M ], then M is a generator in σ[M ].

(6) If M is finitely generated, then M is finitely cogenerated.

Proof. (1) The equality of the socles is shown in 6.5.

(3) B =
∏

ΛBλ is clear by the fact that the Êλ’s are fully invariant.

Write B = Bλ⊕Cλ where Cλ =
∏
µ6=λBµ. Choose mλ ⊂ B as indicated in (3). By

localizing at mλ (see Section 17), we get

Bmλ ' (Bλ)mλ ⊕ (Cλ)mλ .

For every t ∈ B \ mλ, multiplication by t is an automorphism of Êλ. This implies

Bλ ' (Bλ)mλ . However, Bmλ is a local ring, hence indecomposable and (Cλ)mλ = 0.

All the other assertions are shown in [40, 48.16]. 2
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For self-projective modules we derive further properties.

6.8 Self-projective cogenerators.

Let M be a finitely generated, self-projective A-module and assume B = EndA(M)

to be commutative. Then the following are equivalent:

(a) M is a cogenerator in σ[M ];

(b) M is self-injective, self-generator and finitely cogenerated;

(c) every module which cogenerates M is a generator in σ[M ];

(d) every cogenerator is a generator in σ[M ];

(e) M is a self-generator and B is cogenerator in B-Mod (= PF-ring).

Proof. From 6.7 we know that (a) implies that M is finitely cogenerated and hence

there are only finitely many simple modules in σ[M ]. Therefore the equivalences (a)

- (d) follow from [40, 48.11].

(b) ⇒ (e) and (e) ⇒ (a) In both cases M is a progenerator in σ[M ] and so the

functor Hom(M,−) : σ[M ]→ B-Mod is an equivalence (e.g., [40, 46.2]). 2

Important classes of modules can be characterized by properties in σ[M ]:

6.9 Semisimple modules.

For an A-module M, the following properties are equivalent:

(a) M is a (direct) sum of simple modules (= semisimple);

(b) every submodule of M is a direct summand;

(c) every module (in σ[M ]) is M-projective;

(d) every module (in σ[M ]) is M-injective;

(e) every short exact sequence in σ[M ] splits;

(f) every simple module (in σ[M ]) is M-projective;

(g) every cyclic module (in σ[M ]) is M-injective.

Obviously, any semisimple module M is a projective generator and an injective

cogenerator in σ[M ].

If M is a noetherian, injective cogenerator in σ[M ], then it is called a noetherian

Quasi-Frobenius or QF module. We give some characterizations of these modules

taken from [40, 48.14]:



42 Chapter 2. Modules over associative algebras

6.10 Noetherian QF modules.

For a finitely generated A-module M with B = End(AM), the following are equiv-

alent:

(a) M is a self-projective noetherian QF module;

(b) M is a noetherian projective cogenerator in σ[M ];

(c) M is an artinian projective cogenerator in σ[M ];

(d) M is a projective cogenerator in σ[M ] and BB is artinian;

(e) M is an injective generator in σ[M ] and BB is artinian;

(f) M is a noetherian injective generator in σ[M ];

(g) M is self-injective and injectives are projective in σ[M ];

(h) M is a progenerator and projectives are injective in σ[M ].

We continue to investigate injectivity. Dual to intrinsically projective we define:

An A-module M is said to be intrinsically injective if every diagram with exact

row,

0 −→ N −→ Mn

↓
M ,

where n ∈ IN and N a factor module of M , can be extended commutatively by some

morphism Mn →M .

M is called semi-injective if the above condition (only) holds for n = 1.

Self-injective modules satisfy the above conditions and dual to 5.6 we get further

examples:

6.11 Examples. Let M be an A-module with B = End(AM).

(1) If cokernels of endomorphisms are M -cogenerated and B is a right PP ring, then

M is semi-injective.

(2) If MB is FP-injective and B is right semihereditary, then M is intrinsically

injective.

(3) If B is a regular ring, then M is intrinsically injective.

Proof. Referring to [40, 39.11 and 47.7] the proof is dual to the proof of 5.6. 2

Dual to 5.7 we list some properties which are easy to verify (e.g., [90, Lemma 3],

[40, 28.1 and 31.12]):
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6.12 Intrinsically injective modules.

Let M be an A-module with B = End(AM).

(1) The following are equivalent:

(a) M is intrinsically injective;

(b) I = HomA(M/Ke I,M) for every finitely generated right ideal I ⊂ B;

(c) the map I 7→ Ke I from finitely generated right ideals in B to submodules of M

is injective.

(2) The following are also equivalent:

(a) M is semi-injective;

(b) fB = HomA(M/Ke f,M) for every f ∈ B;

(c) the map I 7→ Ke I from cyclic right ideals in B to submodules of M is injective.

6.13 Finitely cogenerated modules.

An A-module N is called finitely cogenerated if for every monomorphism

ψ : N → ∏
ΛUλ, there is a finite subset E ⊂ Λ such that the canonical map

N
ψ−→

∏
Λ
Uλ −→

∏
E
Uλ

is monic. N is finitely cogenerated if and only if Soc(N) is finitely generated and

essential in N .

6.14 Radical of modules.

Dual to the socle the radical of an A-module M is defined as the intersection of

all maximal submodules of M and is characterized by

Rad(M) =
⋂ {K ⊂M |K is maximal in M}

=
∑ {L ⊂M | L is superfluous in M}.

It has the following properties:

(1) Rad(M/RadM) = 0 and, for any f : M → N , (RadM)f ⊂ RadN .

If Kef ⊂ RadM , then (RadM)f = Rad(Mf).

(2) RadM is also an End(AM)-submodule of M (fully invariant).

(3) If every proper submodule of M is contained in a maximal submodule, then

RadM �M (e.g., if M is finitely generated).

(4) If M =
⊕

ΛMλ, then RadM =
⊕

ΛRadMλ and M/RadM '⊕ΛMλ/RadMλ.

(5) If M is finitely cogenerated and RadM = 0, then M is semisimple and finitely

generated.
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6.15 Quasi-regularity.

An element r in A is called left (right) quasi-regular if there exists t ∈ A, with

r + t− tr = 0 (resp. r + t− rt = 0).

r is called quasi-regular if it is left and right quasi-regular. A subset of A is said

to be (left, right) quasi-regular if every element in it has the corresponding property.

These notions are also of interest for algebras without units.

In algebras with units, the relation r + t − tr = 0 is equivalent to the equation

(1 − t)(1 − r) = 1. Hence in such algebras an element r is left quasi-regular if and

only if (1− r) is left invertible.

These definitions also make sense for alternative algebras.

6.16 The Jacobson radical.

The radical of AA is called the Jacobson radical of A, i.e.,

Jac(A) = Rad(AA).

This is a two-sided ideal in A and can be described as the

(a) intersection of the maximal left ideals in A (= definition);

(b) sum of all superfluous left ideals in A;

(c) sum of all left quasi-regular left ideals in A;

(d) largest (left) quasi-regular ideal in A;

(e) intersection of the annihilators of simple left A-modules;

(f) intersection of the maximal right ideals in A.

For every A-module M , Jac(A)M ⊂ Rad(AM).

Next we observe a connection between the radicals of R and M :

6.17 Relation between radicals.

Let M be a module over the R-algebra A and assume

(i) M is finitely generated as R-module, or (ii) R is a perfect ring.

Then Jac(R)M ⊂ Rad(AM).

Proof. M := M/Rad(AM) is a subdirect product of A-modules M/U , with maximal

A-submodules U ⊂ M . Jac(R)(M/U) is an A-submodule of the simple A-module

M/U and hence Jac(R)(M/U) = 0 or Jac(R)(M/U) = M/U . If M/U is a finitely

generated R-module or Jac(R) is t-nilpotent, the second possibility cannot occur

(Nakayama Lemma, e.g., [40, 21.13 and 43.5]).

Hence Jac(R) annihilates M which means Jac(R)M ⊂ Rad(AM). 2
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An A-module M is said to be co-semisimple if every simple module in σ[M ] (or

in A-Mod) is M -injective. From [40, 23.1] we have:

6.18 Co-semisimple modules.

For an A-module M, the following statements are equivalent:

(a) M is co-semisimple;

(b) every finitely cogenerated module in σ[M ] is M-injective;

(c) every finitely cogenerated module in σ[M ] is semisimple;

(d) σ[M ] has a semisimple cogenerator;

(e) for every module N ∈ σ[M ], Rad(N) = 0;

(f) for every factor module N of M, Rad(N) = 0;

(g) any proper submodule of M is an intersection of maximal submodules.

6.19 Exercises.

(1) Let M be a weakly M -injective A-module and B = End(AM). Prove that for

any finitely generatde submodules K,L ⊂M ,

AnB(K ∩ L) = AnB(K) + AnB(L).

(2) Let M,N be A-modules and B = End(AM). N is called restricted M -injective

if HomA(−, N) is exact on exact sequences

0→ K →Mn, where K is finitely M -generated.

Prove:

(i) If MB is flat and N is restricted M -injective, then BHomA(M,N) is

FP-injecticve.

(ii) If BHomA(M,N) is FP-injecticve, then N is restricted M -injective.

(iii) The following are equivalent:

(a) Every A-module is restricted M -injective;

(b) MB is FP-injective and B is right semihereditary.

References: Brodskii [90], Menini-Orsatti [197], Wisbauer [275].
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7 Regular modules

1.Finitely presented modules. 2.Purity. 3.Regular modules. 4.Regular algebras.

5.Strongly regular rings. 6.Regular endomorphism rings. 7.Exercises.

For an A-module M , let P denote a non-empty class of modules in σ[M ]. In [40,

Chapter 7] the notion of P-pure exact sequences was introduced:

A short exact sequence in σ[M ] is called P-pure in σ[M ], if every module P in P
is projective with respect to this sequence.

Of course, the properties of P-pure sequences strongly depend on the choice of the

class P .

Except for an exercise on relatively semisimple modules (see 20.13) we will here

restrict our attention to the class of finitely presented modules in σ[M ]:

7.1 Finitely presented modules.

A finitely generated module N ∈ σ[M ] is finitely presented in σ[M ], if in every

exact sequence 0→ K → L→ N → 0 in σ[M ] with L finitely generated, the module

K is also finitely generated.

N ∈ σ[M ] is finitely presented in σ[M ] if and only if HomA(N,−) commutes with

direct limits in σ[M ] (see [40, 25.2]).

For example, every finitely generated M -projective module in σ[M ] is finitely

presented in σ[M ]. Since we will not vary the class P we delete it in our definitions:

7.2 Purity. An exact sequence

(∗) 0→ K → L→ N → 0

in σ[M ] is called pure in σ[M ], if every finitely presented module P in σ[M ] is pro-

jective with respect to this sequence, i.e., if every diagram

P

↓
0 → K → L → N → 0

can be extended commutatively by a morphism P → L. Equivalently, we may demand

the following sequence to be exact:

0→ HomA(P,K)→ HomA(P,L)→ HomA(P,N)→ 0.

The sequence (∗) is pure in A-Mod if and only if the sequence

0→ F ⊗A K → F ⊗A L→ F ⊗A N → 0
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is exact, for all (finitely presented) right A-modules F (see [40, 34.5]).

Every direct limit of splitting exact sequences is pure in σ[M ] and A-Mod.

On the other hand, if there is a generating set of finitely presented modules in

σ[M ], then any pure exact sequences in σ[M ] is a direct limit of splitting sequences

in σ[M ] (see [40, 34.2]).

This always applies in A-Mod. Here we still have another characterization for

such sequences: (∗) is pure in A-Mod if and only if every pure injective A-module is

injective with respect to (∗) (see [40, 34.7]).

A module X ∈ σ[M ] is called pure projective if X is projective with respect to

every pure sequence in σ[M ]; Y is pure injective if Y is injective with respect to every

pure sequence in σ[M ]. We say that

K is absolutely pure in σ[M ] if for K fixed all sequence (∗) are pure in σ[M ],

L is regular in σ[M ] if for L fixed all sequences (∗) are pure in σ[M ],

N is flat in σ[M ] if for N fixed all sequences (∗) are pure in σ[M ].

Regular modules generalize semisimple modules. They also have a number of

interesting properties (see [40, 37.2, 37.3 and 37.4]):

7.3 Regular modules.

For an A-module M , the following are equivalent:

(a) M is regular in σ[M ];

(b) every short exact sequence in σ[M ] is pure;

(c) every module in σ[M ] is flat;

(d) every module in σ[M ] is absolutely pure;

(e) every finitely presented module is projective in σ[M ].

If M is finitely presented in σ[M ], then (a)-(e) are equivalent to:

(f) every module in σ[M ] is weakly M-injective;

(g) every finitely generated submodule of M is a direct summand in M .

The algebra A is called (von Neumann) regular if for every a ∈ A there exists

b ∈ A with a = aba. Putting M = A we obtain from 7.3:

7.4 Regular algebras.

For an algebra A, the following are equivalent:

(a) A is a regular algebra;

(b) AA is regular in A-Mod;

(c) every (cyclic) left A-module is flat;
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(d) every left A-module is absolutely pure (= FP-injective);

(e) every finitely presented left A-module is projective.

Also the right hand versions of (b)-(d) apply.

An algebra A is called reduced if it has no non-zero nilpotent elements.

A is strongly regular if for every a ∈ A, there exists b ∈ A with a = a2b. This

notion is left-right symmetric as can be seen from the following (see [40, 3.11]):

7.5 Strongly regular rings. Characterizations.

For an algebra A with unit, the following are equivalent:

(a) A is strongly regular;

(b) A is regular and reduced;

(c) every principal left (right) ideal is generated by a central idempotent;

(d) A is regular and every left (right) ideal is an ideal.

Notice that many of these definitions and properties also apply to algebras without

unit and to alternative algebras.

From [40, 37.7] we recall important properties of regular endomorphism rings.

7.6 Regular endomorphism rings.

Let M be an A-module and B = EndA(M).

(1) For f ∈ B, the following properties are equivalent:

(a) There exists g ∈ B with fgf = f ;

(b) Ke f and Im f are direct summands of M .

(2) B is regular if and only if Im f and Ke f are direct summands of M , for every

f ∈ B.

(3) If B is regular, then every finitely M-generated submodule of M is a direct

summand in M .

7.7 Exercises.

(1) Let A be a regular ring. Prove that the following are equivalent:

(a) A is reduced;

(b) A is strongly regular;

(c) every idempotent in A is central;

(d) A is a subdirect product of division rings;

(e) every prime ideal P in A is completely prime (ab ∈ P implies a ∈ P or b ∈ P ).

(2) Let A be a strongly regular ring. Prove that A is left co-semisimple (every

simple left A-module is injective).

References. Wisbauer [40].
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8 Lifting and semiperfect modules

1.π-projective modules. 2.Local modules. 3.Direct projective modules. 4.Refinable

modules. 5.Properties of refinable modules. 6.Supplemented modules. 7.Properties

of (f-) supplemented modules. 8.Finitely lifting modules. 9.Lifting modules. 10.π-

projective lifting modules. 11.Decomposition of π-projective supplemented modules.

12.Projective semiperfect modules. 13.Projective f-semiperfect modules. 14.Perfect

modules. 15.Uniserial modules.

We begin with weak projectivity conditions which are of interest for the investi-

gations to follow.

Definitons. An A-module M is called π-projective if, for any two submodules

U, V ⊂M with U + V = M , the epimorphism U ⊕ V →M , (u, v) 7→ u+ v, splits.

M is called direct projective if, for any direct summand X of M , every epimorphism

M → X splits.

It is easy to see that M is π-projective if and only if for any two submodules

U, V ⊂M with U + V = M , there exists f ∈ End(M) with

Im(f) ⊂ U and Im(idM − f) ⊂ V .

From [40, 41.14] we recall:

8.1 Properties of π-projective modules.

Assume M to be a π-projective A-module. Then:

(1) Every direct summand of M is π-projective.

(2) If M = U + V and U is a direct summand in M, then there exists V ′ ⊂ V with

M = U ⊕ V ′.

(3) If M = U ⊕ V , then V is U-projective (and U is V-projective).

(4) If M = U + V and U, V are direct summands in M, then U ∩ V is also a direct

summand in M.

A module M is called local if it has a largest proper submodule. It is obvious that

this submodule has to be equal to the radical of M and that Rad(M) � M . Local

modules are trivially π-projective.

8.2 Local modules. Characterizations.

For an non-zero A-module M , the following properties are equivalent:

(a) M is local;

(b) M has a maximal submodule which is superfluous;
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(c) M is cyclic and every proper submodule is superfluous;

(d) M is cyclic and for any m, k ∈M , Am = M implies Ak = M or A(m−k) = M ;

(e) M is finitely generated and non-zero factor modules of M are indecomposable.

If M is projective in σ[M ], then (a)-(c) are equivalent to:

(e) M is a projective cover of a simple module in σ[M ];

(f) End(AM) is a local ring.

Proof. Most of the assertions follow from [40, 19.7 and 41.4]. It only remains to show

(c)⇔ (d) Assume (c) and consider m, k ∈M with Am = M . Then

Ak + A(m− k) = M and we conclude Ak = M or A(m− k) = M .

Now assume (d) and U + V = M for submodules U, V ⊂M . Then u+ v = m for

some u ∈ U , v ∈ V and so either u or m − u = v generate M . Hence every proper

submodule of M is superfluous. 2

For direct projective modules we recall from [40, 41.18 and 41.19]:

8.3 Direct projective modules.

Assume M is a direct projective A-module and B = End(AM). Then:

(1) For direct summands U, V ⊂M , every epimorphism U → V splits.

(2) For direct summands U, V ⊂ M with U + V = M , U ∩ V is a direct summand

in U (and M) and M = U ⊕ V ′ for some V ′ ⊂ V .

(3) K(B) := {f ∈ B | Imf �M} ⊂ Jac(B).

(4) The following assertions are equivalent:

(a) For every f ∈ B, there is a decomposition M = X ⊕ Y with

X ⊂ Im f and Y ∩ Im f � Y ;

(b) B is f-semiperfect and K(B) = Jac(B).

(5) If M is a local module, then B is a local ring.

Definitions. An A-module M is called refinable (or suitable) if for any submod-

ules U, V ⊂M with U +V = M , there exists a direct summand U ′ of M with U ′ ⊂ U

and U ′ + V = M .

M is said to be strongly refinable if, in the given situation, there exist U ′ ⊂ U ,

V ′ ⊂ V of M with M = U ′ ⊕ V ′.
Notice that a finitely generated module M is (strongly) refinable if the defining

conditions are satisfied for finitely generated submodules. So, for example, a finitely

generated module M with every finitely generated submodule a direct summand is

refinable (7.3).
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We say that direct summands lift modulo a submodule K ⊂M if under the canon-

ical projection M → M/K every direct summand of M/K is an image of a direct

summand of M . The connection between the above notions is evident from the next

result.

8.4 Refinable modules.

(1) For an A-module M , the following are equivalent:

(a) M is refinable;

(b) direct summands lift modulo every submodule of M .

(2) The following assertions are also equivalent:

(a) M is strongly refinable;

(b) finite decompositions lift modulo every submodule of M .

Proof. (1) (a)⇒ (b) Let K ⊂M be a submodule. Assume M/K = U/K ⊕ V/K for

submodules K ⊂ U, V ⊂ M . Then M = U + V and there is a direct summand U ′ of

M with U ′ ⊂ U and U ′ + V = M . This implies (U ′ +K)/K = U/K.

(b)⇒ (a) Now assume M = U+V and put K = U∩V . Then M/K = U/K⊕V/K
and, by assumption, U/K lifts to a direct summand U ′ of M . Since (U ′ + K)/K =

U/K we have U ′ +K = U , i.e., U ′ ⊂ U and M = U ′ + V +K = U ′ + V .

(2) The proof for strongly refinable modules is similar to the above. 2

8.5 Properties of refinable modules.

Let M be an A-module and B = End(M).

(1) If M is (strongly) refinable and X ⊂ M is a fully invariant submodule, then

M/X is (strongly) refinable.

(2) Every π-projective refinable module is strongly refinable.

(3) As an (A,B)-bimodule, M is refinable if and only if it is strongly refinable.

Proof. (1) Assume M/X = U/X + V/X for submodules U, V ⊂ M containing

X. Then M = U + V and there exists a direct summand U ′ of M with U ′ ⊂ U

and U ′ + V = M . Assume M = U ′ ⊕ W . Since X is fully invariant we have

X = (X ∩ U ′) ⊕ (X ∩ W ) and hence U ′/(X ∩ U ′) is a direct summand of M/X

with the properties desired.

The same proof shows the assertion for strongly refinable modules.

(2) This follows from 8.1(2).

(3) Assume M is a refinable (A,B)-bimodule and M = U +V with fully invariant

submodule U, V ⊂M . Then there exists a central idempotent e ∈ B, such that

M = Me+ V and Me ⊂ U.
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Multiplying the left equality with idM − e, we obtain M(idM − e) = V (idM − e) ⊂ V ,

showing that M is strongly refinable. 2

Notice that finitely generated self-projective modules are refinable if and only if

they have the exchange property (see Nicholson [212, Proposition 2.9]). Additional

characterizations of refinable modules will be given in 18.7 and 18.10.

Definitions. Let U be a submodule of the A-module M . A submodule V ⊂ M

is called a supplement of U in M if V is minimal with the property U + V = M . It

is easy to see that V is a supplement of U if and only if

U + V = M and U ∩ V � V .

We say U ⊂M has ample supplements in M if for every V ⊂M with U +V = M ,

there is a supplement V ′ of U with V ′ ⊂ V .

M is called (amply) supplemented, if every submodule has (ample) supplements in

M . Similarly (amply) f-supplemented modules are defined as modules whose finitely

generated submodules have (ample) supplements.

Trivially, local modules are (amply) supplemented. Characterizations of these

modules are given in [40, 41.6]:

8.6 Supplemented modules.

For a finitely generated A-module M, the following are equivalent:

(a) M is supplemented;

(b) every maximal submodule of M has a supplement in M;

(c) M is an irredundant (finite) sum of local submodules.

From [40, 41.2 and 41.3] we recall:

8.7 Properties of (f-) supplemented modules.

Let M be an A-module.

(1) Assume M is supplemented. Then any finitely M-generated module is supple-

mented and M/Rad(M) is semisimple.

(2) Assume M is f-supplemented.

(i) If L ⊂M is finitely generated or superfluous, then M/L is also f-supplemented.

(ii) If Rad(M)� M , then finitely generated submodules of M/Rad(M) are di-

rect summands.

Definition. We call an A-module M (finitely) lifting, provided for every (finitely

generated) submodule U ⊂ M , there exists a direct summand X of M with X ⊂ U

and U/X �M/X.

From [40, 41.11 and 41.13] we have characterizations for finitely generated modules

of this type showing that they are in particular refinable:
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8.8 Finitely lifting modules.

For a finitely generated A-module M, the following are equivalent:

(a) M is a finitely lifting module;

(b) for every cyclic (finitely generated) submodule U ⊂M , there is a decomposition

M = X ⊕ Y , where X ⊂ U and U ∩ Y � Y ;

(c) for any cyclic submodule U ⊂ M , there exists an idempotent e ∈ End(AM),

such that Me ⊂ U and U(1− e)�M(1− e);

(d) M is amply f-supplemented and supplements are direct summands;

(e) M is strongly refinable and in M/Rad(M) every finitely generated submodule is

a direct summand.

Proof. The first equivalences come from [40, 41.11 and 41.13].

(d)⇒ (e) This implication is obvious by 8.7.

(e)⇒ (b) For any finitely generated submodule U ⊂M , there is a decompositon

M/Rad(M) = U + Rad(M)/Rad(M)⊕ V/Rad(M),

for some submodule Rad(M) ⊂ V ⊂M . Since direct summands lift modulo Rad(M),

there exists a direct summand Y ′ ⊂ M with Y ′ + Rad(M) = V , M = U + Y ′ and

U ∩ Y ′ ⊂ Rad(M), implying U ∩ Y ′ � Y ′.

M being strongly refinable, there is a decomposition M = X ⊕ Y with X ⊂ U

and Y ⊂ Y ′. From above we know U ∩ Y ⊂ U ∩ Y ′ � Y ′ implying U ∩ Y � Y . 2

Now we characterize lifting modules.

8.9 Lifting modules.

For an A-module M, the following are equivalent:

(a) M is a lifting module;

(b) for every submodule U ⊂M , there is a decomposition M = X ⊕ Y , where

X ⊂ U and U ∩ Y � Y ;

(c) for every submodule U ⊂ M , there exists an idempotent e ∈ End(AM), such

that Me ⊂ U and U(idM − e)�M(idM − e);

(d) M is amply supplemented and every supplement is a direct summand;

(e) M is strongly refinable and M/Rad(M) is semisimple.

Proof. The first equivalences come from [40, 41.11 and 41.12].

(d)⇒ (e) This implication is obvious by 8.7.

(e)⇒ (b) Repeat the proof of the corresponding implication in 8.8. 2
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π-projective supplemented modules are in fact lifting. From [40, 41.15] we have:

8.10 π-projective lifting modules.

Let M be an A-module and B = End(AM).

(1) The following are equivalent:

(a) M is lifting and π-projective;

(b) M is supplemented and π-projective;

(c) M is amply supplemented and the intersection of mutual supplements is zero;

(d) M is lifting and for direct summands U, V ⊂ M with M = U + V , U ∩ V is a

direct summand;

(e) for any submodules U, V ⊂M with U + V = M , there exists an idempotent

e ∈ B, such that

Me ⊂ U , M(idM − e) ⊂ V and U(idM − e)�M(idM − e).

(2) As an (A,B)-bimodule, M is lifting if and only if it is supplemented and π-

projective.

Proof. It remains to show (2). Assume M is lifting and U, V ⊂ M are submodules

with U + V = M . By 8.9, there is a central idempotent e ∈ B with

Me ⊂ U and U(idM − e)�M(idM − e).

This implies M = Me+ V and M(idM − e) = V (idM − e) ⊂ V . So M is π-projective

and supplemented by (1). 2

For finitely generated modules of the above type the decomposition theorem [40,

41.17] yields:

8.11 Decomposition of π-projective supplemented modules.

Assume M is a finitely generated, π-projective lifting A-module. Then:

(1) M =
⊕

ΛLλ with local modules Lλ, and

(2) for every direct summand N of M , there exists a subset Λ′ ⊂ Λ, such that

M = (
⊕

Λ′Lλ)⊕N .

(3) If M =
∑

ΛNλ is an irredundant sum with indecomposable Nλ, then M =
⊕

ΛNλ.

Remarks. The notion lifting modules is, for example, used in Oshiro [217]. In

Zöschinger [288] the same modules are called strongly complemented (see [288, Satz

3.1]) and there are various other names used by different authors. Though we will

not use this terminology we recall, for the convenience of the reader, some notation

applied in the literature (e.g., Mohamed-Müller [27]).

Consider the following conditions on an A-module M :
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(D1) for every submodule U ⊂M , there is a decomposition M = X ⊕ Y , where

X ⊂ U and Y ∩ U � Y .

(D2) If U ⊂M is a submodule such that M/U is isomorphic to a direct summand of

M , then U is a direct summand of M .

(D3) If U , V ⊂ M are direct summands with U + V = M , then U ∩ V is a direct

summand of M .

Condition (D1) characterizes lifting modules (see 8.9), (D2) is equivalent to direct

projective. A module M with (D1) and (D2) is called dual continuous or discrete, and

M is called quasi-discrete or quasi-semiperfect (in [216]) if it satisfies (D1) and (D3).

Quasi-discrete modules are just π-projective supplemented modules (e.g., [40,

41.15], [288, Satz 5.1]). The decomposition theorem for these modules mentioned

above is originally due to Oshiro [216] and is also proved in [27, Theorem 4.15].

Dual continuous modules are direct projective lifting modules. Some of their

properties are described in [27, Lemma 4.27] and [40, 41.18 and 41.19]. In particular

they are quasi-discrete.

Dual to the notions considered above there are extending, π-injective and con-

tinuous modules. For a detailed account on these we refer to [40], [27] and [11].

Definitions. N ∈ σ[M ] is said to be semiperfect in σ[M ] if every factor module

of N has a projective cover in σ[M ].

N is f-semiperfect in σ[M ] if, for every finitely generated submodule K ⊂ N , the

factor module N/K has a projective cover in σ[M ]. Obviously, finitely generated,

self-projective local modules M are (f-) semiperfect in σ[M ].

Supplemented and semiperfect modules are closely related ([40, 42.5, 42.12]):

8.12 Projective semiperfect modules.

Assume the A-module M is projective in σ[M ]. Then the following are equivalent:

(a) M is semiperfect in σ[M ];

(b) M is supplemented;

(c) every finitely M-generated module has a projective cover in σ[M ];

(d) (i) M/Rad(M) is semisimple and Rad(M)�M , and

(ii) decompositions of M/Rad(M) lift modulo Rad(M);

(e) M is a direct sum of local modules and Rad(M)�M .

If M is a finitely generated A-module, (a)-(f) are equivalent to:

(g) End(AM) is a semiperfect ring.

For f-semiperfect modules we get from [40, 42.10]:
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8.13 Projective f-semiperfect modules.

For a finitely generated, self-projective A-module M, the following are equivalent:

(a) M is f-semiperfect in σ[M ];

(b) M is f-supplemented;

(c) (i) M/Rad(M) is regular in σ[M/Rad(M)], and

(ii) decompositions lift modulo Rad(M).

M is said to be perfect in σ[M ] if, for any index set Λ, M (Λ) is semiperfect in σ[M ].

By [40, 43.8] we have a series of characterizations of these modules.

8.14 Perfect modules.

Let M be a finitely generated, self-projective A-module with endomorphism ring

B = End(AM). The following statements are equivalent:

(a) M is perfect in σ[M ];

(b) every (indecomposable) M-generated flat module is projective in σ[M ];

(c) M (IN) is semiperfect in σ[M ];

(d) M/Rad(M) is semisimple and Rad (M (IN))�M (IN);

(e) B/Jac(B) is left semisimple and Jac(B) is right t-nilpotent;

(f) B satisfies the descending chain condition for cyclic right ideals;

(g) BB is perfect in B-Mod.

For M = A, the above list characterizes left perfect algebras.

An R-module N is called uniserial if its submodules are linerarly ordered by in-

clusion. N is serial if it is a direct sum of uniserial modules. Recall from [40, 55.1]:

8.15 Uniserial modules.

For an A-module N the following are equivalent:

(a) The (cyclic) submodules of N are linearly ordered;

(b) for every finitely generated non-zero submodule K ⊂ N , K/Rad(K) is simple;

(c) for every factor module L of N, SocL is simple or zero.

References: Burkholder [102], Fuller [139], Mohamed-Müller [27], Nicholson

[212], Oshiro [216, 217]. Wisbauer [40, 276], Zöschinger [288].
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In this chapter A will always denote an associative R-algebra with unit.

9 Torsion theory in σ[M ]

1.Definitions. 2.Pretorsions. 3.Torsion submodules. 4.T -torsionfree modules. 5.Hered-

itary torsion classes. 6.T -dense submodules. 7.Properties of T -dense submodules.

8.Dense submodules of generators. 9.(M, T )-injective modules. 10.(M, T )-injective

modules and direct sums. 11.(M, T )-injective modules. Characterizations. 12.Lemma.

13.Lemma. 14.Faithfully (M, T )-injective modules. 15.Properties of quotient mod-

ules. 16.Essential submodules T -dense. 17.Quotient modules and direct limits. 18.The

quotient functor. 19.T -dense left ideals. 20.Gabriel filter and quotient modules.

21.Exercises.

We recall some notions from torsion theory. These techniques are familiar from

A-Mod but it is well-known that they also apply to Grothendieck categories. For basic

facts we refer to [5] or [39].

9.1 Definitions. Let M ∈ A-Mod. A class T of modules in σ[M ] is called a

pretorsion class if T is closed under direct sums and factor modules;

hereditary pretorsion class if T is closed under direct sums, factor and submodules;

torsion class if T is closed under direct sums, factors and extensions in σ[M ];

hereditary torsion class if T is closed under direct sums, factors, submodules and

extensions in σ[M ];

stable class if T is closed under essential extensions in σ[M ].

Notice that for any M ∈ A-Mod, σ[M ] is a hereditary pretorsion class in A-Mod,

not necessarily closed under extensions. In fact every hereditary pretorsion class in

σ[M ] (or in A-Mod) is of type σ[U ] for some suitable U ∈ σ[M ].

57
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9.2 Pretorsions.

Any pretorsion class T is closed under traces, i.e., for any A-module N ,

T (N) := Tr(T , N) =
∑
{U ⊂ N |U ∈ T } ∈ T .

T (N) is called the T -torsion submodule of N . It is the largest submodule of N

belonging to T . It follows from well-known properties of the trace that

for any L ∈ A-Mod and f ∈ HomA(N,L), T (N)f ⊂ T (L).

Hence there are unique homomorphisms

f ′ := f |T (N) : T (N)→ T (L) and f : N/T (N)→ L/T (L).

N is called a T -torsion module if N = T (N), i.e., N ∈ T .

N is said to be T -torsionfree if T (N) = 0. This is the case if and only if

HomA(L,N) = 0 for all L ∈ T .

Properties of T -torsion submodules depend on the properties of the class T .

9.3 Torsion submodules. Properties.

Let T be a pretorsion class in σ[M ] and N ∈ σ[M ]. Then:

(1) If T is hereditary, for any K ⊂ N , T (K) = K ∩ T (N).

(2) If T is a torsion class, T (N/T (N)) = 0.

Proof. (1) Obviously T (K) ⊂ K ∩ T (N).

T being closed under submodules, K ∩ T (N) ∈ T . Hence K ∩ T (N) ⊂ T (K).

(2) Let T (N) ⊂ U ⊂ N such that U/T (N) ∈ T . Consider the exact sequence

0→ T (N)→ U → U/T (N)→ 0.

Since T is closed under extensions U ∈ T , i.e., U ⊂ T (N). 2

9.4 T -torsionfree modules. Properties.

Let T be a hereditary torsion class in σ[M ]. Denote by F the class of T -torsionfree

modules in σ[M ], i.e., F = {N ∈ σ[M ] | T (N) = 0}.
(1) F is closed under submodules, isomorphic images, injective hulls (essential ex-

tensions) in σ[M ], and direct products in σ[M ].

(2) There exists an M-injective module E ∈ σ[M ] with the property

L ∈ F if and only if L is cogenerated by E.
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Proof. (1) Assume N � L. Since T (N) = T (L) ∩ N (see 9.3(2)), T (L) = 0 if and

only if T (N) = 0. Hence F is closed under essential extensions.

Let {Nλ}Λ be any family of modules in F . HomA(L,
∏

ΛNλ) '
∏

Λ HomA(L,Nλ)

implies that Tr (σ[M ],
∏

ΛNλ), which is the direct product of {Nλ}Λ in σ[M ], belongs

to F .

The other assertions are obvious.

(2) Choose E =
∏M Â/K, K ⊂ A (product in σ[M ]), with A/K ∈ F and Â/K

the M -injective hull of A/K. By (1), E ∈ F . For any L ∈ F and 0 6= l ∈ L, Al ∈ F .

By construction of E, there exists a monomorphism Al→ E and for the diagram

0 → Al → L

↓
E

we obtain an f : L→ E with lf 6= 0. This implies that L is cogenerated by E. 2

9.5 Hereditary torsion classes. Characterization.

For a class T of modules in σ[M ], the following are equivalent :

(a) T is a hereditary torsion class in σ[M ];

(b) there exists an M-injective module E ∈ σ[M ] with the property

T = {N ∈ σ[M ] |HomA(N,E) = 0}.

Proof. (a) ⇒ (b) Let F be the class of T -torsionfree modules and choose E as an

M -injective cogenerator of F (by 9.4). Then for all N ∈ T , HomA(N,E) = 0 (since

E ∈ F). If K 6∈ T , then 0 6= K/T (K) ∈ F and HomA(K/T (K), E) 6= 0, i.e.,

HomA(K,E) 6= 0.

(b) ⇒ (a) Let 0 → N ′ → N → N ′′ → 0 be an exact sequence in σ[M ]. Then

0 → HomA(N ′′, E) → Hom(N,E)A → HomA(N ′, E) → 0 is also exact and it follows

that T is closed under submodules, factor modules and extensions.

Consider a family {Nλ}Λ of modules with HomA(Nλ, E) = 0. Then

HomA(
⊕

Λ
Nλ, E) '

∏
Λ

HomA(Nλ, E) = 0.

Therefore T is closed under direct sums. 2

Definition. Let T be a torsion class in σ[M ] and N ∈ σ[M ]. A submodule L ⊂ N

is said to be T -dense in N , if N/L ∈ T . The set of T -dense submodules of a module

N is denoted by

L(N, T ) := {L ⊂ N |N/L ∈ T }.
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9.6 T -dense submodules.

Let M be an A-module and N ∈ σ[M ].

(1) Let T be a hereditary pretorsion class in σ[M ]. Assume T (N) = 0.

Then every T -dense submodule of N is essential in N .

(2) Assume T is a hereditary torsion class in σ[M ] and K ⊂ L ⊂ N .

Then K ∈ L(N, T ) if and only if K ∈ L(L, T ) and L ∈ L(N, T ).

Proof. (1) Assume T (N) = 0 and L is T -dense in N . For K ⊂ N with K ∩ L = 0,

the map K → N → N/L is monomorphic, i.e., K ∈ T and hence K ⊂ T (N) = 0.

(2) follows from the exact sequence 0→ L/K → N/K → N/L→ 0. 2

9.7 P roperties of T -dense submodules.

Let T be a hereditary pretorsion class in σ[M ] and N ∈ σ[M ]. Then L := L(N, T )

has the following properties:

(1) If K ∈ L and K ⊂ L ⊂ N , then L ∈ L;

(2) if K,L ∈ L then K ∩ L ∈ L;

(3) if K ∈ L and f ∈ EndA(N), then (K)f−1 ∈ L;

(4) if K ⊂ N and N/K is generated by {N/L |L ∈ L}, then K ∈ L.

(5) Assume that T is a hereditary torsion class. Let K ⊂ N and suppose there exists

an N-generated L ∈ L, such that for each g ∈ HomA(N,L), (K ∩ L)g−1 ∈ L.

Then K ∈ L.

Proof. (1)-(4) are obvious.

(5) Let K,L ⊂ N as desired. By (1), K + L ∈ L and by 9.6, it suffices to show

K ∈ L(K + L, T ). For g ∈ HomA(N,L) and the projection π : L → L/(K ∩ L),

Ke gπ = (K ∩ L)g−1 ∈ L by assumption. Hence Im gπ ' N/Ke gπ ∈ T , implying

(K + L)/K ' L/(K ∩ L) = (L)π = (N HomA(N,L))π ∈ T . 2

9.8 Dense submodules of generators.

Let T be a hereditary pretorsion class in σ[M ].

(1) Assume N,L ∈ σ[M ] and L is N-generated. Then L ∈ T if and only if for all

f ∈ HomA(N,L), Ke f ∈ L(N, T ).

(2) Let {Gλ}Λ be a family of generators in σ[M ]. Then L ∈ σ[M ] belongs to T
if and only if it is generated by factor modules Gλ/Kλ, with Kλ ∈ L(Gλ, T ).

Hence the class T is uniquely determined by the sets L(Gλ, T ).

Proof. (1) By assumption, NHomA(N,L) = L and the assertion follows from 9.7.

(2) is shown similarly. 2
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Definitions. Let T be a pretorsion class in σ[M ]. A module N ∈ σ[M ] is called

(M,T )-injective, if N is injective with respect to every exact sequence 0→ K → L in

σ[M ] with L/K ∈ T , i.e., if every diagram

0 → K → L

↓
N ,

with exact row and L/K ∈ T , can be extended commutatively by some f : L → N .

N is called faithfully (M,T )-injective if such an f is always uniquely determined.

9.9 (M,T )-injective modules. Properties.

Let T be a hereditary pretorsion class in σ[M ] and N, L ∈ σ[M ]. Assume N is

injective with respect to every exact sequence 0 → K → L in σ[M ] with L/K ∈ T .

Then:

(1) If P is a factor module of L, then N is injective with respect to every exact

sequence 0→ Q→ P with P/Q ∈ T .

(2) Let T be a hereditary torsion class. If U is a submodule of L with L/U ∈ T ,

then N is also injective with respect to every exact sequence 0 → K → U with

U/K ∈ T .

Proof. (1) Let p : L → P be an epimorphism, ε2 : Q → P a monomorphism such

that P/Q ∈ T , and g ∈ HomA(Q,N). Forming a pullback we obtain the commutative

diagram with exact rows,

0 −→ K
ε1−→ L −→ L/K −→ 0

↓ϕ ↓p ‖
0 −→ Q

ε2−→ P −→ P/Q −→ 0

↓g
N .

By diagram lemmata, ϕ is epic. Since N is injective with respect to the first row,

there exists f : L→ N satisfying ϕg = ε1f.

Since in the given situation the pullback is also a pushout we obtain h : P → N

such that g = ε2h.

(2) Under the given conditions a pushout yields the commutative exact diagram

0 0

↓ ↓
0 → K → U → U/K → 0

‖ ↓ ↓
0 → K → L → L/K → 0

↓ ↓
L/U = L/U .
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Since U/K,L/U ∈ T we obtain, by 9.6, that L/K ∈ T . So any K → N extends

to L and hence to U . 2

9.10 (M,T )-injective modules and direct sums.

Let T be a hereditary pretorsion class in σ[M ] and N ∈ σ[M ]. Let {Lλ}Λ be a

family of modules in σ[M ]. Assume N is injective with respect to exact sequences

0→ Kλ → Lλ, with Lλ/Kλ ∈ T . Then N is injective with respect to exact sequences

0→ K →⊕
Λ Lλ, where (

⊕
Λ Lλ)/K ∈ T .

Proof. Let L :=
⊕

Λ Lλ and K ⊂ L. For any g : K → N , consider the set

M := {h : U → N |K ⊂ U ⊂ L and h|K = g}.

This can be ordered by

[h1 : U1 → N ] ≤ [h2 : U2 → N ]⇔ U1 ⊂ U2 and h2|U1 = h1.

M is in fact inductively ordered and hence, by Zorn’s Lemma, has a maximal

element h0 : U0 → N . To show L = U0 it suffices to prove Lλ ⊂ U0 for all λ ∈ Λ. By

assumption, every diagram

0 −→ U0 ∩ Lλ −→ Lλ
↓
U0

h0−→ N

can be extended commutatively by some homomorphism hλ : Lλ → N , since

Lλ/(Lλ ∩K) ' (Lλ +K)/K ⊂ L/K ∈ T ,

and hence Lλ/(U0∩Lλ), as an image of Lλ/(Lλ∩K), belongs to T . The assignement

h∗ : U0 + Lλ → N, u+ lλ 7→ uh0 + lλhλ,

does not depend on the representation u+lλ, since u+lλ = 0 implies u = −lλ ∈ Lλ∩U0,

and hence

(u+ lλ)h
∗ = uh0 + lλhλ = −lλhλ + lλhλ = 0.

So h∗ : U0 + Lλ → N is a homomorphism which belongs to M and obviously is

greater or equal to h0 : U0 → N . By maximality of h0, we conclude h∗ = h0. Hence

in particular U0 + Lλ = U0 and Lλ ⊂ U0. 2

Definition. Let T be a hereditary torsion class, and N ∈ σ[M ]. An (M, T )-

injective module E ∈ σ[M ] with N ⊂ E is called an (M, T )-injective hull of N if N

is essential and T -dense in E. In this case we denote E by ET (N).
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ET (N) is uniquely determined up to isomorphism and can be obtained as the

submodule E ′ of the M -injective hull N̂ of N with

E ′/N = T (N̂/N).

By construction E ′/N ∈ T and N̂/E ′ is T -torsionfree. If N is T -torsionfree then E ′

and N̂ are also T -torsionfree. E ′ is in fact (M, T )-injective. This results from the

following characterization of (M, T )-injective modules.

9.11 (M,T )-injective modules. Characterizations.

For a hereditary torsion class T and N ∈ σ[M ], the following are equivalent:

(a) N is (M, T )-injective;

(b) every exact sequence 0→ N → L→ L/N → 0 with L/N ∈ T splits;

(c) for a family of generators {Gλ}Λ of σ[M ], N is injective with respect to every

exact sequence 0→ K → Gλ, with λ ∈ Λ and Gλ/K ∈ T ;

(d) for the M-injective hull N̂ of N, N̂/N is T -torsionfree.

Proof. (a)⇒ (b) and (a)⇒ (c) are obvious.

(b) ⇒ (a) Consider any exact sequence 0 → B → C → C/B → 0 with C/B ∈ T
and g : B → N . Forming a pushout we obtain the commutative exact diagram

0 → B → C → C/B → 0

↓g ↓ ↓'
0 → N → L → L/N → 0.

Then L/N ∈ T and the lower row splits. This yields the morphism C → N wanted.

(c)⇒ (a) By assumption and 9.10, N is also injective with respect to every exact

sequence 0→ U →⊕
ΛGλ with

⊕
ΛGλ/U ∈ T .

Let 0 → K → L denote an exact sequence in σ[M ] with L/K ∈ T . L is a factor

module of some direct sum of Gλ’s and hence (by 9.9(1)), N is injective with respect

to any sequence 0→ K → L with L/K ∈ T . So N is (M, T )-injective.

(b)⇒ (d) Let T (N̂/N) = U/N . The sequence 0→ N → U → U/N → 0 splits by

assumption, i.e., N is a direct summand of U . Since N is essential in N̂ this means

U = N . Hence N̂/N is T -torsionfree.

(d)⇒ (b) Let 0→ N → L→ L/N → 0 be an exact sequence in σ[M ], L/N ∈ T .

We have the commutative diagram

0 → N → L → L/N → 0

‖ ↓
0 → N → N̂ → N̂/N → 0,

which extends commutatively by the zero map L/N → N̂/N since N̂/N is T -

torsionfree. Now apply the Homotopy Lemma. 2
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9.12 Lemma. Let T be a hereditary torsion class in σ[M ], N ∈ σ[M ] and ET (N)

the (M, T )-injective hull of N. Consider the following assertions:

(1) ET (N) is M-injective;

(2) for every K ⊂M and f ∈ HomA(K,N), there exist K ⊂ L ⊂M , where

M/L ∈ T and g ∈ HomA(L,N) with g|K = f .

Then (1) ⇒ (2). If N is T -torsionfree, then (2) ⇒ (1).

Proof. (1)⇒ (2) By assumption, the diagram

0 → K → M

↓f
N → ET (N)

can be extended commutatively by some h : M → ET (N). Then Nh−1 =: L ⊃ K

and h induces a monomorphism M/L→ ET (N)/N , i.e., M/L ∈ T .

(2)⇒ (1) Assume T (N) = 0. Let X ⊂M and f ′ ∈ HomA(X,ET (N)). Put

K := Nf ′−1 ⊂ X and f := f ′|K ∈ HomA(K,N).

By assumption, there exists K ⊂ L ⊂ M with M/L ∈ T and g : L → N with

g|K = f . So we have the commutative diagram

K ⊂ L → M

↓f ↓g ↓h
N = N → ET (N).

Since f = f ′|K = g|K = h|K the difference h|X − f ′ : X → ET (N) induces a map

X/K → ET (N). Now ET (N) is T -torsionfree and X/K ∈ T implies that this map

is zero, i.e., f ′ = h|X . Hence ET (N) is M -injective. 2

9.13 Lemma. Let T be a hereditary torsion class in σ[M ]. Assume that for every

L�M , M/L ∈ T . Then:

(1) Every (M, T )-injective module N ∈ σ[M ] is M-injective.

(2) The (M, T )-injective hull of any N ∈ σ[M ] is equal to its M-injective hull.

Proof. (1) For K ⊂M let K ′ be a complement of K in M . Then L := K ⊕K ′ �M

and every f ∈ HomA(K,N) can be extended to L�M . By our assumptions this map

can be extended to M .

(2) This is clear by (1). 2
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9.14 Faithfully (M,T )-injective modules. Characterization.

Let T be a torsion class in σ[M ]. For any N ∈ σ[M ], the following are equivalent:

(a) N is faithfully (M,T)-injective;

(b) N is T -torsionfree and (M,T )-injective.

Proof. (a)⇒ (b) The diagram

0 → 0 → T (N)

↓
N

can be extended commutatively both by the inclusion map T (N)→ N and the zero

map. By the uniquenes condition the two maps coincide, i.e., T (N) = 0.

(b)⇒ (a) Consider the diagram with exact row,

0 → K → L

↓
N ,

and L/K ∈ T . Assume f, g : L→ N extend the diagram commutatively. Then f − g
induces a homomorphism h : L/K → N . Since N is T -torsionfree, h has to be the

zero map, i.e., f = g. 2

Definition. Let T be a hereditary torsion class in σ[M ] and N ∈ σ[M ]. The

(M, T )-injective hull of the factor module N/T (N) is called the quotient module of N

with respect to T ,

QT (N) := ET (N/T (N)).

9.15 Properties of quotient modules.

Let T be a hereditary torsion class in σ[M ] and N ∈ σ[M ].

(1) QT (N) is torsionfree and faithfully (M, T )-injective.

(2) N is a submodule of QT (N) if and only if N is torsionfree.

(3) For N ∈ T , QT (N) = 0.

Proof. All these observations are obvious from the definitions. 2

9.16 Essential submodules T -dense.

Let T be a hereditary torsion class in σ[M ] and T := EndA(QT (M)). Assume

M 6∈ T and every essential submodule of M is T -dense in M. Then QT (M) is the

M-injective hull of M/T (M) and

(1) T is a (von Neumann) regular left self-injective ring.
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(2) M/T (M) has finite uniform dimension if and only if T is left semisimple.

(3) If M is uniform and T (M) = 0, then EndA(M̂) is a division ring.

Proof. By 9.13, QT (M) is the M -injective hull of M/T (M).

(1) For f ∈ Jac(T ), K := Kef � QT (M). For every ϕ : M → QT (M), Kϕ−1 is

essential in M and hence T -dense in M by assumption. Since M generates QT (M),

QT (M)/K ∈ T , i.e.,

QT (M)/K ' Im f ⊂ T (QT (M)) = 0.

Hence f = 0 and Jac(T ) = 0 and T is regular. By [40, 22.1], Jac(T ) = 0 implies that

TT is self-injective.

(2) M has finite uniform dimension if and only if T has no infinite set of orthogonal

idempotents. Since T is regular this means that it is left semisimple.

(3) For f ∈ T and Ke f 6= 0, Ke f ∩M is T -dense in M and hence T -dense in M̂ .

Then M̂/Ke f ' M̂f ⊂ T (M̂) = 0, i.e. f = 0. Therefore every 0 6= f ∈ T is monic.

Since M/K ∈ T for every 0 6= K ⊂ M , by 9.6, M is uniform and so is M̂ . For

every f ∈ T , Imf ' M̂ is M -injective. Now Imf � M̂ implies M̂f = M̂ , i.e. f is an

isomorphism. 2

In studying quotient modules direct limits are very useful. As observed in 9.7, for

any hereditary pretorsion class T and N ∈ A-Mod, the set of T -dense submodules

L(N, T ) = {U ⊂ N |N/U ∈ T },

is downwards directed with respect to inclusion. For V ⊂ U ⊂ N , denote the inclusion

map by εV,U : V → U . For any L ∈ σ[M ], there is a canonical ZZ-homomorphism

fU,V : HomA(U,L)→ HomA(V, L), f 7→ εV,Uf.

In fact, (Hom(U,L), fU,V ,L(N, T )) is a direct system of ZZ-modules.

9.17 Quotient modules and direct limits.

Let T be a hereditary torsion class in σ[M ] and N, L ∈ σ[M ] with T (L) = 0.

(1) lim
−→
{HomA(U,L) |U ∈ L(N, T )} ' HomA(N,QT (L)).

(2) HomA(N,QT (L)) ' HomA(QT (N), QT (L)).

(3) If G is a generator in σ[M ], then for any L ∈ σ[M ], QT (G) generates QT (L).

(4) lim
−→
{HomA(U,N/T (N)) |U ∈ L(N, T )} ' EndA(QT (N)).
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Proof. (1) For U ∈ L(N, T ), every f ∈ HomA(U,L) can be uniquely extended to

f ∈ HomA(N,QT (L)):

0 → U → N

↓f ↓f
0 → L → QT (L).

This yields a ZZ-morphism ϕU : HomA(U,L)→ HomA(N,QT (L)), and for V ⊂ U , we

have the commutative diagram

HomA(U,L)
ϕU→ HomA(N,QT (L))

↓fUV ↗ϕV

HomA(V, L) .

The ϕU form a direct system of homomorphisms, and by the universal property

of the direct limit, there exists a homomorphism

ϕ : lim
−→
{HomA(U,L) |U ∈ L(N, T )} → HomA(N,QT (L)).

Since all ϕU are monic, ϕ is monic.

We show that ϕ is epic. Let h ∈ HomA(N,QT (L)). For Lh−1 ⊂ N , N/Lh−1 ⊂
QT (L)/L, hence Lh−1 = V ∈ L(N, T ). By restriction we obtain h = h|V ∈
HomA(V, L). The unique extension of h to N → QT (L) yields h.

(2) For every f ∈ HomA(N,QT (L)) there is a unique f ′ ∈ HomA(QT (N), QT (L))

(see 9.14) which makes the diagram commutative:

0 → N/T (N) → QT (N)

↓f ↙f ′

QT (L)

On the other hand, every g ∈ HomA(QT (N), QT (L)) is uniquely determined by

its restriction to N/T (N).

(3) By (2), we have

QT (L) = G · HomA(G,QT (L)) = G · HomA(QT (G), QT (L))

= QT (G) · HomA(QT (G), QT (L)).

(4) follows from (1) and (2). 2

9.18 The quotient functor.

Let T be a hereditary torsion class in σ[M ] and N ∈ σ[M ].

(1) Any f : N → L in σ[M ] induces a unique QT (f) : QT (N)→ QT (L).

(2) Assume f is monic. Then QT (f) is monic, and QT (f) is an isomorphism if

and only if L/Nf ∈ T .



68 Chapter 3. Torsion theories and prime modules

(3) QT : σ[M ]→ σ[M ] is a left exact functor.

Proof. (1) f : N → L in σ[M ] factors uniquely to f̄ : N/T (N) → L/T (L) and f̄ is

uniquely extended to QT (f) : QT (N)→ QT (L).

(2) If f is monic, the induced map f : N/T (N) → L/T (L) is monic (because

T (L)f−1 = T (N)). Since N/T (N) �QT (N), QT (f) is also monic.

Assume L/Nf ∈ T . Then it is easy to see that Coke f ∈ T . This implies that

Im f is T -dense in L/T (L) and ImQT (f) is T -dense - and hence essential (see 9.6) -

in QT (L). However, ImQT (f) ' QT (N) is (M, T )-injective and therefore is a direct

summand in QT (L). This implies ImQT (f) = QT (L).

Assume QT (f) is known to be an isomorphism. By definition of QT (−), the

projection p : L→ L/Nf =: L yields the commutative diagram

L → L/T (L) → QT (L)

↓p ↓ ↓QT (p)

L → L/T (L) → QT (L),

with QT (p) = 0. This implies L/T (L) = 0 and L = L/Nf ∈ T .

(3) By (1) it is easy to verify that QT (−) is in fact a functor.

For X ∈ σ[M ], let pX : X → X/T (X) =: X denote the canonical projection.

Consider the commutative diagram in σ[M ] with the first line exact,

0 −→ K
f−→ L

g−→ N −→ 0

↓pK ↓pL ↓pN
0 −→ K

f−→ L
g−→ N −→ 0

↓ ↓ ↓
0 −→ QT (K)

QT (f)−→ QT (L)
QT (g)−→ QT (N) .

We have to show that the lower row is exact. From above we know that QT (f) is

monic. It remains to prove ImQT (f) = KeQT (g). Since QT (fg) = QT (f)QT (g) = 0,

ImQT (f) ⊂ KeQT (g).

Put U := (T (N))g−1 ⊂ L. Obviously Kf ⊂ U and U/Kf ∈ T . As shown above,

this implies that QT (f) : QT (K) → QT (U) is an isomorphism. By construction,

UpL = Ke g = L ∩ KeQT (g) is a T -dense submodule of KeQT (g). From this we

conclude

KeQT (g) ⊂ QT (U) = ImQT (f).

2

In A-Mod any hereditary torsion class is determined by the dense left ideal in A.

In fact we have by 9.7:
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9.19 T -dense left ideals. Properties.

Let T be a hereditary torsion class in A-Mod, and L = {K ⊂ AA |A/K ∈ T }.
(1) If K ∈ L and K ⊂ L ⊂ A, then L ∈ L;

(2) if K,L ∈ L, then K ∩ L ∈ L;

(3) if K ∈ L, then for every a ∈ A, (K : a) = {r ∈ A | ra ∈ K} ∈ L;

(4) if K ⊂ A and there exists L ∈ L with (K : b) ∈ L for all b ∈ L, then K ∈ L.

In the following application of 9.17 the importance of T -dense left ideals for form-

ing quotient modules becomes obvious.

9.20 Gabriel filter and quotient modules.

Let T be a hereditary torsion class in A-Mod and L = {K ⊂ AA |A/K ∈ T }.
Then

(1) For every A-module N, QT (N) = lim
−→
{Hom(K,N/T (N)) |K ∈ L}.

(2) QT (A) ' EndA(QT (A)), hence a ring structure is defined on QT (A).

(3) QT (N) has a QT (A)-module structure extending the A-structure.

(4) HomA(QT (N), QT (L)) = HomQT (A)(QT (N), QT (L)).

Proof. (1) By 9.17, lim
−→

HomA(K,N/T (N)) ' HomA(A,QT (N)) 'AQT (N).

(2) follows from 9.17(2).

(3) Again by 9.17(2), we obtain

QT (N) ' HomA(A,QT (N)) ' HomA(QT (A), QT (N)).

Hence the EndA(QT (A))-module structure given on the right side can be transferred

to the left side.

(4) We have to show that every A-homomorphism f : QT (N) → QT (L) is also

a QT (A)-homomorphism. This follows from the definition of the QT (A)-structure of

QT (N), resp. QT (L). For q ∈ QT (A), n ∈ HomA(QT (A), QT (N)) = QT (N):

QT (A)
q→ QT (A)

n→ QT (N)
f→ QT (L), (qn)f = q(nf).

2

9.21 Exercises.

(1) Let M be an A-module, U ∈ σ[M ] and p : N → L an epimorphism in σ[M ]. U

is called pseudo-projective with respect to p if, for all non-zero f ∈ Hom(U,L), there



70 Chapter 3. Torsion theories and prime modules

are s ∈ End(U) and g : U → N satisfying gp = sf 6= 0, i.e., we have the commutative

diagram
U

s−→ U

↓g ↓f
N

p−→ L −→ 0.

U is called self-pseudo-projective in σ[M ] if U is pseudo-projective with respect to all

epimorphisms p ∈ σ[M ] with Ke p ∈ Gen(U).

Gen(U) denotes the class of all U -generated modules.

Prove that the following are equivalent ([78], [279, 3.4]):

(a) U is self-pseudo-projective in σ[M ];

(b) Gen(U) is a torsion class in σ[M ];

(c) every generator in Gen(U) is U-pseudo-projective in σ[M ];

(d) every N ∈ σ[M ] with an exact sequence U (Λ) → N → U (Λ) → 0 belongs to

Gen(U).

(2) A family of left ideals L of A with the properties given in 9.19 is called a

Gabriel filter.

Assume L is a Gabriel filter of A. Prove that the class of modules generated by

{A/K}K∈L is a hereditary torsion class in A-Mod.

(3) Let M be an A-module. For Q ∈ σ[M ] consider

Q-Inj := {N ∈ σ[M ] |Q is N -injective }.

Prove that Q-Inj is a hereditary pretorsion class in σ[M ].

References. Berning [78], Dung-Huynh-Smith-Wisbauer [11], Gabriel [140], Golan

[14], Goldman [144], Hutchinson-Leu [161], Leu [187], Wisbauer [273, 279].
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10 Singular pretorsion theory

1.Examples. 2.Non-M -singular modules. 3.Proposition. 4.Proposition. 5.Goldie tor-

sion class. 6.Quotient ring of A. 7.Corollary. 8.Rational submodules. 9.Maximal ring

of quotients. 10.Exercises.

In torsion theory in A-Mod, an important part is played by the singular mod-

ules. This notion can be adapted to the category σ[M ] and many of the interesting

properties are preserved.

Definition. Let M and N be A-modules. N is called singular in σ[M ] or M-

singular if N ' L/K for some L ∈ σ[M ] and K � L (see [273]).

In case M = A, instead of A-singular we just say singular. It is well-known that a

module N is singular in A-Mod if and only if for every n ∈ N , AnA(n) is an essential

left ideal in A.

Obviously, every M -singular module is singular but not vice-versa as we will see

with the examples below.

We denote by SM the class of singular modules in σ[M ]. SM is closed under

submodules, homomorphic images and direct sums (see [40, 17.3, 17.4]), i.e., it is a

hereditary pretorsion class. Hence every module N ∈ σ[M ] contains a largest M-

singular submodule

SM(N) := Tr(SM , N).

However, SM need not be closed under extensions, i.e., SM(N/SM(N)) might not be

zero. In our notation S(N) := SA(N) is just the largest singular submodule of N and

SM(N) ⊂ S(N).

If TA is a hereditary pretorsion class in A-Mod, then the restriction of TA to σ[M ]

yields a (hereditary) pretorsion class TM := TA ∩ σ[M ] in σ[M ]. If M ∈ TA, then

TM = σ[M ]. Pretorsion classes in σ[M ] may be induced by different classes in A-Mod.

In particular, the restriction of the singular torsion class S in A-Mod to σ[M ] need

not yield SM .

10.1 Examples.

(1) Let M be a simple singular A-module. Then σ[M ] ⊂ S and SM = 0.

(2) An A-module M is semisimple if and only if SM = 0.

(3) Let A be an SI-ring (singulars are injective) and choose M ∈ A-Mod such that

S = σ[M ]. Then SM = 0.

(4) Put Q = Q/ZZ. Then in ZZ-Mod, σ[Q] = S and σ[Q] = SQ, i.e., every module

in σ[Q] is Q-singular. This implies that σ[Q] has no projectives.
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Proof. (1) All modules in σ[M ] are singular in A-Mod and projective in σ[M ].

(2) If M is semisimple, every module in σ[M ] is projective and SM = 0.

Assume SM = 0. Then M has no non-trivial essential submodules and hence is

semisimple.

(3) For an SI-ring, all singular modules in A-Mod are semisimple (see [11, 17.4]).

(4) σ[Q] is the category of torsion ZZ-modules. To prove that every module in σ[Q]

is Q-singular it suffices to show this for all cyclic modules ZZ/pnZZ, n ∈ ZZ, p a prime

(a set of generators in σ[Q]). However, this is obvious by

ZZ/pnZZ ' (ZZ/pn+1ZZ)/(pnZZ/pn+1ZZ) and pnZZ/pn+1ZZ � ZZ/pn+1ZZ.

This provides a simple proof for the fact that there are no projective objects in σ[Q]

(see [40, 18.12]). 2

If SM(N) = 0, N is called non-singular in σ[M ] or non-M-singular. Obviously,

N is non-M -singular if and only if, for any K ∈ σ[M ] and 0 6= f : K → N , Ke f is

not essential in K.

10.2 Non-M-singular modules.

Let M be a module with M-injective hull M̂ .

(1) A module N in σ[M ] with HomA(N, M̂) = 0 is M-singular.

(2) Assume SM(M) = 0. Then:

(i) N ∈ σ[M ] is M-singular if and only if HomA(N, M̂) = 0.

(ii) The class of M-singular modules is closed under extensions.

(iii) For all N ∈ σ[M ], SM(N/SM(N)) = 0.

Proof. (1) Consider N ∈ σ[M ] which is not M -singular, i.e., SM(N) 6= N . Then

the M -injective hull N̂ is also not M -singular. Since it is M -generated, there is a

morphism f : M → N̂ whose kernel is not essential in M .

The kernel of the restriction f̄ = f |Nf−1 : Nf−1 → N again is not an essential

submodule and there exists a non-zero submodule K ⊂ Nf−1 with K ∩ Ke f̄ = 0.

Now f̄ |K : K → N is monic and the inclusion K ⊂ M̂ can be extended to a non-zero

morphism in HomA(N, M̂).

(2) (i) SM(M) = 0 implies SM(M̂) = 0 and hence for every M -singular N in σ[M ],

HomA(N, M̂) = 0. The other assertion follows from (1).

(ii) Let 0→ K → L→ N → 0 be exact in σ[M ] with K and N both M -singular.

By (i), HomA(K, M̂) = HomA(N, M̂) = 0. Applying the functor HomA(−, M̂) to the

exact sequence we see HomA(L, M̂) = 0 and L is M -singular by (i).

(iii) This is a consequence of (ii). 2

Next we collect some basic information on M -singular modules (see [11, 4.2,4.3]).
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10.3 Proposition. Let M be an A-module.

(1) Any simple A-module is M-singular or M-projective.

(2) Every M-singular module is an essential submodule of an M-generated M-

singular module.

(3) Each finitely generated M-singular module belongs to σ[M/L], for some L�M .

(4) {M/K | K �M} is a generating set for the M-generated M-singular modules.

Proof. (1) Let E be a simple A-module. If E 6∈ σ[M ] then E is trivially M -projective.

Assume E ∈ σ[M ] is not M -singular and consider an exact sequence

0 −→ K −→ L −→ E −→ 0

in σ[M ]. By assumption, the maximal submodule K ⊂ L is not essential and hence

is a direct summand in L, i.e., the sequence splits and E is projective in σ[M ].

(2) Consider L ∈ σ[M ] and K � L. The M -injective hull L̂ of L is M -generated

and

L/K ⊂ L̂/K, K � L� L̂.

The inclusion map of L/K into its M -injective hull can be extended to L̂/K → L̂/K.

The image of this map is an essential M -generated M -singular extension of L/K.

(3) A finitely generated M -singular module is of the form N/K, for a finitely

generated N ∈ σ[M ] and K � N . N is an essential submodule of a finitely M -

generated module Ñ , i.e., there exists an epimorphism g : Mk → Ñ , k ∈ IN (compare

(2)), and U := (N)g−1 and V := (K)g−1 are essential submodules of Mk.

With the canonical inclusions εi : M → Mk we get that L :=
⋂
i≤k V ε

−1
i is an

essential submodule of M and Lk lies in the kernel of the composed map

U
g−→ N −→ N/K.

This implies N/K ∈ σ[M/L].

(4) is an immediate consequence of (3). 2

10.4 Proposition. Let N be an M-singular module and f ∈ HomA(M,N).

(1) If M is self-projective and (M)f is finitely generated, then Ke f �M .

(2) If M is projective in σ[M ], then Ke f �M .

Proof. (1) Under the given conditions we may assume (M)f = L/K with L ∈ σ[M ]

finitely generated and K � L. Since M is self-projective it is also L-projective, and

the diagram with the canonical projection p,

M

↓f
L

p−→ L/K −→ 0 ,
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can be extended commutatively by some g : M → L. Then Ke f = (K)g−1 �M .

(2) The arguments in (1) apply without finiteness condition. 2

As mentioned before, the class SM is not closed under extensions. We extend SM
to a torsion class in the following way:

10.5 Goldie torsion class.

Let S2
M denote the modules X ∈ σ[M ], for which there exists an exact sequence

0→ K → X → L→ 0, with K,L ∈ SM . Then:

(1) S2
M is a stable torsion class, called the Goldie torsion class in σ[M ].

(2) For any N ∈ σ[M ], S2
M(N) = 0 if and only if SM(N) = 0, and

S2
M(N)/SM(N) = SM(N/SM(N)).

(3) For any N ∈ σ[M ], QS2
M

(N) is M-injective.

(4) QS2
M

: σ[M ]→ σ[M ] is an exact functor.

Proof. (1) It is straightforward to verify that S2
M is closed under submodules, factors

and direct summands. To show that it is closed under extensions, consider an exact

sequence

(∗) 0→ X → Z → Y → 0, where X, Y ∈ S2
M .

Any complement C of X in Z is isomorphic to a submodule of Y and hence C ∈ S2
M .

Then X ⊕ C ∈ S2
M and X ⊕ C � Z.

Hence without restriction we may assume in (∗) that X � Z and Y ∈ SM . From

the proof of (2) we have SM(X) �X and hence Z ∈ S2
M .

Now it is obvious that S2
M is closed under essential extensions in σ[M ].

(2) The first assertion is clear since every non-zero module in S2
M contains a non-

zero submodule of SM . Obviously, S2
M(N)/SM(N) ⊃ SM(N/SM(N)). Consider

L ⊂ S2
M(N) with 0 = SM(N) ∩ L = SM(L).

Then S2
M(L) = 0 and hence L = 0. Therefore SM(N) � S2

M(N) and hence

S2
M(N)/SM(N) ⊂ SM(N/SM(N)).

(3) follows from 9.13.

(4) Let 0→ K
f→ L

g→ N → 0 be exact in σ[M ]. We know from 9.18 that

0 −→ QS2
M

(K)
QS2

M
(f)

−→ QS2
M

(L)
QS2

M
(g)

−→ QS2
M

(N)

is exact. By (3), QS2
M

(K) and QS2
M

(L) are M -injective. This implies that ImQS2
M

(g) is

M -injective and hence is a direct summand in QS2
M

(N). Since N/S2
M(N) ⊂ ImQS2

M
(g)

is an essential submodule in QS2
M

(N), we conclude ImQS2
M

(g) = QS2
M

(N).

This completes the proof that QS2
M

(−) is exact. 2
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The following assertion indicates a connection to the quotient ring of A. We

consider the Goldie torsion theory in A-Mod and put S2 := S2
A.

10.6 Quotient ring of A.

Let M be an A-module with A ∈ σ[M ]. Then:

(1) QS2(A) is a ring and QS2(M) is a generator in QS2(A)-Mod.

(2) QS2(M) is finitely generated and projective as module over

T := EndA(QS2(M))(= EndQS2 (A)(QS2(M)).

(3) QS2(A) ' End (QS2(M)T ).

Proof. (1) The ring structure of QS2(A) is given in 9.20.

By assumption, A ⊂ Mk, k ∈ IN . Since QS2(−) is (left) exact, we conclude

QS2(A) ⊂ QS2(M)k. By 9.13, QS2(A) is self-injective and hence is a direct summand

in QS2(M)k, i.e., it is generated by QS2(M).

(2) and (3) characterize QS2(M) as generator in QS2(A)-Mod. 2

10.7 Corollary. Let M be a faithful module with SM(M) = 0. Then the following

are equivalent:

(a) A ∈ σ[M ];

(b) M̂ is finitely generated over EndA(M̂).

Proof. (a)⇒ (b) Apply 10.6.

(b)⇒ (a) AM̂ is a faithful A-module and hence A ∈ σ[M̂ ] = σ[M ] (see [40, 15.4]).

2

The hereditary torsion theory in σ[M ], whose torsionfree class is cogenerated by

the M -injective hull M̂ of M , is called the Lambek torsion theory in σ[M ]. The torsion

class is given by

TM = {K ∈ σ[M ] |HomA(K, M̂) = 0}.

Obviously, M is torsionfree in this torsion theory. In fact, TM is the largest torsion

classe for which M is torsionfree. QTM (M) is just the (M, TM)-injective hull of M .

A TM -dense submodule U of N ∈ σ[M ] is said to be (M-) rational in N and N is

called a rational extension of U .

10.8 Rational submodules.

For a submodule U ⊂ N with N ∈ σ[M ], the following are equivalent:

(a) U is rational in N;

(b) for any U ⊂ V ⊂ N , HomA(V/U,M) = 0.
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Proof. (a)⇒ (b) For 0 6= f ∈ HomA(V/U,M), the diagram

0 → V/U → N/U

↓f
M → M̂

can be extended commutatively by a non-zero morphism N/U → M̂ .

(b)⇒ (a) Consider a non-zero g ∈ HomA(N/U, M̂) and Mg−1 = V/U for some

U ⊂ V ⊂ N . Then the restriction g|V/U ∈ HomA(V/U,M) is not zero. 2

10.9 Maximal ring of quotients.

For M = A we have the torsion class in A-Mod,

T := TA = {K ∈ A-Mod |Hom(K, Â) = 0}.

This yields the Lambek torsion theory in A-Mod. The quotient modul QT (A) allows

a ring structure for which A is a subring (see 9.20). QT (A) is called the maximal (left)

quotient ring of A, denoted by Qmax(A).

For a non-M -singular M (i.e., a S2
M -torsionfree M), the Lambek torsion theory

in σ[M ] is closely related to the singular torsion theory. We will investigate these

modules in the next section.

10.10 Exercises.

(1) Let M be an A-module. For any two classes of modules C and D in σ[M ],

denote by EM(D, C) the class of A-modules N for which there is an exact sequence

0→ C → N → D → 0

in σ[M ], where C ∈ C and D ∈ D.

(i) Let C and D be subclasses of σ[M ]. Prove: If C and D are closed under sub-

modules (factor modules, direct sums) then EM(D, C) is also closed under submodules

(resp. factor modules, direct sums).

(ii) Let C and D be subclasses of A-Mod which are closed under isomorphisms.

Prove: For any left ideal I ⊂ A, A/I ∈ EA(D, C) if and only if there exists a left ideal

J ⊃ I of A such that J/I ∈ C and A/J ∈ D.

(2) Let M be a generator in A-Mod which is cogenerated by Â (the injective hull

in A-Mod). Put S = EndA(M) and T = EndA(M̂). Prove that the following are

equivalent ([164, Theorem 3.5]):

(a) T is left self-injective and isomorphic to Qmax(S);
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(b) ST is isomorphic to the injective hull of SS;

(c) HomA(M̂/M, M̂) = 0.

(3) Let Qmax(A) be the maximal left quotient ring of A. We ask for properties of

Qmax(A) as right A-module. Prove that the following are equivalent ([194]):

(a) Every finitely generated submodule of AQmax(A) is cogenerated by A;

(b) Qmax(A) is a rational extension of AA.

References. Berning [78], Dung-Huynh-Smith-Wisbauer [11], Izawa [164], Ma-

saike [194], Wisbauer [273, 279].
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11 Polyform modules

1.Polyform modules. 2.Properties of EndA(M̂). 3.Monoform modules. 4.Maximal

quotients of non-singular rings. 5.Quotient rings of EndA(M). 6.Finite dimensional

polyform modules. 7.Goldie’s Theorem. 8.Polyform subgenerators. 9.Trace and

torsion submodules. 10.Properties. 11.Properties of polyform modules. 12.Bimod-

ule properties of polyform modules. 13.Independence over the endomorphism ring.

14.Self-injective polyform modules. 15.Idempotent closure of polyform modules. 16.Ex-

ercises.

A module M is called polyform if every essential submodule is rational in M . Our

next result shows that this is just another name for a non-M -singular module M .

11.1 Polyform modules. Characterization.

For an A-module M with M-injective hull M̂ , the following are equivalent:

(a) Every essential submodule is rational in M;

(b) for any submodule K ⊂M and 0 6= f : K →M , Ke f is not essential in K;

(c) for any K ∈ σ[M ] and 0 6= f : K →M , Ke f is not essential in K;

(d) M is non-M-singular (i.e., SM(M) = 0);

(e) EndA(M̂) is regular.

Proof. (a)⇒ (e) Apply 9.16.

(a)⇒ (d) Assume 0 6= K ⊂ M is an M -singular submodule. By 10.3, K is

contained in an M -generated M -singular submodule K̃ ⊂ M̂ and, moreover, K̃ is

generated by {M/U | U �M}. However, U �M implies HomA(M/U, M̂) = 0. Hence

K ⊂ K̃ = 0.

(c)⇔ (d)⇒ (b) are obvious.

(e)⇒ (b) Suppose for some K ⊂ M and f : K → M that Ke f �K. Then f can

be extended to an f̄ ∈ EndA(M̂) with Ke f̄ � M̂ . EndA(M̂) being regular, Ke f̄ is a

direct summand (see 7.6) and hence f̄ and f have to be zero.

(b)⇒ (a) Consider U �M and f ∈ HomA(V/U,M), for any U ⊂ V ⊂ M . With

the projection p : V → V/U we obtain pf ∈ HomA(V,M) which has an essential

kernel. From (b) we conclude that pf and f are zero. Now apply 10.8. 2

11.2 Properties of EndA(M̂).

Let M be a polyform A-module and T = EndA(M̂).

(1) T is regular and left self-injectice.

(2) EndA(M) is subring of T.
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(3) Every monomorphism f ∈ EndA(M) with Im f �M is invertible in T .

(4) M has finite uniform dimension if and only if T is left semisimple.

Proof. Combine 11.1, 9.18 and 9.16. 2

A module M is said to be monoform if every submodule is rational in M . Notice

that any uniform submodule of a polyform module is monoform. As a special case of

11.1 we obtain:

11.3 Monoform modules. Characterization.

For an A-module M with M-injective hull M̂ , the following are equivalent:

(a) Every non-zero submodule is rational in M (M is monoform);

(b) for any submodule K ⊂M and 0 6= f : K →M , Ke f = 0;

(c) M is uniform and non-M-singular (i.e., SM(M) = 0);

(d) EndA(M̂) is a division ring.

Let E(A) denote the A-injective hull of AA. Applying the preceding results to

M = A we have:

11.4 Maximal quotients of non-singular rings.

Let A be a left non-singular ring.

(1) Qmax(A) = EndA(E(A)) is a selfinjective, regular ring.

(2) AA has finite uniform dimension if and only if Qmax(A) is left semisimple.

(3) Assume A is a subring in any left self-injective ring Q and A � AQ. Then

Q ' Qmax(A).

(4) If AA is uniform then Qmax(A) is a division ring.

Proof. (1),(2) and (4) follow from 11.2 and 11.1.

(3) Since A� AQ, we may assume AQ ⊂ Qmax(A). Denote by · the multiplication

in Q and by ∗ the multiplication in Qmax(A). We show that p ·q = p∗q for all p, q ∈ Q.

Consider K = {s ∈ A | sp ∈ A} = Ap−1 � A. For every k ∈ K,

k(p · q − p ∗ q) = (kp)q − (kp)q = 0,

i.e., K(p · q − p ∗ q) = 0. Since Qmax(A) is a non-singular A-module, this implies

p · q = p ∗ q. So Qmax(A) is a Q-module and Q�Qmax(A) is a direct summand, i.e.,

Q = Qmax(A). 2
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An overring Q ⊃ A is called a classical left quotient ring of A if every element in

A, which is not a zero divisor, is invertible in Q and all elements of Q have the form

s−1t, where s, t ∈ A and s is not a zero divisor. For details about these rings we refer

to Lambek [183] or Stenström [39].

For a polyform module M , we know from 11.4 that S = EndA(M) is subring of the

self-injective, regular ring T = EndA(M̂). In general, T need not to be the maximal

quotient ring of S and S need not even be non-singular. This is the case under special

conditions.

11.5 Quotient rings of EndA(M).

Let M be a polyform A-module with S = EndA(M).

(1) Assume for all non-zero submodules N ⊂M , HomA(M,N) 6= 0. Then:

(i) T := EndA(M̂) is an essential extension of SS.

(ii) S is left non-singular and T = Qmax(S).

(2) Assume for every K �M there is a monomorphism g : M → K with Mg �K.

Then EndA(M̂) is a classical left quotient ring of S.

Proof. (1)(i) For a non-zero f ∈ EndA(M̂), K = Mf−1∩M is an essential submodule

of M . From HomA(M,N) 6= 0 for all non-zero N ⊂M , we deduce

Tr (M,K) = MHomA(M,K) �K �M.

This implies MHomA(M,K)f 6= 0 and we can find some g ∈ HomA(M,K) with

0 6= gf ∈ S. Thus gf ∈ S ∩ Sf 6= 0.

(ii) Assume SS has a singular submodule Sb 6= 0, b ∈ S. Then K = AnS(b) �

SS � ST . This implies that TK ⊂ AnT (b) are essential left ideals in T , i.e., Tb is a

singular submodule in TT . However, T is regular and so b ∈ S(TT ) = 0, i.e., SS is

non-singular. Therefore Qmax(S) is equal to the S-injective hull Ŝ of S.

Since TT is self-injective we can now apply 11.4(3).

(3) We show that any q ∈ EndA(M̂) has the form q = s−1t, for s, t ∈ S: Consider

N := Mq−1 ∩M �M and choose a monomorphism s : M → N with Ms�M . Now

(the extension of) s is invertible in EndA(M̂) (see 11.2) and q = s−1t. 2

Under the general assumptions in 11.5, condition (2) holds for modules with finite

uniform dimension and semiprime endomorphism ring. We cite this from [11, 5.19]:

11.6 Finite dimensional polyform modules.

Let M be an A-module with S = EndA(M). Assume HomA(M,N) 6= 0 for all

non-zero N ⊂M . Then the following assertions are equivalent:

(a) M is polyform with finite uniform dimension and S is semiprime;
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(b) M is polyform with finite uniform dimension and, for every N �M , there is a

monomorphism M → N ;

(c) EndA(M̂) is left semisimple and is the classical left quotient ring of S.

In this case, for every essential submodule L of M , LEndA(M̂) = M̂ .

In case S = EndA(M) is commutative, one of the conditions in 11.6(a) is auto-

matically satisfied: From 11.5 we know that S is non-singular and any non-singular

commutative ring is semiprime.

Applied to M = A, 11.6 yields the classical (see [11, 5.20])

11.7 Goldie’s Theorem. For a ring A, the following are equivalent:

(a) A is semiprime and AA is non-singular with finite uniform dimension;

(b) A is semiprime and AA has finite uniform dimension and acc on annihilators;

(c) A has a classical left quotient ring which is left semisimple.

11.8 Polyform subgenerators.

Let M be a polyform A-module, T = EndA(M̂) and suppose A ∈ σ[M ]. Then:

(1) A is left non-singular and QS(A) = Qmax(A).

(2) M̂ is a generator in QS(A)-Mod.

(3) M̂T is finitely generated and T -projective, and QS(A) ' EndT (M̂).

(4) If M has finite uniform dimension, then T and Qmax(A) are left semisimple.

Proof. (1),(4) A ∈ σ[M ] implies A ⊂Mk, for some k ∈ IN . Hence AA is non-singular.

If M has finite uniform dimension then AA has finite uniform dimension.

(2),(3) Apply 10.6. 2

For convenience we fix the following notation.

11.9 Trace and torsion submodules.

Let M be an A-module, M̂ its self-injective hull and T = EndA(M̂). Let K ⊂ M̂

be a submodule and L ∈ σ[M ].

By T K(L) we denote the trace of σ[K] in L, i.e.

T K(L) =
∑
{U ⊂ L |U ∈ σ[K]}.

For cyclic submodules Aa ⊂ L, put T a(L) = T Aa(L).

By TK we denote the hereditary torsion class in σ[M ] determined by K̂T (⊂ M̂).

Then for L ∈ σ[M ], TK(L) denotes the corresponding torsion submodule of L, i.e.

TK(L) =
∑
{U ⊂ L |HomA(U, K̂T ) = 0}.

In particular, for cyclic modules K = Aa, we put Ta(L) = TAa(L).

We list some properties related to these notions.
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11.10 Properties. Let M be an A-module, K ⊂M and T = EndA(M̂).

(1) T K(M̂) = KT is a K-injective module.

(2) T K(M) = T K(M̂) ∩M .

(3) for any submodule L ⊂ M̂ , T K(L) ∩ TK(L) = 0.

(4) For submodules L,N ⊂M with K = L+N ,

T K(M̂) = T L(M̂) + T N(M̂) and TK(M) = TL(M) ∩ TN(M).

(5) If K is generated by a1, . . . , an ∈ K, TK(M) =
⋂n
i=1 Tai(M).

Proof. (1) KT is injective in σ[K] (see [40, 16.8]).

(2) TK is a hereditary torsion class.

(3) For X ⊂ T K(L) ∩ TK(L), X ⊂ KT and HomA(X, K̂T ) = 0. This implies

X = 0.

(4) For K = L+N , KT = LT +NT . Hence without restriction assume K = KT ,

L = LT and N = NT . Clearly TK(M) ⊂ TL(M) ∩ TN(M). Consider an additive

complement No ⊂ N of L in K. Then L⊕No is an essential submodule of K and

K̂ = L̂⊕ N̂o ⊂ L̂⊕ N̂ .

From this we conclude TK(M) ⊃ TL(M) ∩ TN(M).

(5) This is derived from (4) by induction. 2

11.11 Properties of polyform modules.

Let M be a polyform A-module, M̂ its M-injective hull, and T = EndA(M̂). Then

for any submodule K ⊂M :

(1) TK(M̂) is M-injective.

(2) TTK(M̂)
(M̂) = K̂T .

(3) M̂ = TK(M̂)⊕ K̂T .

(4) TK(M) + T K(M) �M .

(5) for any m ∈ M̂ , AnT (m) is generated by an idempotent in T and M̂ is a non-

singular right T -module.

Proof. Put L = TK(M̂).

(1) Since M̂ is polyform, HomA(L̂, K̂T ) = 0 and hence L̂ ⊂ L, i.e., L̂ = L is

M -injective.

(2) Consider g ∈ HomA(K,L). Since Ke g is not essential in K, there exists

0 6= X ⊂ K with X ∩ Ke g = 0 and X ' (X)g ⊂ L, a contradiction. Hence

K ⊂ TL(M̂) and KT ⊂ TL(M̂) since TL(M̂) is fully invariant.
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Now we show that KT � TL(M̂). Assume there is a non-zero submodule U ⊂
TL(M̂) with U ∩KT = 0. If HomA(U, K̂T ) = 0, then U ⊂ L and

U ⊂ T L(M̂) ∩ TL(M̂) = 0, a contradiction.

Hence there is a non-zero g : U → K̂T . Since Ke g is not essential in U , there

exists a non-zero submodule V ⊂ U with V ∩Ke g = 0. Because of KT �K̂T , we may

assume V ' (V )g ⊂ KT . Now for some t ∈ T , we have V = (V )gt ⊂ U ∩KT = 0, a

contradiction.

(3) By (1), L and TL(M̂) are M -injective. Since L ∩ TL(M̂) = 0 by definiton,

M̂ = L⊕ TL(M̂)⊕W for some W ⊂ M̂ .

Assume there is a non-zero h ∈ HomA(W,L) and Q∩Keh = 0, for some non-zero

Q ⊂ W . Then Q ' (Q)h ⊂ L and there is some t ∈ T with Q = (Q)ht ⊂ W ∩L = 0.

This implies HomA(W,L) = 0 and W ⊂ TL(M̂).

Hence W = 0 and by (2), M̂ = L⊕ TL(M̂) = L⊕ K̂T .

(4) is an immediate consequence of (3).

(5) For m ∈ M̂ consider t ∈ T with (m)t = 0. Then (Am)t = 0 and - M̂ being

polyform - (Âm)t = 0. We have M̂ = Âm ⊕ U for some A-submodule U ⊂ M̂ . For

the related projection (idempotent) g : M̂ → Âm, M̂gt = 0. This means gt = 0

and t = (1 − g)t ∈ (1 − g)T . Therefore AnT (m) = (1 − g)T implying that M̂ is a

non-singular T -module. 2

As already shown above, the condition on an A-module to be polyform has a strong

influence on the structure of its fully invariant submodules. We collect information

about this in our next lemma:

11.12 Bimodule properties of polyform modules.

Let M be a polyform A-module, M̂ its M-injective hull and T = EndA(M̂). Denote

by C the centre of T (i.e., the endomorphism ring of M̂ as an (A, T )-bimodule). Then:

(1) Every essential (A, T )-submodule of M̂ is essential as an A-submodule.

(2) M̂ is self-injective and polyform as an (A, T )-bimodule.

C is a regular self-injective ring.

(3) For every submodule (subset) K ⊂ M̂ , there exists an idempotent ε(K) ∈ C,

such that AnC(K) = (1− ε(K))C.

(4) If K � L ⊂ M̂ , then ε(K) = ε(L).

(5) Every finitely generated C-submodule of M̂ is C-injective.

(6) If M̂ is a finitely generated (A, T )-module, M̂ is a generator in C-Mod.

Proof. (1) Let N ⊂ M̂ be an essential (A, T )-submodule. Then N ∩ TN(M̂) = 0

implies TN(M̂) = 0 and M̂ = N̂T = N̂ by 11.11.
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So N � M̂ as an A-submodule.

(2) Again let N ⊂ M̂ be an essential (A, T )-submodule and h : N → M̂ an (A, T )-

morphism. Since M̂ is a self-injective A-module, there is an f ∈ T which extends h

from N to M̂ . For any t ∈ T and n ∈ N ,

(nt)f − (n)ft = (nt)h− (n)ht = 0.

Hence N ⊂ Ke (tf − ft). By (1), N � AM̂ , and since M̂ is polyform, tf − ft = 0,

implying that f is an (A, T )-morphism and M̂ is a self-injective (A, T )-module.

The endomorphism ring of the self-injective (A, T )-module M̂ is the centre of the

regular ring T and hence is also regular. So M̂ is a polyform (A, T )-module by 11.1.

This in turn implies that C is self-injective.

(3) By 11.11, there is a bimodule decomposition M̂ = TK(M̂) ⊕ K̂T . Then the

projection ε(K) : M̂ → K̂T is an idempotent in C and

AnC(K) = AnC(K̂T ) = (1− ε(K))C.

(4) This property is obvious since M̂ is polyform.

(5) As shown in 11.11, every cyclic C-submodule of M̂ is isomorphic to a direct

summand of C and hence is C-injective. Since M̂ is a non-singular C-module, any

finite sum of C-injective submodules is again C-injective.

(6) Let M̂ be generated as (A, T )-module by m1, . . . ,mk. Then the map

C → M̂k, c 7→ (m1, . . . ,mk)c,

is a monomorphism. Since C is injective, it is a direct summand of M̂k and so M̂ is

a generator in C-Mod. 2

For later use we state some linear dependence properties of elements in M̂ with

respect to EndA(M̂).

11.13 Independence over the endomorphism ring.

Let M be an A-module, T = EndA(M̂) and m1, . . . ,mn ∈ M̂ .

(1) Assume m1 6∈
∑n
i=2 miT . Then there exists a ∈ A such that am1 6= 0 and

ami = 0 for i = 2, . . . , n.

(2) Assume and m1T ∩
∑n
i=2miT = 0. Then AnA(m2, . . . ,mn)m1 � Am1.

(3) If M is polyform and AnA(m2, . . . ,mn)m1 � Am1, then m1T ∩
∑n
i=2miT = 0.

Proof. Put U = AnA(m2, . . . ,mn).

(1) This follows from the proof of (2).
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(2) Assume there exists a non-zero submodule V ⊂ Am1 satisfying V ∩ Um1 = 0.

Consider the canonical projection α : V ⊕Um1 → V . M being self-injective, α extends

to an endomorphism t of M . From Am1t ⊃ (V +Um1)t = V 6= 0 we conclude m1t 6= 0.

We also have U(m1t) = (Um1)t = (Um1)α = 0. By [40, 28.1,(4)] (or [169,

Corollary 2.2]), this implies

m1t ∈ {m ∈ M̂ | Um = 0} = An
M̂

AnA(
n∑
i=2

miT ) =
n∑
i=2

miT,

a contradiction.

(3) Assume 0 6= m1t ∈
∑n
i=2miT for some t ∈ T . Then Um1t ⊂ U

∑n
i=2 miT = 0.

Since M is polyform and Um1 � Am1 we have Am1t = 0, a contradiction. 2

Recall that for X ⊂M and b ∈M , we put (X : b)A = {r ∈ A | rb ∈ X}.

11.14 Self-injective polyform modules.

Let M be a self-injective polyform A-module, T = EndA(M̂) and Λ = A⊗ZZ T o.
(1) For any submodule N ⊂M and m ∈M , (TN(M) : m)A = AnA(mε(N)).

(2) For m1, . . . ,mn,m ∈M and U = AnA(m2, . . . ,mn) the following are equivalent:

(a) There exists h ∈ Λ with hm1 = mε(Um1) and hmi = 0 for i = 2, 3, . . . , n;

(b) there exist r1, . . . , rk ∈ A such that for any s1, . . . , sn ∈ A, the relations∑n
l=1 slrjml = 0 for j = 1, . . . , k, imply s1m ∈ TUm1(M).

Proof. (1) By definition of the idempotent ε(N) (see 11.12), Mε(N) = N̂T and

M(1− ε(N)) = TN(M). Hence for r ∈ A, rm ∈ TN(M) if and only if (rm)ε(N) = 0.

Now our assertion follows from (rm)ε(N) = r(mε(N)).

(2) (a)⇒ (b) Put e = ε(Um1). By (1), (TUm1(M) : m)A = AnA(me).

Choose an element h =
∑k
j=1 rj ⊗ tj in Λ with

hm1 = me and hmi = 0 for all i = 2, . . . , n.

Assume for s1, . . . , sn ∈ A,
∑n
l=1 slrjml = 0 for j = 1, . . . , k. Then

s1me = s1hm1 =
n∑
l=1

slhml =
n∑
l=1

sl
k∑
j=1

rjmltj =
k∑
j=1

(
n∑
l=1

slrjml)tj = 0.

Hence s1 ∈ AnA(me) = (TUm1(M) : m)A.

(b)⇒ (a) Put N =
∑n
i=1A(r1mi, . . . , rkmi) ⊂Mk and consider the assignement

ψ : N →M,
n∑
i=1

si(r1mi, . . . , rkmi) 7→ s1me.
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To show that ψ is well-defined assume
∑n
i=1 si(r1mi, . . . , rkmi) = 0.

Then
∑n
i=1 sirjmi = 0, for all j = 1, . . . , k.

By assumption, s1 ∈ (TUm1(M) : m)A = AnA(me). Hence s1me = 0 proving that

ψ is a well-defined morphism.

M being M -injective, ψ can be extended to a morphism Mk → M , also denoted

by ψ. Since HomA(Mk,M) = T k there exist t1, . . . , tk ∈ T such that

(x1, . . . , xk)ψ =
k∑
i=1

xiti , for all (x1, . . . , xk) ∈Mk.

Put h =
∑k
j=1 rj ⊗ tj. Then

hm1 =
∑k
j=1 rjm1tj = (r1m1, r2m1, . . . , rkm1)ψ = me, and

hml =
∑k
j=1 rjmltj = (r1ml, r2ml, . . . , rkml)ψ = 0, for l = 2, . . . , n.

2

There is an extension of a module M contained in the M -injective hull M̂ which

turns out to be of some interest.

Definition. Let M be an A-module, T = EndA(M̂) and B the Boolean ring of

all central idempotents of T . Then we call M̃ = MB the idempotent closure of M.

This notion is closely related to the π-injective hull of M defined in Goel-Jain

[143], which can be written as MU , with U the subring generated by all idempotents

in T . Hence if all idempotents in T are central, M̃ is just the π-injective hull of M .

11.15 Idempotent closure of polyform modules.

We use the above notation. Let M be an A-module with idempotent closure

M̃ . Then for every a ∈ M̃ , there exist m1, . . . ,mk ∈ M and pairwise orthogonal

c1, . . . , ck ∈ B such that a =
∑k
i=1mici.

If M is polyform, there exist pairwise orthogonal e1, . . . , ek ∈ B such that

(1) a =
∑k
i=1miei;

(2) ei = ε(mi)ei, for i = 1, . . . , k;

(3) ε(a) =
∑k
i=1 ei.

Proof. Write a =
∑r
j=1 ujbj, with u1, . . . , ur ∈M and b1, . . . , br ∈ B.

The Boolean subring of B generated by b1, . . . , br is finite and hence isomorphic

to (ZZ2)k for some k ∈ IN . So it contains a subset of pairwise orthogonal idempotents

c1, . . . , ck such that, for all j ≤ r, bj =
∑
i∈S(j) ci with S(j) ⊂ {1, . . . k}. Hence

a =
k∑
i=1

mici , where mi =
∑
{ul | i ∈ S(l)}.
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Assume M is polyform. Put ei = ε(mi)ciε(a). Since aε(a) = a and miε(mi) = mi,

k∑
i=1

miei =
k∑
i=1

miε(mi)ciε(a) =
k∑
i=1

miciε(a) = (
k∑
i=1

mici)ε(a) = a.

(2) follows from the definition of the idempotents ei above.

(3) Clearly ε(a)ei = ei, for all i = 1, . . . , k, and hence ε(a)
∑k
i=1 ei =

∑k
i=1 ei.

Since aei = miei, a =
∑k
i=1 miei = a(

∑k
i=1 ei). Therefore (see 11.12)

id−
k∑
i=1

ei ∈ AnT (a) = (id− ε(a))T.

So ε(a)
∑k
i=1 ei = ε(a) and ε(a) =

∑k
i=1 ei. 2

11.16 Exercises.

(1) Let M =
⊕

ΛMλ be a direct sum of A-modules. Show that the following are

equivalent ([284, 3.3]):

(a) M is polyform;

(b) for every λ, µ ∈ Λ and U ⊂Mλ, the kernel of any f : U →Mµ is not essential

in U .

(2) Show that the following are equivalent for an A-module M :

(a) HomA(M/SocM, M̂) = 0;

(b) M is polyform and SocM �M ;

(c) the canonical assignement EndA(SocM)→ EndA(M̂) is an isomorphism.

(3) Strongly regular endomorphism ring ([226]).

Prove that for an A-module M and T = EndA(M̂) the following are equivalent:

(a) T is strongly regular;

(b) M is polyform and T is reduced;

(c) every direct summand in M̂ is fully invariant.

(4) Let M be a self-injective polyform A-module and assume every submodule of

M contains a uniform submodule. Prove that EndA(M) is a product of full linear

rings (endomorphism rings of vector spaces, [200, Theorem 5.12]).

References. Beidar-Wisbauer [75, 76, 77], Dung-Huynh-Smith-Wisbauer [11],

Lambek [183], Leu [187], Miyashita [200], Renault [226], Smith [245], Stenström [39],

Wisbauer [273, 279], Zelmanowitz [284, 285].
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12 Closure operations on modules in σ[M ]

1.Singular closure in A-Mod. 2.Essential closure in non-M -singular modules. 3.Cor-

respondence of closed submodules. 4.Correspondence of singular closed submodules.

5.Closed submodules in self-injective modules. 6.Lemma. 7.Relations with the injec-

tive hull. 8.Lemma. 9.Lemma. 10.Correspondences for closed submodules of M (Λ).

11.Closed left submodules of A(Λ). 12.Corollary. 13.Exercises.

Let M denote any left A-module over the associative ring A with unit.

Definitions. Let K ⊂ N be modules in σ[M ]. A maximal essential extension of

K in N will be called an essential closure of K in N . K is said to be closed in N if

it has no proper essential extension in N .

We define the M-singular closure [K]N of K in N by

[K]N/K = SM(N/K).

K is said to be M-singular closed in N if K = [K]N , i.e., if N/K is non-M -singular.

Notice that forming [K]N depends on the category σ[M ] we are working in. Usually

it should be clear from the context which closure is meant.

In particular, for M = A the notion A-singular defines precisely those A-modules

X for which the annihilator of each element is an essential left ideal in A. Hence we

have the following characterization of

12.1 Singular closure in A-Mod.

Let K ⊂ N be left A-modules. Then in A-Mod the singular closure of K in N is

[K]N = {x ∈ N | Ix ⊂ K for some essential left ideal I ⊂ A}.

It should be observed that, in general, forming the singular closure need not be an

idempotent operation on the submodules of N . However, it will be idempotent in the

cases we are interested in, for example, if M is polyform or in the following situation:

12.2 Essential closure in non-M-singular modules.

Let K ⊂ N be non-M-singular modules in σ[M ]. Then for every essential closure

K in N ,

K/K = SM(N/K) = [K]N/K.

This implies that K has a unique essential closure in N .

Proof. Clearly K ⊂ [K]N . Since [K]N is non-M -singular, any map from [K]N to an

M -singular module has essential kernel. Hence K � [K]N and K = [K]N . 2
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The preceding observation implies a close relationship between closed submodules

of essential extensions of non-M -singular modules.

Denote by L(X) the lattice of submodules of any module X.

12.3 Correspondence of closed submodules.

Let K �N be non-M-singular modules in σ[M ]. Then the mappings

L(K)→ L(N), U 7→ [U ]N ,

L(N)→ L(K), V 7→ V ∩K,

provide a bijection between closed submodules of K and closed submodules of N .

Proof. For a closed submodule U ⊂ K, U = K ∩ [U ]N . If V ⊂ N is a closed

submodule, then V ∩K � V and hence [V ∩K]N = V . Therefore the composition of

the two maps yields the identity on closed submodules. 2

For polyform modules M , we can relate singular closed submodules of any module

N ∈ σ[M ] to closed submodules of the non-M -singular module N/SM(N):

12.4 Correspondence of singular closed submodules.

Let M be a polyform A-module and N ∈ σ[M ]. Then the canonical projection

p : N → N/SM(N)

provides a bijection between singular closed submodules of N and (singular-) closed

submodules of N/SM(N).

Proof. Since N/SM(N) is non-M -singular, its closed submodules coincide with the

M -singular closed submodules (by 12.2).

Let U ⊂ N be singular closed and assume SM(N) 6⊂ U . Then (U + SM(N))/U is

a non-zero M -singular submodule of N/U , a contradiction.

Now the bijection suggested follows from the canonical isomorphism

N/U ' (N/SM(N))/(U/SM(N)).

2

Because of the above correspondence we will concentrate our investigation on non-

M -singular modules.

The correspondence described in 12.3 has remarkable consequences. They are

based on the well-known fact (e.g., [11, Proposition 7.2]):

12.5 Closed submodules in self-injective modules.

In a self-injective module, every closed submodule is a direct summand.
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12.6 Lemma. Let K ⊂ N be non-M-singular modules in σ[M ]. Let U ⊂ K be a

closed submodule and U ⊂ N its essential closure in N .

(1) The canonical map K/U → N/U is an essential monomorphism.

(2) If N is M-injective then N/U is an M-injective hull on K/U .

(3) If K/U is M-injective then K/U ' N/U .

Proof. (1) The composition of the canonical homomorphisms,

K/U → N/U → N/U ,

is a monomorphism since K ∩ U = U . Assume its image is not essential in N/U .

Then there exists a submodule U ⊂ V ⊂ N such that

((K + U)/U) ∩ (V/U) = (K ∩ V + U)/U = 0,

and hence K ∩ V ⊂ K ∩ U = U , implying V ⊂ U .

(2) If N is M -injective the closed submodule U ⊂ N is a direct summand (by

12.5) and hence N/U is M -injective. Now the assertion is clear by (1).

(3) is obvious by (1). 2

For the module M itself we obtain the following properties:

12.7 Relations with the injective hull.

Let M be a polyform module with M-injective hull M̂ and T := EndA(M̂).

(1) There exist bijections between

(i) the closed submodules of M ,

(ii) the direct summands of M̂ ,

(iii) the left ideals which are direct summands of T .

(2) (i) For any essential left ideal I � T , M̂I � M̂ .

(ii) For every V ⊂ M̂ with Tr(M̂, V ) � M̂ , HomA(M̂, V ) � T .

Proof. (1) This follows from 12.3 and 12.5 and the fact that direct summands in M̂

correspond to left ideals which are direct summands in T .

(2) Assume that M̂I is not essential in M̂ . Then the essential closure MI of M̂I

is a proper direct summand in M̂ and I ⊂ HomA(M̂, M̂I) ⊂ HomA(M̂,MI), which

is a proper direct summand in T . This is a contradiction to I � T .

Now let V ⊂ M̂ such that Tr(M̂, V ) � M̂ . If HomA(M̂, V ) is not essential in T ,

then it is contained in a proper direct summand Te, e2 = e ∈ T . Then

Tr(M̂, V ) = M̂HomA(M̂, V ) ⊂ M̂e,

contradicting Tr(M̂, V ) � M̂ . 2
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For an infinite index set Λ, the direct sum M̂ (Λ) need not be M -injective. Never-

theless we have nice characterizations of its closed submodules.

First we make some technical observations.

12.8 Lemma. Let M be a polyform A-module with M-injective hull M̂ . Then every

closed submodule of M̂ (Λ) is M̂-generated.

Proof. Let U ⊂ M̂ (Λ) be a closed submodule, and denote by {Uγ}Γ the (directed)

set of finitely generated submodules of U . Then each Uγ is contained in some finite

partial sum of M̂ (Λ), which is M -injective and contains the unique essential closure

Uγ (of Uγ in M̂ (Λ)) as a direct summand. Clearly Uγ ⊂ U and lim
−→

Uγ = U . This

implies that U is M̂ -generated. 2

12.9 Lemma. Let M be a finitely generated polyform A-module with M-injective hull

M̂ and T := EndA(M̂). Then:

(1) For every f : M̂ → M̂ (Λ), M̂f is contained in a finite partial sum of M̂ (Λ), and

hence we may identify

T (Λ) = HomA(M̂, M̂ (Λ)).

(2) for any f1, . . . , fn ∈ HomA(M̂, M̂ (Λ)),
∑n
i=1 M̂fi is a direct summand in M̂ (Λ)

and the exact sequence determined by the fi splits:

M̂n →
n∑
i=1

M̂fi → 0;

(3) for every left T -submodule X ⊂ T (Λ), HomA(M̂, M̂X) = X.

Proof. (1) Since M is finitely generated, for every f : M̂ → M̂ (Λ), we have the

following diagram, where k ∈ IN ,

0 → M → M̂

↓ f |M ↓ f
M̂k → M̂ (Λ).

Since M̂k is M -injective we can extend f |M to some g : M̂ → M̂k. However, since

M is polyform there is a unique extension of f |M from M to M̂ . This means f = g

and M̂f ⊂ M̂k.

As a consequence, for every f ∈ HomA(M̂, M̂ (Λ)) we have in fact, for some k ∈ IN ,

f ∈ HomA(M̂, M̂k) = T k,

which implies our assertion.
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(2) By (1),
n∑
i=1

M̂fi is contained in some finite partial sum M̂k, k ∈ IN . Then we

have

M̂n f−→
n∑
i=1

M̂fi ⊂ M̂k,

where f is determined by the fi.

Now f may be considered as an endomorphism of M̂n+k. Since EndA(M̂n+k) is

regular the image and the kernel of f are direct summands (see 7.6) proving our

assertion.

(3) Let g ∈ HomA(M̂, M̂X). Then Mg ⊂
k∑
i=1

M̂xi, for some xi ∈ X. By (2),

k∑
i=1

M̂xi is M -injective and g|M can be uniquely extended from M to M̂ . Hence we

may assume M̂g ⊂
k∑
i=1

M̂xi. We describe the situation in the diagram

M̂

↓ g
M̂k → ∑k

i=1 M̂xi → 0 .

By (2), the lower row splits. Hence we have a map M̂ → M̂k which yields a commu-

tative diagram and is determined by some t1, . . . , tk ∈ T satisfying g =
∑
i≤k tixi ∈ X.

This proves HomA(M̂, M̂X) = X. 2

With these preparations we are able to prove correspondences for closed submod-

ules of infinite direct sums.

12.10 Correspondences for closed submodules of M (Λ).

Let M be a finitely generated polyform A-module with M-injective hull M̂ . We

denote T := EndA(M̂) and identify T (Λ) = HomA(M̂, M̂ (Λ)) (by 12.9).

There are bijective correspondences between

(i) the closed submodules of M (Λ),

(ii) the closed submodules of M̂ (Λ),

(iii) the closed left T -submodules of T (Λ).

For closed submodules V ⊂M (Λ) and X ⊂ T (Λ), these are given by

V → [V ]
M̂(Λ) → HomA(M̂, [V ]

M̂(Λ)),

M (Λ) ∩ M̂X ← M̂X ← X .

Proof. The correspondence between (i) and (ii) is just a special case of the situation

described in 12.3.
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Let U ⊂ M̂ (Λ) be a closed submodule. We want to show that HomA(M̂, U) is

a closed T -submodule in T (Λ). Since T is left non-singular it is to show that any

f ∈ T (Λ), which satisfies If ⊂ HomA(M̂, U) for an essential left ideal I ⊂ T , already

belongs to HomA(M̂, U). In fact, this condition implies M̂If ⊂ U , where M̂I � M̂

(by 12.7). Assume that M̂f 6⊂ U . Then the map M̂
f−→ M̂ (Λ) → M̂ (Λ)/U is non-zero

and has essential kernel. This is not possible since M̂ (Λ)/U is non-M -singular and we

conclude that f ∈ HomA(M̂, U).

Moreover, M̂HomA(M̂, U) = U (by 12.8).

Now let X ⊂ T (Λ) be a closed T -submodule and put U := [M̂X]
M̂(Λ) . Denote by

{Xγ}Γ the family of finitely generated submodules of X. Assume there is an

f ∈ HomA(M̂, U) such that M̂f 6⊂ M̂X.

Then V := (M̂X)f−1 � M̂ . Clearly (M̂X)f−1 =
⋃

Γ(M̂Xγ)f
−1.

The M̂Xγ are direct summands in M̂ (Λ) (by 12.9). So any (M̂Xγ)f
−1 ⊂ M̂ is

closed and hence a direct summand in M̂ . This shows that V is M̂ -generated, and

by 12.7, HomA(M̂, V ) is an essential left ideal in T . By construction and 12.9,

HomA(M̂, V )f ⊂ HomA(M̂, V f) ⊂ HomA(M̂, M̂X) = X,

and this implies f ∈ X (since X is closed in T (Λ)). 2

In particular, the preceding result applies to A = M . In this case we detect

some more interesting relationships for submodules of free modules. Recall that for

a left non-singular ring A with injective hull E(A), the maximal left quotient ring is

Q(A) := EndA(E(A)) (see 11.4) and 12.10 reads as follows:

12.11 Closed left submodules of A(Λ).

Let A be a left non-singular ring with maximal left quotient ring Q(A).

There is a bijective correspondence between

(i) the closed left A-submodules of A(Λ),

(ii) the closed left A-submodules of Q(A)(Λ),

(iii) the closed left Q(A)-submodules of Q(A)(Λ).

Combining 12.11 with 12.10 we recover some properties of non-singular left A-

modules known from localization theory.

12.12 Corollary. Let A be a left non-singular ring with maximal left ring of quotients

Q(A), and let L be any non-singular left A-module. Then:

(1) L is an essential A-submodule of a Q(A)-module L̃.

(2) If L is a finitely generated A-module, then L̃ is a finitely generated Q(A)-module.
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(3) If L is A-injective then it is a Q(A)-module.

Proof. L is A-generated and we have the exact commutative diagram

0 → U → A(Λ) → L → 0

↓ ↓ ↓
0 → U → Q(A)(Λ) → L̃ → 0 ,

where U is a closed submodule of A(Λ) (since L is non-singular), and U denotes the

essential closure of U in Q(A)(Λ). Now apply 12.10 and 12.11. 2

12.13 Exercises.

Prove that for any A-module M , the following are equivalent ([245, 200]):

(a) every submodule has a unique essential closure in M ;

(b) for any submodules K,L ⊂M , K ∩ L�K implies L�K + L;

(c) if K ⊂M is closed, then K ∩N is closed in N for any N ⊂M ;

(d) the intersection of any (two) closed submodules is closed in M ;

(e) for any N ⊂ M and f ∈ HomA(N,M), N ∩ (N)f = 0 implies that Ke f is

closed in N .

References. Ferrero-Wisbauer [132], Miyashita [200], Smith [245].
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13 Prime modules

1.Prime modules with (∗). 2.Proposition. 3.Strongly prime modules. 4.Projective

strongly prime modules. 5.Characterization of strongly prime modules. 6.Characteri-

zation of left strongly prime rings. 7.Lemma. 8.Strongly prime modules with uniform

submodules. 9.Remarks. 10.Exercises.

In this section we consider various conditions on modules M which, for M = A

and A commutative, are equivalent to A being a prime ring.

Definitions. An A-module M is called a prime module if A/AnA(M) is cogen-

erated by every 0 6= K ⊂ M . M is called strongly prime if for every 0 6= K ⊂ M ,

M ∈ σ[K].

For a prime module M , A/AnA(M) is a prime ring. The ring A is a prime ring if

and only if there exists a faithful (or cofaithful) prime (left) A-module (e.g., AA).

There is a property of a module M which allows further conclusions from our

primeness conditions:

(∗) For any non-zero submodule K ⊂ M , AnA(M/K) 6⊂ AnA(M), i.e., there is an

r ∈ A \ AnA(M) with rM ⊂ K.

In general, this need not hold for AA if A is not commutative. However, it will hold

for our applications to A as a bimodule.

13.1 Prime modules with (∗).
Let M be an A-module satisfying (∗), S = EndA(M) and A = A/AnA(M).

(1) AM is prime if and only if A is a prime ring.

(2) If AM is prime, then

(i) MS is prime (and S is a prime ring);

(ii) AM is polyform;

(iii) A ∈ σ[M ] if and only if M̂T is finitely generated.

Proof. (1) It was already mentioned that AM prime implies A prime.

Assume A to be a prime ring and K a nonzero submodule of AM . By (∗), there is

a nonzero ideal I ⊂ A with IM ⊂ K. For J = AnA(K) we have JI ·M ⊂ J ·K = 0,

hence JI = 0 and J = 0.

(2) Let AM be prime. (i) Assume Ut = 0 for an S-submodule U of MS and t ∈ S.

For I = AnA(M/AU) we get I ·Mt ⊂ AUt = 0, implying Mt = 0 and t = 0.

(ii) Consider submodules K,L ⊂ AM with K ⊂ L and K �M .

For I = AnA(M/K) and α ∈ HomA(L/K,M) we have I((L/K)α∩K) = 0, hence

(L/K)α ∩K = 0, implying (L/K)α = 0 and α = 0. So K is rational in M .

(iii) Apply 10.7. 2
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13.2 Proposition. For an A-module M satisfying (∗), the following are equivalent:

(a) AM is prime and HomA(M,K) 6= 0, for any nonzero submodule K ⊂M ;

(b) AM is cogenerated by any nonzero submodule K ⊂M .

Proof. (b)⇒ (a) is evident.

(a)⇒ (b) By 13.1, S = EndA(M) is prime. Hence, for non-zero K,L ⊂M , we get

L · HomA(M,K) ⊃M · HomA(M,L) · HomA(M,K) 6= 0,

which characterizes (b). 2

We now turn to the investigation of the stronger primeness condition.

13.3 Strongly prime modules.

For an A-module M with M-injective hull M̂ , the following are equivalent:

(a) M is strongly prime;

(b) M̂ is strongly prime;

(c) M̂ is generated by each of its nonzero submodules;

(d) M is contained in every non-zero fully invariant submodule of M̂ ;

(e) M̂ has no non-trivial fully invariant submodules;

(f) for any pretorsion class T in σ[M ], T (M) = 0 or T (M) = M ;

(g) for each m ∈M and 0 6= b ∈M , there exist r1, . . . , rk ∈ A such that

AnA(r1b, . . . , rkb) ⊂ AnA(m);

(h) there exists a module K ⊃M such that for all 0 6= m ∈M , M ⊂ AmEndA(K).

Proof. (a) ⇔ (b) ⇔ (c) This is obvious since M̂ ∈ σ[M ] and injectives in σ[M ] are

generated by any subgenerator.

(a)⇒ (d) For any fully invariant L ⊂ M̂ , M ⊂ (L ∩M)EndA(M̂) ⊂ L.

(d)⇒ (e) Let L ⊂ M̂ be fully invariant and M ⊂ L. Then M̂ = MEndA(M̂) ⊂ L.

(e)⇒ (f) T (M̂) is fully invariant in M̂ .

(f) ⇒ (b) For every 0 6= K ⊂ M̂ , T := σ[K] is a hereditary pretorsion class in

σ[M ] and T (M̂) 6= 0.

(a)⇔ (g) The condition given in (g) is equivalent to the existence of a map

(Ab)k ⊃ A(r1b, . . . , rkb)→ Am, a(r1b, . . . , rkb) 7→ am.

This is equivalent to Am ∈ σ[Ab].

(c)⇒ (h) The module M̂ ⊃M has the properties stated.

(h)⇒ (a) Clearly M ∈ σ[Am] for all 0 6= m ∈M . 2
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It follows from 13.3 that a strongly prime module M is either singular or non-

singular in σ[M ]. Since projective modules never are singular, any projective strongly

prime module in σ[M ] is non-M -singular.

13.4 Projective strongly prime modules.

Let M be an A-module which is projective in σ[M ]. Assume M is strongly prime.

Then M is polyform and

(1) S = EndA(M) is a left strongly prime ring;

(2) T = EndA(M̂) is the maximal left ring of quotients of S.

Proof. By the preceding remarks, M is polyform (non-M -singular).

(1) Because of projectivity of M , for any left ideal J ⊂ S, J = HomA(M,MJ).

M̂ being generated by MJ , there exist a submodule L ⊂ MJ (Λ), Λ some index set,

and exact sequences

L→M → 0, HomA(M,L)→ HomA(M,M)→ 0.

Hence

S ⊂ HomA(M,L) ⊂ HomA(M,MJ)(Λ) = J (Λ),

showing that S is left strongly prime.

(2) For any non-zeroK ⊂M , M ∈ σ[K]. SinceM is projective in σ[K], M ⊂ K(Λ),

for some set Λ. In particular, HomA(M,K) 6= 0 and 11.5 applies. 2

To get more characterizations of strongly prime modules we introduce a new

Definition. A module N ∈ σ[M ] is called an absolute subgenerator in σ[M ] if

every non-zero submodule K ⊂ N is a subgenerator in σ[M ] (i.e., M ∈ σ[K]).

It is obvious that every absolute subgenerator is a strongly prime module, and M

itself is an absolute subgenerator in σ[M ] if and only if it is strongly prime. Moreover,

if N is an absolute subgenerator in σ[M ] with SM(N) 6= 0, then all modules in σ[M ]

are M -singular.

With this notions we have the following

13.5 Characterization of strongly prime modules.

For a polyform A-module M , the following assertions are equivalent;

(a) M is strongly prime;

(b) every module K ∈ σ[M ] with SM(K) 6= K is a subgenerator;

(c) every non-zero module K ∈ σ[M ] with SM(K) = 0 is an absolute subgenerator;
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(d) for every non-zero N ∈ σ[M ],

SM(N) =
⋂
{K ⊂ N | N/K is an absolute subgenerator in σ[M ]};

(e) there exists an absolute subgenerator in σ[M ].

In this case, every projective module in P ∈ σ[M ] is an absolute subgenerator and

hence SM(P ) = 0.

Proof. (a) ⇒ (b) Since M is polyform, the M -singular modules X ∈ σ[M ] are

characterized by the property HomA(X, M̂) = 0 (see 10.2). Hence for any K ∈ σ[M ]

with SM(K) 6= K, there exists a non-zero homomorphism f : K → M̂ . Since M (and

M̂) is strongly prime, the image of f is a subgenerator in σ[M ] and so is K.

(b)⇒ (c) If SM(N) = 0, every non-zero submodule of N is non-M -singular.

(c) ⇒ (d) Let K ⊂ N be such that N/K is an absolute subgenerator in σ[M ].

Assume SM(N) 6⊂ K. Then (K + SM(N))/K is an M -singular submodule of N/K.

This is impossible since not all modules in σ[M ] are M -singular. So SM(N) ⊂ K and

SM(N) is contained in the given intersection.

Since M is polyform, N/SM(N) is non-M -singular and hence an absolute subgen-

erator in σ[M ]. This proves our assertion.

(d)⇒ (e) Since SM(M) = 0 the equality in (d) implies the existence of an absolute

subgenerator in σ[M ].

(e) ⇒ (a) Let N be an absolute subgenerator in σ[M ]. Then clearly SM(N) = 0

and N is a strongly prime module. Now the proof (a) ⇒ (c) applies and so M is an

absolute subgenerator in σ[M ].

Every projective module P ∈ σ[M ] is isomorphic to a submodule of some M (Λ)

which is an absolute subgenerator (by (c)). Hence P is also an absolute subgenerator.

2

Applying 13.5 to M = A, we immediately have the following

13.6 Characterization of left strongly prime rings.

For the ring A the following properties are equivalent:

(a) A is a left strongly prime ring;

(b) every left A-module which is not singular is a subgenerator in A-Mod;

(c) every non-singular left A-module is an absolute subgenerator in A-Mod;

(d) for every non-zero left A-module N ,

S(N) =
⋂
{K ⊂ N | N/K is an absolute subgenerator in A-Mod};
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(e) there exists an absolute subgenerator in A-Mod.

The next lemma is needed for the study of strongly prime modules with uniform

submodules.

13.7 Lemma. Assume M to be a finitely generated, M-projective A-module and

HomA(M,K) 6= 0, for all nonzero K ⊂ M . Then M contains a uniform submodule

if and only if S = EndA(M) contains a uniform left ideal.

Proof. For a uniform submodule U ⊂ M consider two nonzero left ideals I, J of S

contained in HomA(M,U). Then U ⊃MI ∩MJ 6= 0 and

I ∩ J ⊃ HomA(M,MI ∩MJ) 6= 0,

i.e., HomA(M,U) is a uniform left ideal of S.

By a similar argument one finds that for a uniform left ideal I of S, MI is a

uniform submodule of M . 2

13.8 Strongly prime modules with uniform submodules.

For a finitely generated, self-projective and strongly prime A-module M , the fol-

lowing assertions are equivalent:

(a) AM contains a uniform submodule;

(b) AM has finite uniform dimension;

(c) AM̂ is a finite direct sum of isomorphic indecomposable modules;

(d) S = EndA(M) contains a uniform left ideal;

(e) T = EndA(M̂) is a left artinian simple ring.

Proof. (a) ⇔ (b) For a uniform submodule U ⊂ M , we have M ⊂ Uk, k ∈ IN , and

hence M has finite dimension.

(a)⇔ (c) From the above argument we obtain M̂ ⊂ Û
k

and the assertion follows

(since EndA(Û) is a local ring).

(a)⇔ (d) was shown in Lemma 13.7.

(c)⇒ (e) Assume M̂ = V k, k ∈ IN , where V is M -injective and uniform. Any

submodule of V is essential, hence rational, since M̂ contains no singular submodules.

Therefore EndA(V ) =: D is a division ring.

Now T = EndA(V k) = D(k,k) is a matrix ring over D.

(e)⇒ (b) is evident. 2
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13.9 Remarks. Primeness conditions on modules.

Consider the following properties of an A-module M .

(i) A/AnA(M) is cogenerated by every 0 6= K ⊂M ;

(ii) for every 0 6= K ⊂M , M ∈ σ[K];

(iii) for every 0 6= K ⊂M , there is a monomorphism M → Kr, r ∈ IN ;

(iv) for every 0 6= K ⊂M , there is a monomorphism A/AnA(M)→ Kr, r ∈ IN ;

(v) M is cogenerated by every 0 6= K ⊂M ;

(vi) M is monoform.

For any M , (iii)⇒ (v)⇒ (i), (iii)⇒ (ii)⇒ (i) and (iv)⇒ (ii).

If M is finitely generated and M -projective, then (ii)⇒ (iii).

If M is finitely cogenerated, (ii), (iii) and (v) are equivalent to M being a finite

direct sum of isomorphic simple modules.

A direct sum of isomorphic simple modules satisfies (i), (ii), (iii) and (v) but not

necessarily (iv) or (vi).

For M = AA, (ii), (iii) and (iv) are equivalent and characterize the left strongly

prime rings or ATF-rings as studied by Viola-Prioli [261], Rubin [237], Handelman-

Lawrence [150].

For a commutative ring A all these conditions for AA are equivalent to A being a

prime ring.

Restricting the above conditions to essential submodules one gets generalizations

of commutative semiprime rings. This will be considered in the next section.

Modules with (i) are the prime modules already studied in Johnson [168]. Modules

with (ii) are called strongly prime modules in Beachy [64]. Rings having a faithful

module of this type are the endoprimitive rings of Desale-Nicholson [118].

Modules with (iii) are called semicompressible modules in Beachy-Blair [67]. They

are special cases of (ii). Part (1) of 13.4 implies [67, Theorem 3.5]. For M = A,

(a)⇔ (e) in 13.8 yields [67, Theorem 3.3].

As pointed out in Handelman-Lawrence [150], a ring A is left strongly prime if

and only if there is a faithful A-module satisfying (iv) (SP-modules in [150]). This is

equivalent to the existence of a cofaithful strongly prime A-module (i.e., with (ii)).

Condition (v) is the defining property of prime modules in Bican [79]. They are

also characterized by the fact that LHomA(M,K) 6= 0 for all nonzero submodules

K,L of M .

Modules with condition (vi) (see 11.3) are called strongly uniform in Storrer [249].

If M is monoform and HomA(M,K) 6= 0 for every 0 6= K ⊂M , then

K · EndA(M̂) ⊃M · HomA(M,K) · EndA(M̂) = M · EndA(M̂) = M̂,
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and hence M satisfies (ii) (see also 13.3).

For an extensive account and examples for left strongly prime rings we refer to the

monograph [16] by Goodearl, Handelman and Lawrence. Notice that a left strongly

prime ring need not be right strongly prime (see [150, Example 1]).

13.10 Exercises.

Recall that A denotes an associative algebra with unit.

(1) Let M be a strongly prime A-module with non-zero socle.

Prove that M ' E(Λ), where E is a simple A-module.

(2) Let M be a uniform and self-injective A-module. Prove that the following are

equivalent ([85, Proposition 2.1]):

(a) M is strongly prime;

(b) every cyclic submodule of M is strongly prime;

(c) M has no non-trivial self-injective submodules.

(3) Let A be a left self-injective ring. Prove that A is left strongly prime if and

only if A is a simple ring.

(4) Prove that for a ring A, the following are equivalent ([261, 2.1]):

(a) A is left strongly prime;

(b) every finitely generated projective module is a subgenerator in A-Mod;

(c) every non-zero left ideal generates the injective hull of AA.

(5) Let A be a left strongly prime ring. Show ([261]):

(i) A is a left non-singular prime ring.

(ii) A is left noetherian if and only if it contains a non-zero noetherian left ideal.

(iii) Any matrix ring A(n,n), n ≥ 1, is left strongly prime.

(iv) The centre of A is a (strongly) prime ring.

(v) Every self-injective non-singular left A-module is A-injective ([67]).

(6) Let A be a ring such that AA has finite uniform dimension. Prove that the

following are equivalent:

(a) A is left strongly prime;

(b) A is a left non-singular prime ring.

(7) Prove that for a left strongly prime ring A, the following are equivalent ([261]):

(a) A is a simple ring;

(b) every left ideal in A is idempotent.

(8) Prove: A regular ring is simple if and only if it is left (right) strongly prime.

(9) Prove that for a ring A, the following are equivalent ([261]):

(a) A is a simple left artinian ring;

(b) A is left strongly prime and Soc AA 6= 0.
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(10) Let A be a ring which is finitely generated as a module over its centre. Prove

that the following are equivalent ([237, 1.10]):

(a) A is left strongly prime;

(b) A is a prime ring;

(c) A is right strongly prime.

(11) Prove that for any ring A, the following are equivalent ([230, Proposition 1]):

(a) Every self-injective left A-module is A-injective (A is left QI);

(b) A is left noetherian and any non-zero uniform (injective) A-module is strongly

prime.

(12) Prove that for any ring A, the following are equivalent:

(a) A has a faithful strongly prime module;

(b) A has a faithful (self-injective) left module with no non-trivial fully invariant

submodules;

(c) A has a left ideal L ⊂ A, such that A/L is faithful and satisfies:

For any a ∈ A, a′ ∈ A \L, there exist r1, . . . , rk ∈ A, such that rria ∈ L, for r ∈ A
and all i ≤ k, implies ra′ ∈ L.

Rings with these properties are called left endoprimitive ([118, 2.1]).

(13) A ring is called left completely torsion free (CTF) if, for any hereditary torsion

classes T in A-Mod, T (A) = 0 or A .

Prove that the following are equivalent ([16, 13.1]):

(a) A is left CTF;

(b) every non-zero injective left A-module is faithful;

(c) for each non-zero two-sided ideal K ⊂ A, there exists k ∈ K such that

HomA(Ak,A/K) 6= 0.

(14) Prove that the following are equivalent ([176, 2.4]):

(a) A is left CTF and Soc(AA) 6= 0;

(b) every non-zero injective left A-module is a cogenerator;

(c) there are only two hereditary torsion classes in A-Mod;

(d) A is isomorphic to some S(n,n), n ∈ IN , where S is a local left perfect ring.

(15) Prove for the algebra A ([176]):

(i) The following assertions are equivalent:

(a) Every non-zero left ideal of A is a generator in A-Mod;

(b) every non-zero ideal of A is a generator in A-Mod;

(c) every non-zero submodule of a projective A-module generates A.

Algebras with this properties are called left G-algebras.

(ii) If SocAA 6= 0 then A is a left G-algebra if and only if it is left artinian and

simple.
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(iii) Every left G-algebra is left strongly prime. Any left self-injective and left

strongly prime algebra is a left G-algebra.

(16) A left A-module M is called coprime if M is generated by each of its non-zero

factor modules. Prove ([79]):

(i) M is coprime if and only if it is generated by every non-zero cocyclic factor module.

(ii) Every direct sum of copies of a simple module is a coprime module.

(iii) Any coprime module M with RadM 6= M is semisimple.

(iv) Every A-module is coprime if and only if A is isomorphic to a matrix ring over a

division ring.

References. Beachy [64], Beidar-Wisbauer [75, 76, 77], Bican-Jambor-Kepka-

Nemec [79], Handelman-Lawrence [150], Katayama [176], Rubin [237], Viola-Prioli

[261], Wisbauer [274].
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14 Semiprime modules

1.Lemma. 2.Properties of trace and torsion submodules. 3.Strongly semiprime mod-

ules. 4.Characterizations. 5.SSP and semisimple modules. 6.Properly semiprime

modules. 7.Properties of PSP-modules. 8.Corollary. 9.Relation to strongly prime

modules. 10.Polyform SSP modules. 11.Polyform PSP modules. 12.Self-injective

PSP modules. 13.Self-injective finitely presented PSP modules. 14.Density property

of the self-injective hull. 15.Duo endomorphism rings. 16.Projective PSP modules.

17.Projective SSP modules. 18.Torsion submodules of semiprime rings. 19.Left SSP

rings. 20.Left PSP rings. 21.Pseudo regular modules. 22.Left fully idempotent rings.

23.Pseudo regular and PSP modules. 24.Remarks. 25.Exercises.

In this section we extend the notion of semiprimeness from (commutative) rings

to modules. We refer to 14.24 for a list of various possibilities to do so. In view of

our applications we are mainly interested in non-projective modules.

The two following technical lemmas will be crucial for our investigations.

14.1 Lemma. Let M be an A-module and K,L ⊂M . The following are equivalent:

(a) M/L ∈ σ[K];

(b) for any b ∈M , there exists a finite subset X ⊂ K, with AnA(X)b ⊂ L.

Proof. (a) ⇒ (b) Assume M/L ∈ σ[K] and b ∈ M . Then Ab + L/L ⊂ M/L is a

cyclic module in σ[K] and hence a factor module of a cyclic submodule of K(IN). So

there exist x1, . . . , xk ∈ K and a morphism

A(x1, . . . , xk)→M/L, a(x1, . . . , xk) 7→ a(b+ L)/L.

This implies AnA(x1, . . . , xk)b ⊂ L.

(b) ⇒ (a) Let b ∈ M and choose x1, . . . , xk ∈ K with AnA(x1, . . . , xk)b ⊂ L. We

define a map as given above and so (Ab+ L)/L ∈ σ[K]. Hence M/L ∈ σ[K]. 2

We use the notation for trace and torsion submodules introduced in 11.9.

14.2 Properties of trace and torsion submodules.

Let M be an A-module, K ⊂M and T = EndA(M̂). The following are equivalent:

(a) M/TK(M) ∈ σ[K];

(b) for any b ∈M , there exists a finite subset X ⊂ K, with AnA(X)b ⊂ TK(M).

(c) every K-injective, TK-torsionfree module in σ[M ] is M-injective and K-generated;

(d) KT is M-injective and T K(M) + TK(M) �M ;

(e) M̂ = KT ⊕ IM(TK(M̂)), where IM denotes the M-injective hull.
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Notice that the decomposition of M̂ given in (e) is in A-Mod. Though KT obvi-

ously is a fully invariant submodule this need not be true for IM(TK(M̂)).

Proof. (a)⇔ (b) follows from 14.1.

(a)⇒ (c) Assume Q ∈ σ[M ] is K-injective and TK-torsionfree. For any submodule

L ⊂ M , consider a morphism f : L → Q. Since TK(Q) = 0, f factorizes through

f ′ : L/TK(L)→ Q. We have the commutative diagram (with canonical mappings)

0 → L → M

↓ ↓
0 → L/TK(L) → M/TK(M)

↓f ′
Q

Since Q is K-injective and M/TK(M) ∈ σ[K], there exists some M/TK(M) → Q

yielding a commutative diagram. Hence Q is M -injective and

Q = Tr(M,Q) = Tr(M/TK(M), Q) = Tr(K,Q).

(c)⇒ (a) Since IM(M/TK(M)) isM -injective and TK-torsionfree, it isK-generated

by (c) and so M/TK(M) ∈ σ[K].

(a) ⇒ (d) As shown above, IM(M/TK(M)) ∈ σ[K]. For a complement U of

TK(M) in M , U ⊕ TK(M) � M and U is isomorphic to a submodule of M/TK(M).

Hence U ⊂ T K(M) and T K(M) + TK(M) �M .

(d)⇒ (a) Since T K(M) + TK(M) �M and T K(M) ∩ TK(M) = 0,

T K(M) ' [T K(M) + TK(M)]/TK(M) �M/TK(M) .

Hence M/TK(M) is isomorphic to a submodule of K̂T ∈ σ[K].

(d)⇒ (e) The assumptions imply M̂ = K̂T ⊕ IM(TK(M)). As an injective object,

K̂T ∈ σ[K] is K-generated and hence K̂T = KT .

Since T K(M) � T K(M̂), K̂T = IM(T K(M̂)).

(e)⇒ (d) As a direct summand of M̂ , KT is M -injective. Hence T K(M) � K̂T =

KT . Since TK(M) � TK(M̂) � IM(TK(M̂)), we conclude T K(M) + TK(M) �M . 2

Referring to the above relations we define:

14.3 Strongly semiprime modules.

Let M be an A-module and T = EndA(M̂). M is called strongly semiprime (SSP)

if it satisfies the following equivalent conditions for every submodule K ⊂M :

(a) M/TK(M) ∈ σ[K];
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(b) for any b ∈M , there exists a finite subset X ⊂ K, with AnA(X)b ⊂ TK(M);

(c) every K-injective TK-torsionfree module in σ[M ] is M-injective and K-generated;

(d) K̂T ∈ σ[K] and T K(M) + TK(M) �M ;

(e) M̂ = KT ⊕ IM(TK(M̂)), where IM denotes the M-injective hull.

Any SP module is SSP (M̂ = KT ). Also every semisimple module is SSP. We

state some basic important properties.

14.4 Characterizations.

Let M be an A-module, S = EndA(M) and T = EndA(M̂). Then the following

are equivalent:

(a) AM is SSP;

(b) for any N � AM , M ∈ σ[N ], and for any K ⊂ AM , T K(M) + TK(M) � AM ;

(c) AM̂ is SSP;

(d) M̂ is a semisimple (A, T )-bimodule.

Proof. (a)⇒ (b) For N�M , T N(M)∩TN(M) = 0 implies TN(M) = 0 and NT = M̂ ,

in particular M ∈ σ[N ].

(b) ⇒ (a) Let K ⊂ M be any submodule. Since TK(M) + T K(M) � M , M ∈
σ[TK(M) + T K(M)] = σ[M ] by assumption. So TK(M)+K is a subgenerator in σ[M ]

and hence it generates theM -injective module K̂T . However, HomA(TK(M), K̂T ) = 0

implies that K̂T is K-generated and M is an SSP module.

(a) ⇒ (c) For any submodule N ⊂ M̂ , put K = NT ∩M . Then KT � NT and

TK(M̂) = TN(M̂). Consider any N -injective and TN -torsionfree module Q ∈ σ[M ].

Then Q is K-injective and TK-torsionfree, and hence M -injective and K-generated

since M is SSP (cf. 14.3). As easily seen, Q is also N -generated and so M̂ is SSP by

14.3.

(c)⇒ (a) Essential submodules of SSP modules are obviously SSP.

(c)⇔ (d) Put M = M̂ . Let U ⊂M be an essential (A, S)-submodule.

Then U = T U(M), and T U(M) ∩ TU(M) = 0 implies TU(M) = 0. We see from

14.3 that U = M . So M has no proper essential (A, S)-submodule. Hence it is a

semisimple (A, S)-module.

Now assume M is a semisimple (A, S)-module and K ⊂M an A-submodule. Then

M = KS ⊕ L for some fully invariant L ⊂ M . This implies HomA(L,KS) = 0 and

so L ⊂ TK(M). Hence M/TK(M) ∈ σ[M/L] = σ[K] showing that M is SSP. 2
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14.5 SSP and semisimple modules.

Let M be an A-module.

(1) Assume M has essential socle and for every N � M , M ∈ σ[N ]. Then M is

semisimple.

(2) M is semisimple if and only if every module in σ[M ] is SSP.

Proof. (1) By assumption, M ∈ σ[Soc(M)] and modules in σ[Soc(M)] are semisimple.

(2) We see from (1) that every finitely cogenerated module in σ[M ] is semisimple

and hence every simple module in σ[M ] is M -injective, i.e., M is co-semisimple.

Let N be the sum of all non-isomorphic simple modules in σ[M ] and consider

L = M ⊕N . Then TN(L) ⊂ Rad (L) = 0 (cf. [40], 23.1). Since L is SSP, this implies

L/TN(L) ∈ σ[N ]. Hence L and M are semisimple modules. 2

Weakening the conditions for strongly semiprime modules we define:

14.6 Properly semiprime modules.

Let M be a left A-module and T = EndA(M̂). We call M properly semiprime

(PSP) if it satisfies the following equivalent conditions:

(a) For every element a ∈M , M/Ta(M) ∈ σ[Ra];

(b) for any a, b ∈M , there exist r1, . . . , rn ∈ A such that

AnA(r1a, r2a, . . . , rna)b ⊂ Ta(M);

(c) for every finitely generated submodule K ⊂M , M/TK(M) ∈ σ[K];

(d) for any cyclic K ⊂M , every K-injective TK-torsionfree module in σ[M ] is

M-injective and K-generated;

(e) for any cyclic K ⊂M , K̂T ∈ σ[K] and T K(M) + TK(M) �M ;

(f) for any cyclic K ⊂M , M̂ = KT ⊕ IM(TK(M̂)).

Conditions (d)-(f) also hold for finitely generated submodules.

Proof. For the equivalence of (a), (c), (d), (e) and (f) see 14.2. (c)⇔ (b) is clear.

(b) ⇒ (c) Let a1, . . . , ak be a generating subset of K. By 11.10, TK(M) =⋂k
i=1 Tai(M). Hence

M/TK(M) ⊂
k⊕
i=1

M/Tai(M).

But M/Tai(M) ∈ σ[Rai] ⊂ σ[K]. Thus M/TK(M) ∈ σ[K]. 2
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14.7 Properties of PSP-modules.

Let M be an A-module and T = EndA(M̂).

(1) Assume M is a PSP-module and U ⊂ M̂ an (A, T )-submodule of finite uniform

dimension. Then U is a semisimple (A, T )-bimodule.

(2) Assume M̂ has finite uniform dimension as (A, T )-bimodule. Then M is an

SSP-module if and only if M is a PSP-module.

Proof. (1) First assume U is a uniform (A, T )-bimodule. Let V ⊂ U be an (A, T )-

submodule, and N ⊂ M ∩ V a finitely generated A-submodule. Then NT is an

essential (A, T )-submodule of U . T N(U) ∩ TN(U) = 0 implies TN(U) = 0.

From this we deduce NT � V � U as A-modules. Since NT is M -injective, we

conclude NT = V = U and U is a simple (A, T )-bimodule.

Now assume U has finite uniform dimension as (A, T )-bimodule. Hence there exist

uniform submodules Vi ⊂ U , i = 1, . . . , n, such that
⊕n
i=1 Vi�U as (A, T )-submodule.

Let Ni be finitely generated submodule of the left A-module Vi ∩ M and N =⊕n
i=1Ni. As shown above, all Vi = NiT are simple (A, T )-bimodules. Hence NT =∑n
i=1 NiT =

⊕n
i=1 Vi � U as A-submodule. Therefore U = NT =

⊕n
i=1 Vi is a finitely

generated semisimple (A, T )-bimodule.

(2) If M is SSP then obviously M is PSP.

If M is PSP and M̂ has finite uniform dimension as (A, T )-bimodule, M̂ is a

semisimple (A, T )-bimodule by (1) and hence M is SSP by 14.4. 2

14.8 Corollary. For a finitely generated left A-module M and T = EndA(M̂), the

following are equivalent:

(a) M is an SSP-module;

(b) M̂ is (finitely generated and) semisimple as an (A, T )-bimodule;

(c) M is PSP and M̂ has finite uniform dimension as an (A, T )-bimodule.

Proof. Since M is a finitely generated A-module, M̂ = MT is a finitely generated

(A, T )-bimodule. Hence the assertions follow from 14.4 and 14.7. 2

The next result shows the relation to strongly prime modules.

14.9 Relation to strongly prime modules.

For an A-module M with T = EndA(M̂), the following are equivalent:

(a) M is strongly prime;

(b) M is PSP (or SSP) and M̂ is a uniform (A, T )-bimodule.

(c) M̂ is a simple (A, T )-bimodule.
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In particular, for a uniform A-module M , the conditions strongly prime, SSP, and

PSP are equivalent.

Proof. (a)⇒ (b) For every submodule K ⊂M , KT = M̂ and the assertion is clear.

(b) ⇒ (a) Assume M is PSP and K ⊂ M is a finitely generated submodule. By

the uniformity condition, T K(M̂) ∩ TK(M̂) = 0 implies TK(M̂) = 0 and M̂ = KT .

So M is strongly prime.

(a)⇔ (c) This follows with the same arguments as applied in the proof of 14.4. 2

In general, SSP modules need not be polyform. Modules satisfying both conditions

have particularly nice structure properties.

14.10 Polyform SSP modules.

For a polyform A-module M and T = EndA(M̂), the following are equivalent:

(a) M is an SSP-module;

(b) for every N �M , M ∈ σ[N ];

(c) for every submodule K ⊂M , K̂T ∈ σ[K];

(d) for every submodule K ⊂M , M̂ = KT ⊕ TK(M̂).

Proof. The statements follow from 11.11, 14.3 and 14.4. 2

We know that a module M is SSP if and only if M̂ is SSP. In general, for a PSP

module M , M̂ need not be PSP. For polyform modules the PSP property extends at

least to the idempotent closure:

14.11 Polyform PSP modules.

Let M be a polyform A-module, T = EndA(M̂), B the Boolean ring of central

idempotents of T , and M̃ the idempotent closure of M . Then the following are equiv-

alent:

(a) M is a PSP module;

(b) for every m ∈M , AmT = M̂ε(m);

(c) for every finitely generated submodule K ⊂M , KT = M̂ε(K);

(d) M̃ is a PSP module.

Under the given conditions, Tm(M̂) = M̂(id− ε(m)).
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Proof. (a) ⇒ (b) By 14.6(f) and 11.11(1), M̂ = AmT ⊕ Tm(M̂). Now (b) follows

from the definition of the idempotent ε(m).

(b)⇒ (a) Since M̂ε(m) is M -injective,

IM(T m(M)) = IM(T m(M̂)) = IM(AmT ) = AmT ∈ σ[Am].

M being polyform, Tm(M) + T m(M) �M and the assertion follows by 14.6.

(b)⇔ (c) This is obvious by 14.6 and 11.12.

(b)⇒ (d) Any a ∈ M̃ can be written as a =
∑k
i=1miei, with m1, . . . ,mk ∈M and

pairwise orthogonal e1, . . . , ek ∈ B, satisfying

ε(a) =
k∑
i=1

ei and ei = ε(mi)ei for i = 1, . . . , k.

By (b), AmiT = M̂ε(mi) for i = 1, . . . , k, and

RaT = A(
k∑
i=1

miei)T =
k∑
i=1

(AmiT )ei =
k∑
i=1

M̂ε(mi)ei = M̂(
k∑
i=1

ei) = M̂ε(a).

(d)⇒ (a) This is easy to verify. 2

Pierce stalks of polyform modules will be considered in 18.16.

By 14.4, any self-injective SSP module is semisimple as a bimodule. For self-

injective polyform PSP modules we get a weaker structure theorem:

14.12 Self-injective PSP modules.

Let M be a self-injective polyform A-module and T = EndA(M̂). Denote Λ =

A⊗ZZ T o and C = EndΛ(M). Then the following conditions are equivalent:

(a) AM is a PSP A-module;

(b) every cyclic Λ-submodule of M is a direct summand;

(c) every finitely generated Λ-submodule of M is a direct summand;

(d) as a Λ-module, M is a selfgenerator;

(e) for any m ∈M and f ∈ EndC(M), there exists h ∈ Λ with f(m) = hm.

Proof. Notice that Λ-submodules of M are just fully invariant submodules and C

can be identified with the centre of T . Hence C is a commutative regular ring.

(a)⇔ (b)⇔ (c) is clear by 14.11, (c)⇒ (d) is obvious.

(d)⇒ (e) This follows from the proof of the Density Theorem (e.g., [40, 15.7]).

(e) ⇒ (b) Choose any m ∈ M and ε(m) ∈ C as defined in 11.12. Since mC '
ε(m)C is a direct summand, for any n ∈M , there exists f ∈ EndC(M) with f(m) =

nε(m). By (e), f(m) = hm for some h ∈ Λ and hence Mε(m) ⊂ Λm.

On the other hand, m = mε(m) and Λm ⊂ (ΛM)ε(m) ⊂ Mε(m). So Λm =

Mε(m) is a direct summand and the assertion is proved. 2
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Modules M , whose finitely generated submodules are direct summands, are closely

related to M being regular in σ[M ]. In fact, if M is finitely presented in σ[M ], these

two notions coincide (7.3). As a special case we derive from above:

14.13 Self-injective finitely presented PSP modules.

Let M be a self-injective polyform A-module and T = EndA(M̂). Denote Λ =

A ⊗ZZ T o and C = EndΛ(M). Assume M is finitely generated as a Λ-module. Then

the following conditions are equivalent:

(a) M is a PSP A-module and finitely presented in σ[ΛM ];

(b) ΛM is regular and projective in σ[ΛM ];

(c) ΛM is a (projective) generator in σ[ΛM ];

(d) for any m1, . . . ,mn ∈M and f ∈ EndC(M), there exists h ∈ Λ with

f(mi) = hmi, for i = 1, . . . , n (density property).

Proof. Since ΛM is finitely generated, MC is a generator in C-Mod by 11.12. So MC

is a faithfully flat C-module.

(a) ⇔ (b) By 14.12, every finitely generated Λ-submodule of M is a direct sum-

mand. Now the assertion follows from 7.3.

(b)⇒ (c)⇒ (d) are obvious (Density Theorem 5.4).

(d) ⇒ (a) Since MC is a generator in C-Mod, M is (finitely generated and) pro-

jective as an EndC(M)-module (5.5).

By the density property, the categories σ[ΛM ] and σ[EndC(M)
M ] coincide (5.4).

So M is projective (hence finitely presented) in σ[ΛM ].

By 14.12, M is a PSP A-module. 2

For modules M with EndA(M̂) commutative we are now able to characterize the

density property of M̂ as bimodule.

14.14 Density property of the self-injective hull.

Let M be a polyform A-module, assume T = EndA(M̂) to be commutative and put

Λ = A⊗ZZ T . Then the following are equivalent:

(a) For any a1, . . . , an ∈ M̂ and f ∈ EndT (M̂), there exists h ∈ Λ with

hai = fai for i = 1, . . . , n.

(b) For any m1, . . . ,mn,m ∈M there exist r1, . . . , rk ∈ A such that

for s1, . . . , sn ∈ A, the relations

n∑
l=1

slrjml = 0 for j = 1, . . . , k,

imply s1m ∈ TUm1(M) for U = AnA(m2, . . . ,mn).
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(c) M is a PSP module and for any m1, . . . ,mn ∈ M , there exist r1, . . . , rk ∈ A

such that for s1, . . . , sn ∈ A the relations

n∑
l=1

slrjml = 0 for j = 1, . . . , k,

imply s1m1 ∈ TUm1(M) for U = AnA(m2, . . . ,mn).

If M̂ is finitely presented in σ[ΛM̂ ], the above are equivalent to:

(d) M̂ is a PSP A-module.

Proof. Put U = AnA(m2, . . . ,mn).

(a)⇒ (b) Put N =
∑n
i=1miT . By 11.12, M̂ is a non-singular and N is an injective

T -module. Since in a non-singular module the intersection of injective submodules is

again injective, K = m1T ∩N is T -injective. Hence m1T = K⊕L for some submodule

L ⊂ m1T . By 11.12, AnT (m1) = (1− ε(m1))T . This means that the map

m1T → ε(m1)T, m1t 7→ ε(m1)t,

is an isomorphism. So there exist idempotents u, v ∈ T with the properties

(∗) uv = 0, u+ v = ε(m1), K = m1uT ' uT and L = m1vT ' vT.

Since m1uT = K ⊂ N and UN = 0, we have Um1u = 0 and

Um1 = U [m1ε(m1)] = U [m1(u+ v)] = Um1v.

By 11.13, Um1v � Am1v, and by 11.12, ε(Um1v) = ε(Am1v) = ε(m1v).

The isomorphism m1vT ' vT implies ε(m1v) = v and hence we have

(∗∗) ε(Um1) = v .

Since m ∈M and TUm1(M) = M ∩ TUm1(M̂), by 11.14,

(TUm1(M) : m)A = (TUm1(M̂) : m)A = AnA(mv).

As an injective submodule, m1vT ⊕N is a direct summand in M̂ . Hence there exists

a T -endomorphism ψ of M̂ satisfying ψN = 0 and ψm1v = mv (recall m1vT ' vT ).

Since m1u ∈ N , we have ψm1u = 0 and ψm1 = ψ[m(u+ v)] = mv.

By assumption, there exists h ∈ Λ satisfying

hm1 = ψm1 = mv, and hmi = ψmi for i = 2, . . . , n .

Now the assertion follows from 11.14.

(b) ⇒ (c) Putting m1 = · · · = mn = 0 we see that M is a PSP module. The

second part of the conditions in (c) follows from (b) for m = m1.
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(c) ⇒ (a) Since M̂ = MT it suffices to show that for any m1, . . . ,mn ∈ M and

f ∈ EndT (M̂), there exists h ∈ Λ such that fmi = hmi, for all i = 1, . . . , n.

We prove this by induction on the cardinality |I| of minimal subsets I ⊂ {1, . . . , n}
satisfying

∑
i∈I miT =

∑n
i=1 miT .

Consider the case |I| = 1, i.e., I = {1}. By 14.11, M̂ε(m1) = Λm1. Since

fm1 = f [m1ε(m1)] = (fm1)ε(m1) ∈ M̂ε(m1) = Λm1 ,

fm1 = hm1 for some h ∈ Λ. By assumption,
∑n
i=1 miT = m1T , implying fmi = hmi,

for all i = 1, . . . , n.

Now assume |I| = n and consider N =
∑n
i=2 miT . As shown above, there exist

idempotents u, v ∈ T satisfying (∗) and (∗∗). By 11.14, there exists h1 ∈ Λ with

h1m1 = m1v and h1mi = 0 , for i = 2, . . . , n .

Notice that h1m1u = (h1m1)u = (m1v)u = m1(vu) = 0.

By induction hypothesis, there exists h2 ∈ Λ with

h2mi = fmi , for i = 2, . . . , n .

Obviously, h2x = fx for any x ∈ N . From (∗) we obtain h2m1u = fm1u.

Consider the element m = fm1v − h2m1v. Clearly m = mv and so m ∈ M̂v. By (∗),
vε(m1) = v. Now it follows from 14.11 that

Λm1v = (Λm1)v = M̂ε(m1)v = M̂v .

Hence there exists h3 ∈ Λ with

h3m1v = m = fm1v − h2m1v .

Putting h = h3h1 + h2, we have

hm1 = h3(h1m1u) + h3(h1m1v) + h2m1u+ h2m1v

= h3m1v + fm1u+ h2m1v

= (fm1v − h2m1v) + fm1u+ h2m1v

= fm1v + fm1u = fm1 ,

hmi = h3(h1mi) + h2mi = fmi , for i = 2, . . . , n .

(a)⇔ (d) This is clear by 14.13. 2

We have seen in 14.12 and 14.13 that self-injective polyform PSP modules have

nice structural properties. Hence we may ask for which modules M , the M -injective

hull M̂ is a PSP module.
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Now we turn to the question which additional conditons on an SSP or PSP module

M imply that M is polyform. It is interesting to observe that this is achieved by

commutativity conditions on the endomorphism ring as well as by projectivity of the

module. Recall that a ring is said to be (left and right) duo if all its one-sided ideals

are two-sided.

14.15 Duo endomorphism rings.

Let M be an A-module, T = EndA(M̂) and assume, for every N �M , M ∈ σ[N ].

(1) Jac (T ) ∩ Z(T ) = 0.

(2) Suppose T is a duo ring. Then M is polyform and SSP.

Proof. (2) Assume for f ∈ T , N = Ke f � M̂ . Then M ∈ σ[N ] which is equivalent

to NT = M̂ . This implies M̂f = (NT )f = (Nf)T = 0 and hence f = 0. So the

Jacobson radical of T is zero, i.e., M is polyform. By 14.10, M is SSP.

(1) A similar argument also implies this assertion. 2

Projectivity makes any PSP module polyform. This applies in particular for the

left module structure of the ring itself.

14.16 Projective PSP modules.

Let M be a PSP module which is projective in σ[M ]. Then:

(1) For any submodules K,N ⊂M , TN(K) is a complement of T N(K) in K, hence

T N(K) + TN(K) �K and [T N(K) + TN(K)]/TN(K) �K/TN(K).

(2) M is polyform.

Proof. M is projective in σ[M ] if and only if M (Λ) is self-projective, for any set Λ.

From this it is obvious that M/X is projective in σ[M/X], for every fully invariant

submodule X ⊂M .

(1) First we show T N(K) 6= 0, for any finitely generated submodules K,N ⊂ M

with Hom(K,N) 6= 0. We may assume that there is an epimorphism f : K → N .

Then N ⊂ T K(M) and

TK(M) ∩N = 0 = TK(M) ∩K.

Put L = TK(M) and M = M/L. There are canonical inclusions N ⊂M and K ⊂M .

Since M is PSP, M ∈ σ[K] and so σ[M ] = σ[K].

As outlined above, M is projective in σ[K] and hence is a submodule of K(Λ), for

some set Λ. Therefore the compostion of the inclusion N ⊂ M with a suitable map

M → K yields a non-zero morphism N → K. This means T N(K) 6= 0.
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From 11.10 we know T N(K) ∩ TN(K) = 0. We have to show that TN(K) is

maximal with respect to this property.

For x ∈ K \ TN(K), there exists a non-zero g : Ax → N̂ and 0 6= (y)g ∈ N , for

some y ∈ Ax. From the above we know

0 6= TN(Ay) ⊂ T N(K) ∩ Ax.

This shows the maximality of TN(K) which implies the assertions (see [40, 140]).

(2) Assume M is not polyform. Then there exist a cyclic submodule K ⊂M and a

non-zero morphism f : K →M with Ke f �K. Put N = (K)f and M = M/TN(M).

The map K
f→M →M factorizes through f̄ : K/TN(K)→M . Since

T N(K) ∩Ke f � T N(K) and T N(K) �K/TN(K) by (1),

we observe Ke f̄ �K/TN(K) and hence N ' Im f̄ is an M -singular module.

By assumption, M ∈ σ[N ] = σ[M ]. So, in particular, M is M -singular. However,

as noted above, M is projective in σ[M ] and hence cannot be M -singular.

Therefore M is polyform. 2

14.17 Projective SSP modules.

Let M be projective in σ[M ] and T = EndA(M̂). Then the following are equivalent:

(a) M is an SSP-module;

(b) for every submodule K ⊂M , M̂ = KT ⊕ TK(M̂).

(c) M is polyform and for any N �M , M ∈ σ[N ].

Proof. (a)⇒ (b) By 14.16, M is polyform and now apply 14.10.

(b) ⇒ (a) The decomposition implies in particular that every fully invariant sub-

module is a direct summand in M̂ as (A, T )-submodule. Hence M̂ is a semisimple

(A, T )-bimodule and M is SSP by 14.4.

(a)⇔ (c) By 14.16, M is polyform and the assertion follows from 14.10. 2

Definition. A ring A is called left PSP (SSP), if AA is a PSP (SSP) module.

Notice that the definition also applies to rings without units, considering such

rings as modules over rings with units in a canonical way. Rings with units are (left)

projective and hence are left non-singular if they are left PSP (or SSP) (by 14.16). We

will see that they are also semiprime. Before we want to describe the torsion modules

related to semiprime rings.
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14.18 Torsion submodules of semiprime rings.

Let A be a semiprime ring and N ⊂ A a left ideal. Then:

(1) TN(A) = AnA(N).

(2) A/TN(A) ∈ σ[N ] if and only if there exists a finite subset X ⊂ N with AnA(X) =

AnA(N).

Proof. (1) The relation TN(A) ⊂ AnA(N) always holds. Clearly NAnA(N) is a

nilpotent left ideal and hence is zero.

Consider f ∈ HomA(AnA(N), IA(N)) and put K = (N)f−1. Then

(Kf)2 ⊂ N(Kf) = (NK)f ⊂ (NAnA(N))f = 0.

Since A is semiprime, Kf = 0 and so Imf ∩ N = 0, implying f = 0. Hence

TN(A) ⊃ AnA(N).

(2) Assume A/TN(A) ∈ σ[N ]. By 14.1, there exists a finite subset X ⊂ N with

AnA(X)1 ⊂ TN(A) = AnA(N) ⊂ AnA(X).

Now assume AnA(X) = AnA(N) for some finite X ⊂ N . Then AnA(X) = TN(A) by

(1), and for any b ∈ A, AnA(X)b ⊂ TN(A). Now apply 14.1. 2

Applying our module theoretic results to AA, we obtain characterizations of

14.19 Left SSP rings.

For the ring A put Q := Qmax(A). The following are equivalent:

(a) A is left SSP;

(b) for every essential left ideal N ⊂ A, A ∈ σ[N ];

(c) every essential left ideal N ⊂ A contains a finite subset X with AnA(X) = 0;

(d) for every left ideal I ⊂ A, Q = IQ⊕ TI(Q);

(e) A is semiprime and every left ideal I ⊂ A contains a finite subset X ⊂ I with

AnA(X) = AnA(I);

(f) Q is a semisimple (A,Q)-module.

If A satisfies these conditions, then Q is left self-injective, von Neumann regular,

and a finite product of simple rings.

Proof. (a)⇒ (b) is shown in 14.4.

(b) ⇒ (a) Assume for every essential left ideal N ⊂ A, A ∈ σ[N ]. Any such N is

a faithful A-module.
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First we show that A is semiprime. For this consider an ideal I ⊂ A with I2 = 0.

Let J be the right annihilator of I, and L ⊂ A any non-zero left ideal. Obviously,

I ⊂ J . Assume L ∩ J = 0. Then IL 6= 0. However, IL ⊂ L ∩ J = 0, a contradiction.

This implies that J is an essential left ideal in A. By our assumption, J is a faithful

left module and IJ = 0 means I = 0.

In view of 14.4 and 11.11, it remains to show that A is left non-singular

If the left singular ideal S(A) ⊂ A is non-zero, S(A)⊕ AnA(S(A)) is an essential

left ideal in A. Hence there are a1, . . . , ak with AnA(a1, . . . , ak) = 0. From this we see

that there is a monomorphism S(A)→ S(A)(b1, . . . , br), with b1, . . . , br ∈ S(A).

The kernel of this map is S(A)∩AnA(b1)∩ . . .∩AnA(br). Since all the AnA(bi) are

essential left ideals in A, this intersection could not be zero, a contradiction. Hence

A is left non-singular.

(b)⇔ (c) This is obvious by 14.1.

(a) ⇒ (d) By 14.16, A is semiprime and left non-singular. Therefore Q = Â and

EndA(Q) = Q. Now the assertion follows from 14.10.

(d) ⇒ (a) We show that A is left non-singular. Assume for a ∈ A, AnA(a) is

an essential left ideal in A. Since Q = RaQ ⊕ Ta(Q), we have RaQ = eQ, for some

idempotent e ∈ Q. Write e =
∑n
i=1 riaqi, with ri ∈ A, qi ∈ Q.

Obviously, L =
⋂n
i=1(AnA(a) : ri)A is an essential left ideal in A and Le = 0.

Therefore L ∩Qe = 0 and also L ∩ (Qe ∩A) = 0. However, L ⊂ A is an essential left

ideal and Qe ∩ A 6= 0, a contradiction. Hence A is left non-singular and so Q = Â

and EndA(Q) = Q. Now apply 14.10.

(a)⇔ (e)⇔ (f) follow from 14.17, 14.3 and 14.4. 2

14.20 Left PSP rings.

For a ring A, the following conditions are equivalent:

(a) A is a left PSP-ring;

(b) A is semiprime (and left non-singular) and for every finitely generated left ideal

N ⊂ A, AnA(N) = AnA(X), for some finite subset X ⊂ N .

Proof. (a) ⇒ (b) By 14.16, A is left non-singular. To show that A is semiprime,

consider a cyclic left ideal N ∈ A with N2 = 0. By assumption, A/TN(A) ∈ σ[N ].

Since NK = 0 for any K ∈ σ[N ], in particular N(A/TN(A)) = 0 and NA ⊂ TN(A).

This implies NA ⊂ T N(A) ∩ TN(A) = 0 and N = 0. Now refer to 14.18.

(b)⇒ (a) also follows from 14.18. 2

Now we consider a condition on modules which is closely related to regularity

properties.
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14.21 Pseudo regular modules.

Let M be a left A-module, S = EndA(M), T = EndA(M̂) and D = EndT (M̂).

Then the following conditions are equivalent:

(a) For every m ∈M , there exists h ∈ D, such that hM ⊂ AmS and hm = m;

(b) for any (A, S)-submodule N ⊂ M and m1, . . . ,mk ∈ N , there exists h ∈ D,

such that hM ⊂ N and hmi = mi, for all i = 1, . . . , k.

A module satisfying these conditions is called pseudo regular.

Proof. (a) ⇒ (b) Let N ⊂ M be an (A, S)-submodule of M and m1, . . . ,mk ∈ N .

For k = 1 there is nothing to show.

Assume the assertion holds for any k− 1 elements in N . Choose f ∈ D such that

fmk = mk and fM ⊂ AmkS ⊂ N .

Clearly mi − fmi ∈ N , for all i = 1, . . . , k − 1, and by hypothesis, there exists

g ∈ D with gM ⊂ N and

g(mi − fmi) = mi − fmi, for i = 1, . . . , k − 1.

Put h = 1− (1− g)(1− f). Then hm = gm− gfm+ fm ∈ N , for all m ∈M , which

means hM ⊂ N , and for i = 1, . . . , k,

hmi = mi − (1− g)(1− f)mi = mi − (1− g)(mi − fmi) = mi.

(b)⇒ (a) is obvious. 2

The next result shows what pseudo regularity means for rings.

14.22 Left fully idempotent rings.

A ring A is left fully idempotent if and only if the left A-module A is pseudo

regular.

Proof. Recall EndA(A) = A. Assume A is left fully idempotent. Let N be an ideal of

A and m ∈ N . Since (Am)2 = Am, there exist h ∈ AmA such that hm = m. Clearly

hA ⊂ N and h ∈ A ⊂ BiendA(Â). Hence AA is pseudo regular.

Now assume AA to be pseudo regular andm ∈ A. Then there exists h ∈ BiendA(Â)

such that hm = m and hA ⊂ AmA. Hence r = h1 ∈ AmA and rm = (h1)m = hm =

m. So m = rm ∈ (Am)2, (Am)2 = Am and the ring A is left fully idempotent. 2

It follows from the above observation that a commutative ring A is von Neumann

regular if and only if AA is pseudo regular.

Of particular interest for our investigations is the following relationship:
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14.23 Pseudo regular and PSP modules.

Let M be a left A-module, S = EndA(M) and T = EndA(M̂). The following are

equivalent:

(a) For every m ∈M , there is a central idempotent e ∈ T , with AmS = Me;

(b) for every m ∈M , M = AmS ⊕ Tm(M) and M̂ = AmT ⊕ Tm(M̂);

(c) for every finitely generated submodule N ⊂ M , there is a central idempotent

e ∈ T , with NS = Me;

(d) for every finitely generated submodule N ⊂M , M = NS ⊕ TN(M) and

M̂ = NT ⊕ TN(M̂);

(e) M is a pseudo regular PSP -module over A.

Proof. Denote D = EndT (M̂).

(a)⇒ (b) For m ∈M choose a central idempotent e ∈ T , with AmS = Me. Since

M̂ = MT we have

M̂ = MTe⊕MT (1− e) = MeT ⊕MT (1− e)
= AmST ⊕MT (1− e) = AmT ⊕MT (1− e).

Hence AmT is M -injective and MTe = AmT = Tm(M̂) = IM(Tm(M̂)) (see 11.10).

Since M̂ is M -injective,

HomA(MT (1− e), IM(Tm(M̂))) = {t ∈ T |MT (1− e)t ⊂ IM(Tm(M̂))}
= {t ∈ T |MT (1− e)t ⊂MTe} = 0.

So MT (1− e) ⊂ Tm(M̂). But MTe = AmT , M̂ = MTe⊕MT (1− e) and

MTe ∩ Tm(M̂) = T m(M̂) ∩ Tm(M̂) = 0.

Hence Tm(M̂) = MT (1−e) and M̂ = AmT⊕Tm(M̂). Clearly AmS = Me = M∩MTe

and

Tm(M) = M ∩ Tm(M̂) = M ∩MT (1− e) = M(1− e).

So M = AmT ⊕ Tm(M).

(b) ⇒ (a) Let e be the projection of M̂ onto AmT along Tm(M̂). Since both

submodules are fully invariant, e is a central idempotent of T . From AmS ⊂ AmT

and Tm(M) ⊂ Tm(M̂), we conclude Me = AmS.

(c)⇔ (d) can be shown with the above proof.

(c)⇒ (a) is obvious.

(a)⇒ (e) Since M/Tm(M) = AmS ∈ σ[Am], M is PSP .
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Let π be the projection of M̂ onto AmT along Tm(M̂). Obviously, π ∈ D. Since

AmS ⊂ AmT and Tm(M) ⊂ Tm(M̂), πM = AmS. Hence M is pseudo regular.

(e) ⇒ (c) Let N ⊂ M be a finitely generated submodule. Since M is PSP ,

M̂ = NT ⊕ IM(TN(M̂)).

Suppose IM(TN(M̂)) 6= TN(M̂) and consider x ∈ IM(TN(M̂)) \ TN(M̂). Then

HomA(Ax,NT ) 6= 0 and - by M -injectivity of M̂ - there exists t ∈ T with 0 6= xt ∈
NT . So xt =

∑n
i=1misi, for some mi ∈ N , si ∈ T . M being pseudo regular, there

exists h ∈ D such that hM ⊂ NS and hmi = mi, for i = 1, . . . , n. Clearly,

h(xt) =
n∑
i=1

h(misi) =
n∑
i=1

(hmi)si =
n∑
i=1

misi = xt.

Since M̂ = MT , hM̂ = (hM)T ⊂ NT and hx ∈ NT . Let π be the projection of

M̂ onto IM(TN(M̂)) along NT . Then 0 = (hx)π = h(xπ) = hx and xt = h(xt) =

(hx)t = 0, contradicting xt 6= 0. Hence IM(TN(M̂) = TN(M̂) and M̂ = NT ⊕TN(M̂).

Now consider α = 1 − π : M̂ → NT and y ∈ M . Then yα =
∑n
i=1 niti, for

some mi ∈ N , ti ∈ T . Since M is pseudo regular, there exists h ∈ D, such that

hM ⊂ NS and hni = ni, for i = 1, . . . , n. Clearly h(yα) = yα and hy ∈ NS ⊂ NT .

So yα = h(yα) = (hy)α = hy ∈ NS and

y − yα ∈ TN(M̂) ∩M = TN(M).

Therefore M = NS ⊕ TN(M). 2

14.24 Remarks. Semiprimeness conditions on modules.

Consider the following properties of an A-module M :

(i) A/AnA(M) is cogenerated by every essential submodule of M ;

(ii) for every N �M , M ∈ σ[N ];

(iii) for every N �M , M ⊂ N (Λ), for some set Λ;

(iv) for every N �M , A/AnA(M) ⊂ N r, for some r ∈ IN ;

(v) M is cogenerated by every essential submodule of M ;

(vi) M is polyform;

(vii) for every submodule K ⊂M , M/TK(M) ∈ σ[K];

(viii) for every cyclic submodule K ⊂M , M/TK(M) ∈ σ[K].

The conditions (i)-(vi) stated for every submodule were considered in 13.9. (vii)

is used to define strongly semiprime modules, and (viii) defines properly semiprime
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modules. For any module M , (iii) ⇒ (v) ⇒ (i), (iii) ⇒ (ii) ⇒ (i), (iv) ⇒ (i) and

(vii)⇒ (ii).

For M projective in σ[M ], (ii)⇔ (iii) and (vii) is equivalent to M satisfying both

(ii) and (vi) (cf. 14.16, 14.17).

For A commutative and M = A, any of the properties (i), (v), (vi) and (viii)

characterize A as a semiprime ring (hence Qmax(A) is regular). Properties (ii), (iii),

(iv) and (vii) imply that Qmax(A) is a finite product of fields.

For M = AA, the conditions (ii), (iii), (iv) and (vii) are equivalent and describe

SSP rings (see 14.19). Left ideals N ⊂ A, which contain a finite subset X with

AnA(X) = 0, are also called insulated. Hence A is left SSP if and only if every

essential left ideal is insulated. So A is left strongly semiprime ring in the sense of

Handelman [149, Theorem 1]. Such rings are also investigated in Kutami-Oshiro [182]

and generalize left strongly prime rings (see 13.9).

14.25 Exercises.

Recall that A is an associative algebra with unit.

(1) The definitions of SSP and PSP modules M refer to the surrounding category.

Nevertheless submodules of such modules are of the same type.

Let M be an A-module and L ⊂M a submodule. Prove: If M is SSP (resp. PSP)

(in σ[M ]), then L is also SSP (resp. PSP) (in σ[L]).

(2) An A-module M is called weakly semisimple if it is polyform, every finitely

generated submodule has finite uniform dimension, and for every non-zero submodule

N ⊂M , there exists f ∈ HomA(M,N) with f |N 6= 0 (weakly compressible).

Let M be such a module. Prove ([285, 1.1]):

(i) For any m ∈M and N �M , there exists a monomorphism Am→ N ∩ Am.

(ii) M is strongly semiprime.

(3) Show that for a ring A, the following are equivalent ([285, 5.1, 5.2]):

(a) A has a faithful weakly semisimple left ideal (of finite uniform dimension);

(b) A is semiprime, left non-singular, with a faithful left ideal which contains a (finite)

direct sum of uniform left ideals.

(4) A ring is said to be left fully idempotent if every left ideal is idempotent. Show

that for a ring A, the following are equivalent ([77, 4.2]):

(a) A is biregular;

(b) A is a left fully idempotent left PSP ring;

(c) A is a left PSP ring whose prime factor rings are left fully idempotent;

(d) A is a left PSP ring with all prime ideals maximal.

(5) Let A be a reduced ring. Prove:
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(i) For any subset U ⊂ A, the left annihilator AnA(U) of U coincides with the right

annihilator of U in A ([2, p. 286]).

(ii) A is left (and right) PSP.

(6) Let A be a reduced ring. Prove that the following are equivalent (see [77, 4.2],

[81, Theorem 8]):

(a) A is biregular;

(b) A is left fully idempotent;

(c) all prime ideals in A are maximal.

(7) Let A be a reduced ring. Prove that the following are equivalent ([226]):

(a) Qmax(A) is reduced;

(b) closed left ideals in A are two-sided ideals;

(c) for non-zero elements x, y ∈ A, Ax ∩ Ay = 0 implies xy = 0 = yx.

(8) Let A be a semiprime left non-singular ring. Prove that the following are

equivalent ([182, Proposition 2.3]):

(a) Qmax(A) is a direct sum of simple rings;

(b) the set of central idempotents of Qmax(A) is finite;

(c) A contains no infinite direct sum of ideals.

(9) Show that for a ring A, the following are equivalent ([182, Theorem 2.5]):

(a) A is left SSP;

(b) Qmax(A) is a direct sum of simple rings and for every idempotent e ∈ Qmax(A),

AeQmax(A) = Qmax(A)eQmax(A).

(10) Show that for a ring A, the following are equivalent ([182, Theorem 3.4]):

(a) A/S2(A) is left SSP;

(b) every non-singular self-injective left A-module is injective;

(c) any finite direct sum of non-singular self-injective left A-modules is self-injective.

(11) Let A be a semiprime ring. Prove ([149, Lemma 7, Corollary 23]):

(i) If A has no infinite direct sums of ideals, then A satisfies acc and dcc on annihilators

of ideals.

(ii) If A has dcc on left annihilators then A is left SSP.

References. Beidar-Wisbauer [75, 76, 77], Birkenmeier-Kim-Park [81], Faith [12],

Handelman [149], Kutami-Oshiro [182], Wisbauer [273], Zelmanowitz [285].
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Tensor products

15 Tensor product of algebras

1.Tensor product of algebra morphisms. 2.Properties of the tensor product. 3.Uni-

versal property of the tensor product. 4.Scalar extensions. Definition. 5.Algebras

over factor rings. 6.Hom-tensor relations for algebras. 7.Tensor product with mod-

ules. 8.Tensor product with an algebra. 9.Tensor product for morphisms of modules.

10.Multiplication algebras of tensor products. 11.Multiplication algebras of scalar ex-

tensions. 12.Hom-tensor relations for multiplication algebras. 13.Centroid of scalar

extensions.

For the definition and basic properties of the tensor product of modules over

associative rings we refer to [40, Section 12]. The reader may also consult Anderson-

Fuller [1] or Faith [12], for example.

To avoid ambiguity we will sometimes write f⊗g instead of f ⊗ g for the tensor

product of two R-module morphisms f and g (see [40, 12.3].

Consider two R-algebras A and B, defined by the R-linear maps

µ : A⊗R A→ A, ν : B ⊗R B → B.

Since factors in a tensor product over commutative rings can be permuted, we get the

R-linear map

(A⊗R B)⊗R (A⊗R B) ' (A⊗R A)⊗R (B ⊗R B)
µ⊗ν−→ A⊗R B ,

turning A⊗R B into an R-algebra (sometimes just denoted by A⊗B).

The multiplication of elements a1 ⊗ b1, a2 ⊗ b2 ∈ A⊗R B is given by

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.

15.1 Tensor product of algebra morphisms.

Let f : A→ A1 and g : B → B1 be R-algebra morphisms. Then:

(1) There is an algebra morphism

h : A⊗R B → A1 ⊗R B1, a⊗ b 7→ f(a)⊗ g(b).

123
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(2) If f and g are surjective, then h is also surjective and

A1 ⊗R B1 ' (A⊗R B)/(Im(Ke f ⊗B) + Im(A⊗Ke g)),

where Im(Ke f ⊗B) and Im(A⊗Ke g) denote the images of

Ke f ⊗B → A⊗B and A⊗Ke g → A⊗B.

(3) If f and g are injective and

(i) A1 and B are flat R-modules, or

(ii) f and g are pure as R-module morphisms, or

(iii) A1 is a flat R-module and f is a pure R-module morphism,

then h is injective.

Proof. (1) Put h = f⊗g, the tensor product of f and g as R-module morphism. It

remains to show that h is a ring morphism:

h((a1 ⊗ b1)(a2 ⊗ b2)) = f(a1a2)⊗ g(b1b2)

= (f(a1)⊗ g(b1))(f(a2)⊗ g(b2))

= h(a1 ⊗ b1)h(a2 ⊗ b2).

(2) Since tensor functors are right exact, we have the exact sequences

Ke f ⊗B → A⊗B → A1 ⊗B → 0,

A⊗Ke g → A⊗B → A⊗B1 → 0.

Tensoring A → A1 with B1 and B → B1 with A, we obtain the composed surjective

algebra morphism

A⊗B → A⊗B1 → A1 ⊗B1

with kernel Im(Ke f ⊗B) + Im(A⊗Ke g) (see [40, 12.19], [12, 11.3]).

(3) The map h can be decomposed into

f⊗id : A⊗B → A1 ⊗B and id⊗g : A1 ⊗B → A1 ⊗B1.

Under the given conditions both mappings are injective (see [40, 34.5, 36.5]). 2

For example, the conditions (i), (ii) and (iii) are always satisfied for algebras over

(von Neumann) regular rings (e.g., [40, 37.6]).
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15.2 Properties of the tensor product. Let A and B be R-algebras.

(1) If A has a unit eA, then there is an algebra morphism

εB : B → A⊗R B, b 7→ eA ⊗ b.

Assume A is a faithful R-module and, in addition, B is a flat R-module or ReA
is a pure R-submodule of A. Then εB is injective.

(2) If eA and eB are the units in A and B, then

(i) eA ⊗ eB is the unit in A⊗R B,

(ii) εA(a)εB(b) = εB(b)εA(a), for all a ∈ A, b ∈ B, and

(εA(A), εB(B), A⊗R B) = (A⊗R B, εA(A), εB(B)) = 0.

(3) A⊗R B ' B ⊗R A and, for any R-algebra C,

A⊗R (B ⊗R C) ' (A⊗R B)⊗R C.

(4) If A and B are associative algebras, then A⊗R B is associative.

Proof. (1) It is easily verified that εB is an algebra morphism, obtained by tensoring

the exact sequence 0 → ReA → A with RB. If this sequence is pure in R-Mod or if

RB is flat, the resulting sequence is exact (see 15.1).

(2) (i) is obvious. (ii) By definiton, εA(a)εB(b) = a⊗ b = εB(b)εA(a) and

εA(a1)[εB(b1)(a2 ⊗ b2)] = a1a2 ⊗ b1b2 = [εA(a1)εB(b1)](a2 ⊗ b2).

(3) follows from commutativity and associativity of tensor products.

(4) is easily verified. 2

From the above observations we obtain the

15.3 Universal property of the tensor product.

Let f : A→ C and g : B → C be unital algebra morphisms such that

(f(A), g(B), f(A)g(B)) = 0 = (f(A)g(B), f(A), g(B))

and [f(A), g(B)] = 0.

Then there exists a unique algebra morphism h : A⊗R B → C, satisfying

h(a⊗ b) = f(a)g(b) , for all a ∈ A, b ∈ B.

In particular, with notation as in 15.2, f = hεA and g = hεB.
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Proof. Since f and g are R-module morphisms, the map

A×B → C, (a, b) 7→ f(a)g(b),

factorizes over A⊗RB yielding an R-module morphism h with the desired properties.

It remains to verify that h is an algebra morphism. By our assumptions on the

associators and commutators of f(A) and g(B), we have

h[(a1 ⊗ b1)(a2 ⊗ b2)] = f(a1a2)g(b1b2) = [f(a1)f(a2)][g(b1)g(b2)]

= {[f(a1)g(b1)]f(a2)}g(b2) = [f(a1)g(b1)][f(a2)g(b2)]

= h(a1 ⊗ b1)h(a2 ⊗ b2).

2

As a special case, 15.3 implies that in the category of commutative associative

unital R-algebras, the tensor product yields the coproduct of two algebras.

An associative commutative R-algebra with unit will be called a scalar algebra

(over R). For such algebras we define:

15.4 Scalar extensions. Definition.

Let A be an R-algebra and S a scalar algebra over R. Then A ⊗R S becomes an

S-module (by (a⊗ s)t = a⊗ st) and the map

(A⊗R S)⊗S (A⊗R S)→ A⊗R S, (a⊗ s)(b⊗ t) 7→ ab⊗ st,

is in fact an S-linear map, making A ⊗R S an S-algebra, called the scalar extension

of A by S.

Of course, for every ideal I ⊂ R the factor ring R/I is a scalar algebra over R.

For this special situation we state:

15.5 Algebras over factor rings. Let A and B be R-algebras.

(1) For every ideal I ⊂ R, the product IA is an ideal in A, and

A/IA ' A⊗R (R/I) as R/I-algebras.

(2) For any ideal I ⊂ R with IB = 0,

A⊗R B ' (A/IA)⊗R/I B as R/I-algebras.

(3) For any ideals I, J ⊂ R,

R/I ⊗R R/J ' R/(I + J).

Proof. This is readily derived from 15.1(2). 2
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We state some relations between Hom and tensor products for later use.

15.6 Hom-tensor relations for algebras.

Let A and B be associative unital R-algebras, M,L left A-modules, N a left B-

module, and X a left A⊗R B-module.

With the canonical maps εB : B → A ⊗R B and εA : A → A ⊗R B (see 15.2) we

consider X as left A- and B-module. Then there are canonical isomorphisms

(i) HomA⊗B(M ⊗R N,X)→ HomB(N,HomA(M,X)),

(ii) HomA⊗B(M ⊗R B,X)→ HomA(M,X),

(iii) HomA⊗Ao(A,HomR(M,L))→ HomA(M,L).

Proof. (i) Considering M as an (A,R)-bimodule, the ordinary Hom-tensor isomor-

phism (e.g., [40, 12.12]) is

HomA(M ⊗R N,X)→ HomR(N,HomA(M,X)), δ 7→ [n 7→ (− ⊗ n)δ],

with inverse ϕ 7→ [m⊗ n 7→ (m)(n)ϕ].

The A ⊗ B-module morphisms and the B-module morphisms are subsets of the

corresponding R-module morphisms. Hence for the first isomorphism it is only to

confirm that the restriction of this isomorphism in fact maps the subsets considered

above into each other.

(ii) This isomorphism is obtained from (i) for N = B.

With the map α : M →M ⊗R B, m 7→ m⊗ 1B, it can be described by h 7→ αh.

(iii) Writing morphisms to the right, HomR(M,L) is an A-bimodule by multiplying

f ∈ HomR(M,L) in the usual way,

[m](afb) = a([bm]f) , for a, b ∈ A, m ∈M.

Under the canonical isomorphism

HomA(A,HomR(M,L))→ HomR(M,L), ϕ 7→ (1)ϕ,

the elements ψ ∈ HomA⊗Ao(A,HomR(M,L)) are mapped to HomA(M,L):

Putting ψ′ = (1)ψ we have aψ′ = ψ′a, for any a ∈ A, and hence

(am)ψ′ = (m)ψ′a = (m)aψ′ = a(mψ′),

for all m ∈M , i.e., ψ′ ∈ HomA(M,L). 2

Next we observe that some projectivity properties guarantee further Hom-tensor

isomorphisms:
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15.7 Tensor product with modules.

Let A be an associative unital R-algebra, M and M ′ left A-modules and Q an

R-module. Consider the R-linear map

νM : HomA(M,M ′)⊗R Q→ HomA(M,M ′ ⊗R Q), [h⊗ q 7→ (−)h⊗ q].

(1) If Q is a flat R-module and M a finitely generated (finitely presented) A-module,

then νM is injective (an isomorphism).

(2) νM is also an isomorphism in the following cases:

(i) M is a finitely generated, M ′-projective A-module, or

(ii) M is M ′-projective and Q is a finitely presented R-module, or

(iii) Q is a finitely generated projective R-module.

Proof. (1) It is easy to check that νM is an isomorphism for M = A and M = Ak,

k ∈ IN . Since AM is finitely generated, there exists an exact sequence of A-modules

A(Λ) → An →M → 0, with Λ an index set, n ∈ IN .

The functors HomA(−,M ′)⊗RQ and HomA(−,M ′⊗RQ) yield the exact commu-

tative diagram

0→HomA(M,M ′)⊗R Q →HomA(An,M ′)⊗R Q → HomA(A(Λ),M ′)⊗R Q
↓ νM ↓ νAn ↓ νA(Λ)

0→HomA(M,M ′ ⊗R Q) →HomA(An,M ′ ⊗R Q) →HomA(A(Λ),M ′ ⊗R Q).

Since νAn is an isomorphism, νM has to be injective.

If M is finitely presented we can choose Λ to be finite. Then also νA(Λ) and νM are

isomorphisms.

(2)(i) From the exact sequence of R-modules 0 → K → R(Λ) → Q → 0, we

construct the commutative diagram with the upper line exact,

HomA(M,M ′)⊗R K → HomA(M,M ′)⊗R R(Λ) → HomA(M,M ′)⊗R Q → 0

↓ν ↓' ↓νM
HomA(M,M ′ ⊗R K) → HomA(M,M ′ ⊗R R(Λ)) → HomA(M,M ′ ⊗R Q) → 0 ,

where ν is defined as above replacing Q by K.

Since M is M ′ ⊗R R(Λ)-projective (see 5.1), the lower sequence is also exact and

hence νM is surjective. By the same argument we obtain that ν is surjective. Now it

follows from the Kernel Cokernel Lemma (e.g., [40, 7.15]) that νM is injective.

(ii) This statement is obtained from the proof of (1), with Λ a finite set and K a

finitely generated R-module.

(iii) The assertion is obvious for Q = R and is easily extended to finitely generated

free (projective) modules Q. 2
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Combining the preceding observations we get

15.8 Tensor product with an algebra.

Let A and B be associative unital R-algebras, M and M ′ left A-modules. Consider

the map

HomA(M,M ′)⊗R B → HomA⊗B(M ⊗R B,M ′⊗R B), f ⊗ b 7→ [m⊗ b′ 7→ (m)f ⊗ b′b].

(1) If B is a flat R-module and M is a finitely generated (finitely presented)

A-module, then the map is injective (an isomorphism).

(2) The map is also an isomorphism if

(i) M is a finitely generated, M ′-projective A-module, or

(ii) M is M ′-projective and B is a finitely presented R-module, or

(iii) B is a finitely generated projective R-module.

Proof. The map is the composition of maps in 15.7 and 15.6,

HomA(M,M ′)⊗R B → HomA(M,M ′ ⊗R B) and

HomA(M,M ′ ⊗R B) → HomA⊗B(M ⊗R B,M ′ ⊗R B).

2

15.9 Tensor product for morphisms of modules.

Let A and B be associative unital R-algebras, M,M ′ left A-modules and N,N ′ left

B-modules.

(1) For f ∈ HomA(M,M ′) and g ∈ HomB(N,N ′),

f⊗g ∈ HomA⊗B(M ⊗R N,M ′ ⊗R N ′).

(2) The mapping (f, g) 7→ f⊗g induces an R-module morphism

ψ : HomA(M,M ′)⊗R HomB(N,N ′)→ HomA⊗B(M ⊗R N,M ′ ⊗R N ′).

Assume M and N are finitely generated. Then ψ is an isomorphism if

(i) M is M ′-projective and N is N ′-projective, or

(ii) M and N are projective as A-, resp. B-modules, or

(iii) M is a finitely presented A-module, N and N ′ are finitely generated,

projective B-modules, and B is a flat R-module.

(3) ψ : EndA(M)⊗R EndB(N)→ EndA⊗B(M ⊗R N) is an algebra morphism.
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Proof. (1) Just verify that f⊗g is in fact an A⊗B-module morphism.

(2) ψ is well-defined since (f, g) 7→ f⊗g yields an R-bilinear map.

(i) By 15.6(i) and 15.7(2.i), we have isomorphisms

HomA⊗B(M ⊗N,M ′ ⊗N ′) ' HomB(N,HomA(M,M ′ ⊗N ′))
' HomB(N,HomA(M,M ′)⊗N ′)
' HomA(M,M ′)⊗ HomB(N,N ′) .

(ii) is a special case of (i).

(iii) Since B ' HomB(B,B) we know from 15.8 that ψ is an isomorphism for

N = N ′ = B. Similar to the above argument, this isomorphism can be extended to

finitely generated free and projective modules N and N ′.

(3) is easily verified. 2

Now let us apply the preceding observations to arbitrary algebras as modules over

their multiplication algebras.

15.10 Multiplication algebras of tensor products.

Let A and B be R-algebras. With ε denoting the inclusions, the maps defined in

15.1 and 15.9 yield the algebra morphisms

M(A)⊗M(B) M(A⊗B)

εA ⊗ εB ↓ ↓ εA⊗B
EndR(A)⊗ EndR(B)

ψ−→ EndR(A⊗B) .

(1) Im εA⊗B ⊂ Im ψ(εA ⊗ εB).

(2) εA ⊗ εB is injective if one of the following conditions holds:

(i) End(A) and M(B) are flat R-modules;

(ii) M(A) ⊂ EndR(A) and M(B) ⊂ EndR(B) are pure R-submodules;

(iii) End(A) is a flat R-module and M(A) ⊂ EndR(A) a pure R-submodule.

(3) If A and B are finitely generated projective R-modules, then ψ is an isomor-

phism.

(4) If A and B have units, the diagram is extended commutatively by the surjective

algebra morphism

h : M(A)⊗RM(B)→M(A⊗R B), µ⊗ ν 7→ µ⊗ν.

The kernel of h is the annihilator of A⊗R B in M(A)⊗RM(B).
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Proof. (1) This follows by the definitions.

(2) is an application of 15.1(3), and (3) is shown in 15.9.

(4) The map is well defined (compare 15.3). Consider a ⊗ b ∈ A ⊗R B and

La⊗b ∈M(A⊗RB). Then h maps La⊗Lb ∈M(A)⊗RM(B) to La⊗Lb = La⊗b. Similar

arguments apply to any right multiplication in A⊗R B and hence h is surjective. 2

With the same kind of proof we obtain:

15.11 Multiplication algebras of scalar extensions.

Let A be an algebra and S a scalar algebra over R. With ε denoting inclusions, the

maps defined in 15.1 and 15.9 yield the commutative diagram of algebra morphisms

M(A)⊗R S
ϕ−→ M(A⊗R S)

εA ⊗ idS ↓ ↓ εA⊗S
EndR(A)⊗R S

ψ−→ EndS(A⊗R S) ,

where ϕ, defined by µ⊗ s 7→ µ⊗Ls, is surjective.

The kernel of ϕ is the annihilator of A⊗R S in M(A)⊗R S.

(1) εA ⊗ idS is injective if

(i) S is a flat R-module, or

(ii) M(A) ⊂ EndR(A) is a pure R-submodule.

(2) If A is a finitely generated, projective R-module, then ψ is an isomorphism.

(3) If S is a flat R-module and A is a finitely generated R-module, then ψ is injective

and ϕ is an isomorphism.

(4) If S is a flat R-module and A is a finitely presented R-module, then ψ and ϕ

are isomorphisms.

Proof. The assertions about ϕ are easy to verify.

(1) is an application of 15.1(3), and (2) is shown in 15.9.

(3) and (4) follow from 15.8. 2

As a special case of the Hom-tensor isomorphism in 15.6 we have:

15.12 Hom-tensor relations for multiplication algebras.

Let A and B be R-algebras with multiplication algebras M(A), M(B), and X a

left M(A)⊗RM(B)-module. Then there is an isomorphism

HomM(A)⊗M(B)(A⊗R B,X) ' HomM(B)(B,HomM(A)(A,X)).

If A and B are unital, then in fact (observe 15.10(4)),

HomM(A⊗B)(A⊗R B,X) ' HomM(B)(B,HomM(A)(A,X)).
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In case B = S is a scalar algebra, we have

HomM(A⊗S)(A⊗R S,X) ' HomM(A)(A,X).

From the preceding results we get some information about the centroids of scalar

extensions:

15.13 Centroid of scalar extensions.

Let A be an algebra and S a scalar algebra over R. Then there is an algebra

morphism

C(A)⊗R S → C(A⊗R S), γ ⊗ s 7→ (−)γ ⊗ s.

(1) If S is a flat R-module and A is a finitely generated (finitely presented) M(A)-

module, then the map is injective (an isomorphism).

(2) The map is also an isomorphism if

(i) A is a finitely generated, self-projective M(A)-module, or

(ii) S is a finitely generated, projective R-module.

Proof. Since C(A ⊗R S) = EndM(A⊗RS)(A ⊗R S), the statements follow from 15.8

and 15.11. 2

References: Anderson-Fuller [1], DeMeyer-Ingraham [10], Faith [12], Pierce [33],

Wisbauer [40, 276].
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16 Modules and rings of fractions

1.Faithfully flat modules. 2.Properties of the ring of fractions. 3.Properties of the

module of fractions. 4.Algebras of fractions. 5.Modules over algebras of fractions.

6.Special algebras of fractions.

In this section we study the forming of quotient modules and quotient algebras

with respect to multiplicative subsets of R. Since this is closely related to tensoring

with quotient rings of R, we recall some properties of tensor functors for the category

of R-modules.

Recall that an R-module U is faithfully flat if UR is flat and, for any R-module N ,

U ⊗R N = 0 implies N = 0. The following is shown in [40, 12.17]:

16.1 Faithfully flat modules.

For an R-module U , the following assertions are equivalent:

(a) U is faithfully flat;

(b) U is flat and U ⊗R R/I 6= 0, for every proper (maximal) ideal I ⊂ R;

(c) U is flat and UI 6= U , for every proper (maximal) ideal I ⊂ R;

(d) the functor U ⊗R − : R-Mod→ ZZ-Mod

(i) is exact and reflects zero morphisms, or

(ii) preserves and reflects exact sequences.

An important class of flat R-modules is obtained by forming the ring of fractions

with respect to multiplicative subsets S ⊂ R containing 1:

On the set R× S an equivalence relation is given by

(a, s) ∼ (b, t) if (at− bs)s′ = 0, for some s′ ∈ S.

For the equivalence classes of (a, s) ∈ R× S, denoted by [a, s], we define addition

and multiplication by

[a, s] + [b, t] = [at+ bs, st], [a, s][b, t] = [ab, st].

This yields a ring denoted by RS−1, called the ring of fractions of R with respect to

S. There is a ring morphism

R→ RS−1, r 7→ [r, 1], with kernel {r ∈ R | rs = 0, for some s ∈ S}.

16.2 Properties of the ring of fractions. We use the notation above.

(1) RS−1 is a flat R-module.

(2) Every ideal of RS−1 is of the form IRS−1, for some ideal I ⊂ R.
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(3) IRS−1 is a prime ideal in RS−1 if and only if I is a prime ideal in R with

I ∩ S = ∅.

(4) If R is artinian or noetherian, then RS−1 has the same property.

(5) For any ideal I ⊂ R and π : R→ R/I, RS−1/IRS−1 ' (R/I)π(S)−1.

Proof. (1) It is to show that I ⊗ RS−1 → IRS−1, a ⊗ [1, s] 7→ [a, s], is injective

for any ideal I ⊂ R (e.g., [40, 12.16]). This is a special case of an isomorphism which

will be obtained in 16.3(1).

(2) For any ideal L ⊂ RS−1, consider I = {a ∈ R | [a, 1] ∈ L}.
Then obviously IRS−1 ⊂ L. For [a, s] ∈ L, [1, s][a, 1] ∈ IRS−1 and so IRS−1 = L.

(3) For a prime ideal P ⊂ RS−1, p = {a ∈ R | [a, 1] ∈ P} is a prime ideal in R and

P = pRS−1. Since P contains no invertible elements of RS−1, p ∩ S = ∅.
Now let p be a prime ideal of R with p ∩ S = ∅ and [a, s][b, t] ∈ pRS−1. Then

[ab, 1][1, st][st, 1] ∈ pRS−1 and ab ∈ p, implying a ∈ p or b ∈ p. Hence [a, s] or

[b, t] ∈ pRS−1 and pRS−1 is a prime ideal.

(4) This is an obvious consequence of (2).

(5) The isomorphism is given by

RS−1/IRS−1 → (R/I)π(S)−1, [a, s] + IRS−1 7→ [a+ I, s+ I]. 2

For any R-module M and a multiplicative subset S ⊂ R containing 1, we define a

module of fractions MS−1 in the following way:

On the set M × S consider the equivalence relation

(m, s) ∼ (n, t) if (mt− ns)s′ = 0, for some s′ ∈ S.

On the set of equivalence classes, denoted by [m, s], addition and scalar multipli-

cation are defined by

[m, s] + [n, t] = [mt+ ns, st], [a, s][m, t] = [am, st].

This makes MS−1 an RS−1-module, and there is a canonical R-linear map

M →MS−1, m 7→ [m, 1], with kernel {m ∈M | ms = 0 for some s ∈ S}.

16.3 Properties of the module of fractions.

Let M , N be R-modules. We use the above notation.

(1) M ⊗R RS−1 'MS−1.

(2) If M is a flat R-module, then MS−1 is a flat RS−1-module.
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(3) Every RS−1-submodule of MS−1 is of the form KS−1, for some R-submodule

K ⊂M .

(4) If M is a finitely generated R-module, then MS−1 is a finitely generated

RS−1-module.

(5) If M is a noetherian (artinian) R-module, then MS−1 is a noetherian (artinian)

RS−1-module.

(6) A finite subset {m1, . . . ,mk} ⊂M is in the kernel of M →MS−1 if and only if

there exists s ∈ S with smi = 0, for i = 1, . . . , k.

(7) MS−1 ⊗R N 'MS−1 ⊗RS−1 NS−1 ' (M ⊗R N)S−1.

(8) For an RS−1-module L, the map L → LS−1, l 7→ [l, 1] is an isomorphism and

HomR(M,L) ' HomRS−1(MS−1, L).

(9) For RS−1-modules L,L′, we have L⊗R L′ ' L⊗RS−1 L′ and

HomR(L,L′) ' HomRS−1(L,L′).

(10) For any submodule N ⊂M , MS−1/NS−1 ' (M/N)S−1.

Proof. (1) The map M × RS−1 → MS−1, (m, [r, s]) 7→ [rm, s], is R-bilinear and

hence yields an R-linear map M ⊗R RS−1 →MS−1, which is in fact RS−1-linear.

Consider the assignment MS−1 →M ⊗R RS−1, [m, s] 7→ m⊗ [1, s].

If [m, s] = [m′, s′], then ts′m = tsm′ for some t ∈ S and

m⊗ [1, s] = m⊗ [ts′, tss′] = ts′m⊗ [1, tss′] = tsm′ ⊗ [1, tss′] = m′ ⊗ [1, s′].

Hence our assignment defines in fact an inverse to the above mapping.

(2) Since RS−1 is a flat R-module by 16.2, this follows from (1).

(3) For any RS−1-submodule L ⊂MS−1, consider

K = {m ∈M | [m, 1] ∈ L} ⊂M.

K is an R-submodule and obviously KS−1 ⊂ L. For [l, s] ∈ L we observe [l, s] =

[1, s][l, 1] ∈ KS−1 and hence KS−1 = L.

(4) and (5) are immediate consequences of (3).

(6) Under the given conditions, there exist si ∈ S with simi = 0, and s := s1 · · · sk
has the property demanded.

(7) This follows from (1) and basic properties of the tensor product.

(8) Assume [l, 1] = 0. Then there exists s ∈ S with sl = 0 which implies l =

[1, s][s, 1]l = 0. Hence the map is injective.

Consider [l, s] ∈ LS−1. The image in LS−1 of [1, s]l ∈ L is in fact [l, s] and the

map is surjective.



136 Chapter 4. Tensor products

Referring to (1), the second isomorphism is obtained from 15.6.

(9) These isomorphisms are derived from (7) and (8).

(10) Since −⊗R RS−1 is an exact functor this follows from (1). 2

Applied to R-algebras, the above techniques again yield algebras and we want to

consider some basic relations between an algebra and its algebra of fractions. Recall

that an algebra is said to be reduced if it contains no non-zero nilpotent elements.

16.4 Algebras of fractions.

Assume A is an R-algebra and S ⊂ R is a multiplicative subset. Then:

(1) AS−1 ' A⊗R RS−1 is an RS−1-algebra.

(2) Every (left) ideal of AS−1 is of the form KS−1, for some (left) ideal K ⊂ A.

(3) The canonical map A→ AS−1, a 7→ [a, 1], is an R-algebra morphism.

(4) If A is commutative, associative, alternative, power-associative or a Jordan al-

gebra, then AS−1 is of the same type.

(5) Assume A is a power-associative algebra. Then:

(i) For any nil (left) ideal N ⊂ A, NS−1 is a nil (left) ideal in AS−1.

(ii) Every nilpotent element [a, s] ∈ AS−1 is of the form [a, s] = [ta, ts], for

some t ∈ S and ta ∈ A nilpotent.

(iii) If A is reduced then AS−1 is reduced.

Proof. (1) AS−1 is a scalar extension of A by RS−1 (see 15.4).

(2) This can be seen with the proof of (3) in 16.3.

(3),(4) and (5)(i) are obvious.

(5)(ii) Assume for [a, s] ∈ AS−1 and n ∈ IN , we have [a, s]n = [an, sn] = 0. Then

tan = 0, for some t ∈ S, and (ta)n = 0. Obviously [a, s] = [ta, ts].

(5)(iii) This is immediate from (ii). 2

If A is an associative R-algebra the above constructions can also be extended to

unital A-modules and with the proofs of 16.3 we obtain:

16.5 Modules over algebras of fractions.

Let A be an associative R-algebra with unit, S a multiplicative subset of R, and

M a unital left A-module. Considering M as an R-module we form the module of

fractions MS−1. Then:

(1) MS−1 'M ⊗R RS−1 'M ⊗A AS−1, and for any right A-module N ,

N ⊗AMS−1 ' NS−1 ⊗AS−1 MS−1.
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(2) If M is a flat A-module, then MS−1 is a flat AS−1-module.

(3) Every AS−1-submodule of MS−1 is of the form KS−1, for some A-submodule

K ⊂M .

(4) For any submodules U, V ⊂M , (U ∩ V )S−1 = US−1 ∩ V S−1.

(5) If M is a finitely generated A-module, then MS−1 is a finitely generated

AS−1-module.

(6) If M is a noetherian (artinian) A-module, then MS−1 is a noetherian (artinian)

AS−1-module.

(7) If U is a direct summand in M , then US−1 is a direct summand in MS−1.

(8) If every (finitely generated) A-submodule of M is a direct summand, then every

(finitely generated) AS−1-submodule of MS−1 is a direct summand.

As an application of the above observations we state:

16.6 Special algebras of fractions. Let A be an R-algebra.

(1) If A is alternative and (strongly) regular, then AS−1 is (strongly) regular.

(2) If every (finitely generated) left ideal of A is a direct summand, then every

(finitely generated) left ideal of AS−1 is a direct summand.

(3) If every (finitely generated) ideal of A is a direct summand, then every (finitely

generated) ideal of AS−1 is a direct summand.

Proof. (1) Assume A is regular. For any [a, s] ∈ AS−1, there exists b ∈ A with

a = aba, and we have [a, s][bs, 1][a, s] = [a, s], i.e., AS−1 is regular.

If A is reduced, then AS−1 is reduced by 16.4.

(2) Left ideals of A are L(A)-submodules of A, where L(A) denotes the left mul-

tiplication algebra of A (see 2.1). Similar to the construction in 15.11, we obtain a

surjective ring morphism L(A) ⊗R RS−1 → L(AS−1) and we see that left ideals of

AS−1 are exactly its L(A)⊗R RS−1-submodules.

Now the assertion follows from 16.5(7).

(3) This is obtained by the same proof as (2). 2

References: Bourbaki [7], Matsumura [25].
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Local-global techniques

In studying R-algebras A, the properties of the ring R may be of importance. In some

instances it is of advantage to change to other base rings with ”better” properties

by scalar extensions and then try to win insight about the algebra A over R. For

example, one can try to transfer problems to algebras over local rings. If they are

solvable in this special case one can try to extend the solution to the general case.

These procedures are called local-global techniques. This reduction process is based

on the rings of quotients introduced in the preceding chapter.

17 Localization at prime ideals

1.Localization at prime ideals. 2.Morphisms and localization. 3.Reduction to fields.

4.Endomorphisms of finitely generated modules. 5.R as a direct summand. 6.Central

idempotents and nilpotent elements. 7.Localization over regular rings. 8.Tensor prod-

uct over regular rings. 9.Associative regular algebras. 10.Associative strongly regular

algebras. 11.Exercises.

As special types of multiplicative subsets of R we can take S = R \ p for any

prime ideal p ⊂ R. Then the ring of fractions RS−1 is denoted by Rp and is called

the localization of R at p.

We denote by P the set of all prime ideals of R (the prime spectrum), and by M
the set of all maximal ideals of R (the maximal spectrum).

17.1 Localization at prime ideals. We use the above notation.

(1) For every p ∈ P, Rp is a local ring with maximal ideal pRp, and

Rp/pRp ' Q(R/p), the quotient field of R/p.

The prime ideals in Rp correspond to the prime ideals of R contained in p.

(2) For every m ∈M, Rm is a local ring with maximal ideal mRm and

Rm/mRm ' R/m.

(3) FP =
⊕
p∈P Rp and FM =

⊕
m∈MRm are faithfully flat R-modules.

(4) For any R-module M, we have a canonical monomorphism

M →
∏
M
Mm, k 7→ ([k, 1]m).

138
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Proof. (1) and (2) follow from 16.2.

(3) The Rp are flat by 16.2 and direct sums of flat modules are again flat ([40,

36.1]). By (2), for every maximal ideal m ⊂ R, mRm 6= Rm. Hence mFM 6= FM and

FM is faithfully flat by 16.1.

The same argument applies to FP .

(4) For the kernel K of this map, we have K ⊗R Rm = 0 for all m ∈ M, hence

K = 0 by (3). 2

From 17.1(3) we immediately deduce the behaviour of morphisms:

17.2 Morphisms and localization.

Let f : M → N be a morphism of R-modules.

(1) f is monic if and only if, for every m ∈M, fm : M ⊗Rm → N ⊗Rm is monic.

(2) f is epic if and only if, for every m ∈M, fm is epic.

(3) f is an isomorphism if and only if, for every m ∈M, fm is an isomorphism.

In some cases the test of a module to be zero can also be achieved by tensoring

with certain factor rings:

17.3 Reduction to fields. Let M and N be R-modules.

(1) Assume R is a local ring with maximal ideal m and

M is finitely generated, or m is a t-nilpotent ideal.

Then M ⊗R R/m = 0 implies M = 0.

(2) Assume M is finitely generated, or mRm is t-nilpotent for every m ∈M.

(i) Then M ⊗R R/m = 0 for all m ∈M implies M = 0.

(ii) For f : N →M the following are equivalent:

(a) f is surjective;

(b) for every m ∈M, f ⊗ id : N ⊗R R/m→M ⊗R R/m is surjective.

Proof. (1) Assume M⊗R/m = 0, i.e., M = mM . Since R is local, m is the Jacobson

radical of R. If M is finitely generated, the Nakayama Lemma ([40, 21.13]) implies

M = 0. If m is a t-nilpotent ideal, then mM = M is only possible for M = 0 (e.g.,

[40, 43.5]).

(2)(i) Assume M ⊗ R/m = 0 for all m ∈ M. By R/m ' Rm/mRm (see 17.1),

M ⊗R Rm/mRm = 0. Since Rm is a local ring with maximal ideal mRm, we know

from (1) that M ⊗R Rm = 0 for all m ∈M. By 17.1(3), this implies M = 0.

(ii) (a)⇒ (b) is obvious.
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(b)⇒ (a) Put L = M/Nf . The functor −⊗R R/m yields the exact sequence

N ⊗R R/m
f⊗id−→M ⊗R R/m −→ L⊗R R/m −→ 0.

Since all f ⊗ id are surjective, we obtain L⊗ R/m = 0 for all m ∈ M and L = 0 by

(2). Hence f is surjective. 2

The next proposition collects characterizations of automorphisms of finitely gen-

erated modules:

17.4 Endomorphisms of finitely generated modules.

Let M be a finitely generated R-module. Then:

(1) If I is an ideal in R with IM=M, then (1− r)M = 0 for some r ∈ I.

(2) Every surjective endomorphism of M is an isomorphism.

(3) For f ∈ EndR(M), the following are equivalent:

(a) f is an isomorphism;

(b) f is an epimorphism;

(c) f is a pure monomorphism;

(d) for every m ∈M, f ⊗ id : M ⊗R/mR→M ⊗R/mR is surjective;

(e) for every m ∈M, f ⊗ id : M ⊗R/mR→M ⊗R/mR is injective;

(f) for every m ∈M, f ⊗ id : M ⊗Rm →M ⊗Rm is surjective;

(g) for every m ∈M, f ⊗ id : M ⊗Rm →M ⊗Rm is a pure monomorphism.

Proof. (1) This is a well-known property of modules over commutative rings (e.g.,

[40, 18.9]).

(2) Consider some f ∈ EndR(M) with Mf = M , and denote by R[f ] the R-

subalgebra of EndR(M) generated by f and idM . M is a faithful module over the

commutative ring R[f ], and for the ideal < f >⊂ R[f ] generated by f , we have

< f > M = M . By (1), (idM − gf)M = 0, for some g ∈ R[f ], and hence gf = idM ,

i.e., f is an isomorphism.

(3) Obviously, (a) implies all the other assertions.

(b)⇒ (a) is shown in (2). (d)⇒ (b) follows from 17.3.

(c) ⇒ (e) ⇒ (g) Pure monomorphisms remain (pure) monomorphisms under

tensor functors (e.g. [40, 34.5]).

(e)⇒ (d) This is well-known for the finite dimensional R/mR-vector space

M ⊗R/mR.

(f)⇒ (b) follows from 17.2.

(g)⇒ (e) Apply the functor −⊗Rm Rm/mRm and Rm/mRm ' R/m. 2
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17.5 R as a direct summand.

Let M be a finitely generated projective R-module. Assume M contains R as a

submodule. Then R is a direct summand of M.

Proof. The inclusion i : R→M splits if and only if the map

Hom(i, R) : HomR(M,R)→ HomR(R,R) ' R

is surjective. Tensoring with R/m, m ∈M, we obtain (using 15.8)

HomR(M,R)⊗R R/m ' HomR/m(M ⊗R R/m,R/m)→ R/m.

Since M is faithful, M ⊗R R/m 6= 0 (e.g., [40, 18.9]) and hence this map is surjective

for all m ∈M. By 17.3, this implies that Hom(i, R) is surjective and i splits. 2

If A is an R-algebra, Ap ' A ⊗R Rp is an Rp-algebra, for every p ∈ P (see 16.4).

We list some properties of these scalar extensions:

17.6 Central idempotents and nilpotent elements.

Let A be an R-algebra.

(1) Assume for every m ∈M, all idempotents in Am are central. Then all idempo-

tents in A are central.

(2) If A is power-associative, then the following are equivalent:

(a) A is reduced;

(b) for every m ∈M, Am is reduced.

Proof. (1) The canonical map A → ∏
MAm, a 7→ ([a, 1]m), is an injective algebra

morphism (see 17.1). For every idempotent f ∈ A, fm is an idempotent in Am and

hence is central by our assumption. So the image of f under the above map is in the

centre of
∏
MAm. This implies that f is in the centre of A.

(2) (a)⇒ (b) This follows from 16.4(5).

(b)⇒ (a) Assume in the proof of (1) that f ∈ A is nilpotent. Then fm = 0 for all

m ∈M (because of (b)) and hence f = 0. 2

In general, the map R→ Rm need not be surjective and hence it may be difficult

to transfer properties from R to Rm. However, over regular rings the situation is

different:
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17.7 Localization over regular rings.

Let M be an R-module, m ⊂ R a maximal ideal and J = Jac(R).

(1) Assume R is regular. Then:

(i) The canonical map R→ Rm is surjective with kernel m and

Rm ' R/m ' lim
−→
{R/eR | e2 = e ∈ m}.

(ii) The kernel of the canonical map M →Mm is mM and

Mm 'M/mM 'M ⊗R Rm ' lim
−→
{M/eM | e2 = e ∈ m}.

The map M → Mm, a 7→ a + mM, is a direct limit of splitting R-module

epimorphisms and hence is pure in σ[M ].

(2) Assume R/J is regular. Then (M/JM)m 'M/mM .

Proof. (1)(i) Consider [a, s] ∈ Rm, a ∈ R, s ∈ R \ m. Then for some t ∈ R,

s(1− ts) = 0, and s(a− tsa) = 0 implies [a, s] = [at, 1], i.e., the map is surjective.

Therefore Rm is regular and so its Jacobson radical mRm is zero. By 17.1, this

means Rm ' R/m. m is maximal and contained in the kernel of R→ Rm. Hence the

two ideals coincide.

Since R is regular, m ' lim
−→
{Re | e2 = e ∈ m}. This implies the other isomorphisms

with direct limits.

(ii) By (i), we have Mm ' M ⊗ Rm ' M ⊗ R/m ' M/mM . Hence mM is

contained in the kernel of M →Mm.

Assume a ∈ M is in this kernel. Then sa = 0 for some s ∈ R \m. Choose t ∈ R
with s(1− ts) = 0. Then 1− ts ∈ m and a = (1− ts)a ∈ mM .

(2) M/JM is an R/J-module and (since J ⊂ m) we may identify R \ m and

(R/J) \ (m/J). Putting m = m/J we have by (1),

(M/JM)m ' (M/JM)/m(M/JM) 'M/mM.

2

17.8 Tensor product over regular rings.

Let R be a regular ring and A an associative unital R-algebra. Assume M and M ′

are left A-modules with M ′ ∈ σ[M ] and M finitely presented in σ[M ]. Then the map

from 15.7,

νM : HomA(M,M ′)⊗R Rm → HomA(M,M ′ ⊗R Rm),

is an isomorphism for every m ∈M. In particular,

EndA(M)⊗R Rm ' EndAm(M ⊗R Rm).
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Proof. Taking into account that the canonical map M →Mm is a pure epimorphism

in σ[M ] (see 17.7), the assertion is shown with the same proof as the corresponding

result for Pierce stalks in 18.5. 2

As a first local-global result we characterize (von Neumann) regular R-algebras by

their localizations at maximal ideals of R:

17.9 Associative regular algebras.

Let A be an associative R-algebra with unit.

(1) The following statements are equivalent:

(a) A is regular;

(b) for every m ∈M, Am is a regular algebra.

(2) If A is a central algebra, then the following are equivalent:

(a) A is regular;

(b) R is regular and for every m ∈M, A/mA is regular;

(c) for every m ∈M, Am is regular.

(3) R is regular if and only if Rm is a field, for every m ∈M.

Proof. (1) (a)⇒ (b) This follows from 16.6.

(b)⇒ (a) Assume all Am ' A⊗ Rm to be regular. Then all A⊗ Rm-modules are

flat and hence, by 17.1, all A-modules are flat, i.e., A is regular (see 7.4).

(2) (a)⇒ (b) R is the centre of the regular ring A and hence is regular (e.g., [40,

3.16]). Obviously, all factor rings A/mA are regular.

(b)⇒ (c) Since R is regular, Am ' A/mA by 17.7.

(c)⇒ (a) This is shown in (1).

(3) Observing 17.7 this is a special case of (2). 2

Strongly regular algebras are regular algebras without nilpotent elements or with

all idempotents central. They can also be described by their algebras of fractions.

Further characterizations will be obtained in 18.4.

17.10 Associative strongly regular algebras.

Let A be an associative R-algebra with unit.

(1) Assume for every m ∈ M, Am is a division algebra. Then A is a strongly

regular algebra.

(2) If A is a central R-algebra, then the following are equivalent:

(a) A is strongly regular;

(b) R is regular and A/mA is a division algebra, for every m ∈M;

(c) for every m ∈M, Am is a division algebra.
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Proof. (1) If all Am are division algebras, then A is regular by 17.9, and is reduced

by 17.6. Hence A is strongly regular.

(2) (a) ⇒ (b) As centre of the regular algebra A, R is regular. Assume K ⊂ A is

a finitely generated left ideal such that K + mA/mA is a non-zero ideal in A/mA.

Then K = eA for some idempotent e ∈ R. Since K 6⊂ mA we have e 6∈ m. This

implies K +mA ⊃ (Re+m)A = A and A/mA has no non-trivial left ideal, i.e., it is

a division algebra.

(b)⇒ (c) This follows from 17.7.

(c)⇒ (a) is shown in (1). 2

17.11 Exercises.

(1) Let A be an associative central R-algebra with unit. Prove:

(i) A is fully idempotent if and only if Am is fully idempotent for every m ∈M.

(ii) A is a left V-ring (every simple left A-module is injective, [40, 23.5]) if and only

if Am is a left V-ring for every m ∈M ([55, Theorem 6]).

(2) Suppose that in R every prime ideal is maximal, and let m ⊂ R be a maximal

ideal. Prove that Rm ' R/I, where the ideal I ⊂ R is generated by the idempotents

in m ([253]).

References: Armendariz-Fisher-Steinberg [55], Bourbaki [7], Matsumura [25],

Burkholder [99], v.Oystaeyen-v.Geel [218], Szeto [252, 253], Villamayor-Zelinsky [260],

Wisbauer [276].
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18 Pierce stalks of modules and rings

1.Properties of Pierce stalks. 2.Lifting of idempotents. 3.Central idempotents and

nilpotent elements. 4.Pierce stalks of regular algebras. 5.Tensor product with Pierce

stalks. 6.Direct summands in stalks. 7.Self-projective refinable modules. 8.Lifting

of special summands. 9.Indecomposable stalks. 10.Modules with local Pierce stalks.

11.Bimodules with local Pierce stalks. 12.Modules with simple Pierce stalks. 13.Bi-

modules with simple Pierce stalks. 14.Modules with local and perfect Pierce stalks.

15.Commutative locally perfect rings. 16.Pierce stalks and polyform modules. 17.Ex-

ercises.

As we have seen in the preceding section, localizing at prime ideals yields local

rings. Now we study a localization which leads to rings without non-trivial idempo-

tents.

Let B(R) denote the set of all idempotents in R. With the operations for e, f ∈
B(R),

e ] f = e(1− f) + (1− e)f and e · f = ef,

B(R) forms a Boolean ring (every element is idempotent).

Denote by X the set of all maximal ideals in B(R). Since maximal ideals are

prime, for every x ∈ X , the set S = B(R) \ x is closed under multiplication in B(R)

and R, i.e., it is a multiplicative subset of R.

Therefore we may construct the rings of fractions Rx := RS−1, and for an R-

module M , the module of fractions Mx := MS−1. These are called the Pierce stalks

of R and M respectively.

Since x ∈ X is prime, e ∈ B(R) \ x if and only if 1− e ∈ x and hence

Ke (R→ Rx) = {r ∈ R | r(1− e) = 0, for some e ∈ x}.

From this we see that the image of B(R)\x under the canonical projection R→ R/xR

consists only of the unit element. Since obviously xRx = 0 we obtain by 16.2(5),

Rx ' Rx/xRx ' R/xR.

18.1 Properties of Pierce stalks.

With the above notation we have for any x ∈ X and any R-module M:

(1) xR = lim
−→
{eR | e ∈ x}, Rx ' R/xR ' lim

−→
{R/eR | e ∈ x} and

Mx 'M ⊗R Rx ' lim
−→
{M/eM | e ∈ x} 'M/xM.

The canonical map M → Mx, m 7→ m + xM , is a direct limit of splitting

A-module epimorphisms and a pure epimorphism in σ[M ].
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(2) Rx has no non-trivial idempotents.

(3) FX =
⊕
x∈X Rx is a faithfully flat R-module.

(4) The canonical map M → ∏
XMx, m 7→ (m+ xM)x∈X , is monic.

Proof. (1) For any e, f ∈ x, e]f]e ·f = e+f−ef ∈ x and hence eR, fR ⊂ (e]f)R.

Therefore the set xR = {eR | e ∈ x} is directed with respect to inclusion and so

xR = lim
−→
{eR | e ∈ x}.

The other assertions are derived from the direct limit of the sequences

0 −→ eR −→ R −→ R/eR −→ 0,

and isomorphisms from 16.3.

(2) Let [a, 1] be an idempotent in Rx, a ∈ R. Then [a2− a, 1] = 0 and hence there

is an e ∈ x with (a2 − a)(1 − e) = 0. Then c = a(1 − e) is an idempotent in R with

[a, 1] = [c, 1]. Now c ∈ x implies [a, 1] = 0 and (1− c) ∈ x implies [a, 1] = 1.

(3) Rx is flat by 16.2 and hence FX is also a flat R-module.

For any R-module N we have to show that N ⊗ Rx ' Nx = 0, for every x ∈ X ,

implies N = 0. It suffices to show this for cyclic modules N = Ra. Put X = {xλ}Λ.

Then a(1− eλ) = 0, for suitable idempotents eλ ∈ xλ ∈ X .

Consider the ideal in B(R) generated by all 1−eλ. Since this ideal is not contained

in any maximal ideal, it has to be equal to B(R), and hence we can write

1 = c1(1− e1) ] · · · ] ck(1− ek) , where c1, . . . , ck ∈ B(R).

This also yields a linear combination in R

1 = r1(1− e1) + · · ·+ rk(1− ek) , where r1, . . . , rk ∈ R,

implying a = a1 = ar1(1− e1) + · · ·+ ark(1− ek) = 0.

(4) The kernel of this map is
⋂
X xM which is zero by (3). 2

Let us state some observations about Pierce stalks.

18.2 Lifting of idempotents.

Let A be an R-algebra with unit and x ∈ X .

(1) Idempotents lift under the canonical map A→ Ax.

(2) Assume A is finitely generated as R-module. Then central idempotents lift to

central idempotents under A→ Ax.
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Proof. (1) Consider some u ∈ A such that ux is idempotent. Then (u2−u)x = 0 and

hence (u2 − u)e = 0, for some e ∈ B(R) \ x (see 16.3). Then ue ∈ A is idempotent

and (ue)x = uxex = ux.

(2) Let A be generated by a1, . . . , ak as R-module. Consider any u ∈ A such that

ux is a central idempotent. Then, for all i, j ≤ k,

(u2 − u)x = 0, [ai(aju)− (aiaj)u]x = 0,

(aiu− uai)x = 0, [u(aiaj)− (uai)aj]x = 0.

By 16.3, we have for some e ∈ B(R) \ x,

(u2 − u)e = 0, [ai(aju)− (aiaj)u]e = 0,

(aiu− uai)e = 0, [u(aiaj)− (uai)aj]e = 0.

Then ue ∈ A is idempotent with associators (ai, aj, ue) = (ue, ai, aj) = 0 and

commutators [ue, ai] = 0. Since every element in A is an R-linear combination of the

ai’s, we conclude that ue is in fact a central idempotent (see 1.11). 2

18.3 Central idempotents and nilpotent elements.

Let A be an R-algebra.

(1) If A is a central R-algebra with unit, the following are equivalent:

(a) Every idempotent in A is central;

(b) for every x ∈ X, Ax has no non-trivial idempotents.

(2) If A is power-associative, the following are equivalent:

(a) A is reduced;

(b) for every x ∈ X , Ax is reduced.

Proof. (1) (a) ⇒ (b) Assume for u ∈ A and x ∈ X that the element ux ∈ Ax is

idempotent. Then (u2 − u)x = 0 and hence (u2 − u)e = 0 for some e ∈ B(R) \ x
(see 18.2). Since (ue)2 = ue we have ue ∈ B(R) by assumption. From the relation

ux = uxex = (ue)x we conclude ux = 1x if ue 6∈ x or ux = 0x otherwise (see 18.1(2)).

(b)⇒ (a) For any idempotent f ∈ A, fx is an idempotent and hence equal to 0 or

1 in Ax. Hence the image of f under the canonical embedding A→ ∏
XAx (see 18.1)

is in the centre of
∏
XAx and therefore f is in the centre of A.

(2) This is obtained with the same proof as 17.6(2). 2

In 17.9 we investigated localization of regular algebras at maximal ideals of R.

Now we ask for properties of Pierce stalks of regular algebras:

18.4 Pierce stalks of regular algebras.

Let A be an associative R-algebra with unit.

(1) The following are equivalent:

(a) A is regular;

(b) for every x ∈ X , Ax is regular.
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(2) Assume for every x ∈ X , Ax is a division algebra. Then A is strongly regular.

(3) If A is a central R-algebra, then the following are equivalent:

(a) A is strongly regular;

(b) for every x ∈ X , Ax is a division algebra.

(4) R is regular if and only if Rx is a field, for every x ∈ X .

Proof. (1) This is obtained with the proof of 17.9(1).

(2) Assume all Ax are division algebras. Then A is regular by (1) and is reduced

by 18.3, i.e., A is strongly regular.

(3) (a) ⇒ (b) Assume A is strongly regular. Then all idempotents in A are

central. Since idempotents lift under A → Ax by 18.2, we see that all idempotents

of Ax belong to Rx and hence are 0 or 1 (see 18.1). As a regular algebra without

non-trivial idempotents, Ax is a division algebra.

(b)⇒ (a) is shown in (2).

(4) is a special case of (3). 2

For Pierce stalks we get the isomorphisms considered in 15.7 also for modules M

which are finitely presented in σ[M ] (see 7.1, 7.2):

18.5 Tensor product with Pierce stalks.

Let A be an associative unital R-algebra, M and M ′ left A-modules with M ′ ∈ σ[M ]

and M finitely presented in σ[M ]. Then the map from 15.7,

νM : HomA(M,M ′)⊗R Rx → HomA(M,M ′ ⊗R Rx),

is an isomorphism for every x ∈ X . In particular,

EndA(M)⊗R Rx ' EndAx(M ⊗R Rx).

Proof. With the surjection R→ Rx we get from the proof of 15.7(2) the diagram

HomA(M,M ′)⊗R R → HomA(M,M ′)⊗R Rx → 0

↓' ↓νM
HomA(M,M ′ ⊗R R) → HomA(M,M ′ ⊗R Rx) → 0 .

Since M ′ →M ′
x is a direct limit of splitting module epimorphisms by 18.1, it is pure

in σ[M ] (see 7.2) and hence the functor HomA(M,−) is exact with respect to it, i.e.,

the lower row is exact and hence νM is surjective. By 15.7, νM is also injective.

For the ring isomorphism apply 15.8. 2
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18.6 Direct summands in stalks.

Let M be a finitely generated self-projective left module over an associative R-

algebra A. Assume for some x ∈ X and some finitely generated submodules K,L ⊂M ,

we have Mx = Kx ⊕ Lx.

Then there exists an idempotent e ∈ B(R) \ x, such that eM = eK ⊕ eL.

Proof. With the canonical maps M →Mx → Kx, consider the diagram

M

↙id ↓
K −→ M −→ Kx ,

which can be extended commutatively by some α : M → K with the properties

[K(id− α)]x = 0, [M(α− α2)]x = 0.

Replacing K by L in the above diagram we can find β : M → L with

[L(id− β)]x = 0, [M(β − β2)]x = 0,

and we observe

[M(id− (α + β))]x = 0, [Mαβ]x = 0 = [Mβα]x .

Since all these submodules are finitely generated, there exists e ∈ B(R) \ x with

eK(id− α) = 0, eM(α− α2) = 0,

eL(id− β) = 0, eM(β − β2) = 0,

eM(id− (α + β)) = 0, eMαβ = 0 = eMβα .

From these identities we derive eMα = eK, eMβ = eL, eMα ∩ eMβ = 0 and finally

eM = eMα⊕ eMβ = eK ⊕ eL.

2

For self-projective modules we have nice characterizations of refinable modules.

18.7 Self-projective refinable modules.

Let A be an associative R-algebra. For a finitely generated self-projective A-module

M , the following are equivalent:

(a) M is (strongly) refinable;

(b) M/Rad(M) is refinable and direct summands lift modulo Rad(M);

(c) for every x ∈ X , Mx is (strongly) refinable.
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(d) EndA(M) is left refinable;

(e) for every x ∈ X , EndAx(Mx) is (strongly) refinable.

Proof. (a)⇒ (b) Since Rad(M) is fully invariant this is clear by 8.4.

(b) ⇒ (a) We show that direct summands lift modulo every submodule of M .

For a submodule K ⊂ M , consider submodules K ⊂ U, V ⊂ M for which M/K =

U/K ⊕ V/K. Denote by L,X the submodules K ⊂ L ⊂ U and K ⊂ X ⊂ V with

L/K = Rad(U/K) and X/K = Rad(V/K). We have the commutative diagram of

canonical module morphisms

M −→ U/K ⊕ V/K
↓ ↓

M/Rad(M) −→ U/L⊕ V/X .

Since M/Rad(M) is refinable there is a direct summand V o of M/Rad(M) which

is mapped onto V/X. By assumption, V o can be lifted to a direct summand V ′ of M .

Commutativity of the above diagram implies V ′ + L+X = V + L. Since X/K is

superfluous in (V + L)/K, we conclude V ′ + L = V + L and U + V ′ = U + V = M .

By M -projectivity of M and M/V ′, the canonical map U → M → M/V ′ splits and

hence there exists a direct summand U ′ ⊂ U of M with U ′ ⊕ V ′ = M . Now we have

M/K = (U ′ +K)/K ⊕ (V ′ +K)/K = U/K ⊕ V/K,

and hence the direct summand U ′ ⊂M is mapped onto U/K.

(a) ⇒ (c) Since all xM are fully invariant this is clear by 8.4. Observe that the

Mx are self-projective, hence for them refinable is equivalent to strongly refinable.

(c)⇒ (a) Let M = K + L with K, L finitely generated and put X = {xλ}Λ. For

any xλ ∈ X , Mxλ = Kxλ + Lxλ is strongly refinable and hence we can find finitely

generated submodules Kλ ⊂ K and Lλ ⊂ L with Mxλ = Kλ
xλ
⊕ Lλxλ .

By 18.6, there exist eλ ∈ B(R) \ xλ with eλM = eλK
λ ⊕ eλLλ.

The ideal in B(R) generated by all the eλ is not contained in any maximal ideal

and hence is equal to B(R). Therefore we have 1 = r1e1]. . .]rkek with the ei ∈ {eλ}Λ

and ri ∈ B(R). By an orthogonalization procedure, we obtain from this orthogonal

idempotents e′i ∈ eiB(R) with

1 = e′1 ] · · · ] e′k = e′1 + · · ·+ e′k , and

M = (e′1 + · · ·+ e′k)M = e′1K
1 ⊕ e′1L1 ⊕ · · · ⊕ e′kKk ⊕ e′kLk .

Putting K ′ = e′1K
1 ⊕ · · · ⊕ e′kKk ⊂ K and L′ = e′1L

1 ⊕ · · · ⊕ e′kLk ⊂ L we now have

M = K ′ ⊕ L′.
(a) ⇒ (d) Recall that, for a finitely generated self-projective module M and any

left ideal I ⊂ EndA(M), we have I = HomA(M,MI) (see [40, 18.4]).
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Assume EndA(M) = I + J with left ideals I, J . Then M = MI + MJ and there

is an idempotent e ∈ I with M = Me+MJ . Then EndA(M) = EndA(M)e+ J and

hence EndA(M) is left refinable.

(d) ⇒ (a) Assume M = K + L for any submodules K,L ⊂ M . Then, by projec-

tivity, EndA(M) = HomA(M,K + L) = HomA(M,K) + HomA(M,L) (see [40, 18.4])

and there exists an idempotent e ∈ HomA(M,K) with

EndA(M) = EndA(M)e+ HomA(M,L).

Applying these morphisms to M , we obtain M = Me + L with Me ⊂ K, i.e., M is

refinable.

(c) ⇔ (e) Since EndAx(Mx) ' EndA(M)x by 18.5 and Mx is self-projective, this

equivalence follows from (a)⇔ (d) proved above. 2

Examples for refinable modules are finitely generated self-projective A-modules M

which are semiperfect or f-semiperfect in σ[M ] (see 8.12, 8.13).

In the proof of (b)⇒ (a) in 18.7, self-projectivity of M was only needed to conclude

that M = U + V ′ with a direct summand V ′ ⊂ M implies the existence of a direct

summand U ′ ⊂ U of M with U ′ ⊕ V ′ = M . Without projectivity the same conlusion

also holds for any fully invariant submodule U ⊂M : If V ′ = Me for some idempotent

e ∈ EndA(M) we can choose U ′ = U(1− e) = M(1− e) ⊂ U .

Again the same argument applies for any submodule U ⊂ M if the idempotent

e ∈ EndA(M) can be considered as element of R. Hence we have:

18.8 Lifting of special summands.

Let M be a finitely generated module over an associative R-algebra A, such that

M/Rad(M) is refinable and direct summands lift modulo Rad(M).

Assume M/K = U/K ⊕ V/K with submodules K ⊂ U, V ⊂M . If

(i) U is a fully invariant submodule, or

(ii) idempotents in EndA(M) are central and are induced by idempotents in R,

then U/K can be lifted to a direct summand of M .

Condition (ii) above occurs in the next cases where we consider Pierce stalks with

special properties.

18.9 Indecomposable stalks.

Let M be a finitely generated left module over an associative R-algebra A, and

assume that R is canonically isomorphic to the centre of EndA(M). Consider the

statements

(i) for every x ∈ X , Mx is an indecomposable A-module;
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(ii) every idempotent in EndA(M) is central.

Then (i)⇒ (ii) always holds.

If M is finitely presented in σ[M ], then also (ii)⇒ (i).

Proof. (i)⇒ (ii) If Mx is indecomposable then EndA(Mx) has no non-trivial idem-

potents. By 15.8, the ring End(M)x is a subring of EndAx(Mx) and hence also has

no non-trivial idempotents. Now we see from 18.3 that idempotents in End(M) are

central.

(ii) ⇒ (i) If M is finitely presented in σ[M ], EndA(M)x ' EndAx(Mx) by 18.5

and has no non-trivial idempotents by 18.3, i.e., Mx is an indecomposable module. 2

18.10 Modules with local Pierce stalks.

Let A be an associative unital R-algebra, M a finitely generated A-module and

B = End(AM). Assume that R is canonically isomorphic to the centre of B. Then

the following assertions are equivalent:

(a) For every x ∈ X , Mx is a local A-module;

(b) M is a refinable A-module and idempotents in EndA(M) are central;

(c) M/Rad(M) is refinable, direct summands lift modulo Rad(M) and idempotents

in EndA(M) are central.

Proof. (a) ⇒ (b) Since local modules are indecomposable, we know from 18.9 that

idempotents in EndA(M) are central. Assume M = U + V and hence Mx = Ux + Vx
for any x ∈ X . Since every Mx is local, Mx = Ux or Mx = Vx, i.e.,

0 = Mx/Ux ' (M/U)x or 0 = Mx/Vx ' (M/V )x.

For all xλ ∈ X with (M/U)xλ = 0, we find eλ ∈ B(R) \ xλ with eλ(M/U) = 0, and

for xµ ∈ X with (M/V )xµ = 0 we have fµ ∈ B(R) \ xµ with fµ(M/V ) = 0.

Denote by E the ideal in B(R) generated by all eλ and by F the ideal generated

by all fµ. Then the ideal E ] F is not contained in any maximal ideal and hence

E ] F = B(R) and 1 = ẽ ] f̃ , for some ẽ ∈ E and f̃ ∈ F . By construction,

ẽ(M/U) = 0 and hence ẽM ⊂ U . Also, ẽM = ẽU and f̃M = f̃V ⊂ V . This implies

M = (ẽ ] f̃)(U + V ) = ẽU + f̃U + V = ẽM + V,

and hence ẽM is the direct summand we were looking for.

(b) ⇒ (a) Consider x ∈ X and M = K + L. Then Mx = Kx + Lx. Since M is

refinable, there exists an idempotent e ∈ EndA(M) with Me ⊂ K and Me+L = M .

By our assumptions we have e ∈ B(R). Now e ∈ x implies Lx = Mx whereas e 6∈ x
means Kx ⊃ (eM)x = Mx. Hence every proper submodule of Mx is superfluous.

(b)⇔ (c) This is a consequence of 8.4 and 18.8. 2

Considering an A-module AM with B = EndA(M) as a left A ⊗R Bo-module we

have a commutative endomorphism algebra (see 4.2) and obtain as a corollary:
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18.11 Bimodules with local Pierce stalks.

Let A be an associative unital R-algebra, M an A-module and B = EndA(M).

Assume the canonical map R → EndA⊗Bo(M) is an isomorphism and M is finitely

generated as A⊗R Bo-module. Then the following are equivalent:

(a) For every x ∈ X , Mx is a local A⊗Bo-module;

(b) M is a refinable A⊗Bo-module;

(c) M/Rad(A⊗BoM) is refinable and direct summands lift modulo

Rad(A⊗BoM).

Next we consider an even more special situation.

18.12 Modules with simple Pierce stalks.

Let A be an associative unital R-algebra, M a finitely generated A-module and

B = EndA(M). Assume that R is canonically isomorphic to the centre of B. Then

the following assertions are equivalent:

(a) For every x ∈ X, Mx is a simple A-module;

(b) every finitely generated (cyclic) A-submodule of M is a direct summand and

idempotents in EndA(M) are central.

If M is finitely presented in σ[M ], then (a), (b) are equivalent to:

(c) M is a self-generator and, for any x ∈ X, EndA(M)x is a division algebra.

Proof. (a)⇒ (b) By 18.9, idempotents in EndA(M) are central.

Consider a finitely generated A-submodule U ⊂ M . Since every Mx is simple,

Ux = Mx and hence 0 = Mx/Ux ' (M/U)x, or Ux = 0. For all xλ ∈ X with

(M/U)xλ = 0 we find eλ ∈ B(R) \ xλ with eλ(M/U) = 0, and for xµ ∈ X with

Uxµ = 0 we have fµ ∈ xµ with fµU = 0.

Denote by E the ideal in B(R) generated by all eλ, and by F the ideal generated

by all fµ. Then E ] F = B(R) and 1 = ẽ ] f̃ for some ẽ ∈ E and f̃ ∈ F .

For any g ∈ E ∩ F , we observe gU = 0 and g(M/U) = 0, implying gM = 0 and

g = 0 (M is a faithful R-module). Therefore E ∩ F = 0 and 1 = ẽ ] f̃ = ẽ + f̃ . By

construction, ẽ(M/U) = 0, hence ẽM ⊂ U and (1− ẽ)U = 0, implying U = ẽU ⊂ ẽM .

From this we see U = ẽM and U is a direct summand of M .

(b)⇒ (a) Any cyclic A-submodule Ū 6= 0 of Mx has the form Ū = (U +xM)/xM ,

for some cyclic A-submodule U ⊂M . By (b), U = eM for a central idempotent e ∈ B
and Ū = (eM + xM)/xM . Since e 6∈ x we conclude eM + xM = M and Ū = Mx,

i.e., Mx is a simple A-module.

Now assume M is finitely presented in σ[M ], hence EndA(M)x ' EndAx(Mx)

(18.5).
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(a)⇒ (c) By (b), M generates any finitely generated submodule and therefore all

its submodules. If Mx is a simple module, EndAx(Mx) is a division algebra by Schur’s

Lemma.

(c)⇒ (a) Assume M is a self-generator. Since xM is fully invariant, Mx is also a

self-generator (see 5.2). If EndAx(Mx) is a division algebra, every endomorphism of

Mx is invertible and hence Mx is simple. 2

Similar to 18.11 we obtain as a corollary for bimodules:

18.13 Bimodules with simple Pierce stalks.

Let A be an associative unital R-algebra, M an A-module and B = End(AM).

Assume the canonical map R → EndA⊗Bo(M) is an isomorphism and M is finitely

generated as an A⊗R Bo-module. Then the following are equivalent:

(a) Mx is a simple A⊗R Bo-module, for every x ∈ X;

(b) every finitely generated A⊗R Bo-submodule of M is a direct summand.

If M is perfect in σ[M ] (see 8.14), for any fully invariant submodule U ⊂M , M/U

is perfect in σ[M/U ] and hence Mx is perfect in σ[Mx], for every x ∈ X . However, this

property is not enough to make M perfect in σ[M ]. We only obtain that M/Rad(M)

is regular in σ[M/Rad(M)].

18.14 Modules with local and perfect Pierce stalks.

Let A be an associative unital R-algebra, M a finitely generated self-projective A-

module and B = End(AM). Assume R is canonically isomorphic to the centre of B.

Then the following are equivalent:

(a) For every x ∈ X , Mx is local and perfect in σ[Mx];

(b) For every x ∈ X , Bx = EndA(M)x is a local and left perfect ring;

(c) B̄ = B/Jac(B) is (strongly) regular, Jac(B) is right t-nilpotent and idempotents

in B are central.

Assume M is a self-generator. Then (a)-(c) are equivalent to:

(d) M̄ = M/Rad(M) is regular in σ[M̄ ], Rad(M)(IN) � M (IN) and idempotents in

EndA(M) are central.

Proof. (a)⇔ (b) A finitely generated, self-projective module M is perfect in σ[M ] if

and only if EndA(M) is left perfect (see [40, 43.8]).

Since Bx = EndA(M)x ' EndAx(Mx) (by 18.5) the assertion is clear.

(b)⇒ (c) By 18.3, idempotents in B are central.

Assume Jac(B(IN)) + L = B(IN). Since [Rad(B)]x ⊂ Rad(Bx) we have, by perfect-

ness of Bx,

[Rad(B(IN))]x ⊂ Rad(B(IN)
x )�M (IN)

x .
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This implies Lx = B(IN)
x , for every x ∈ X , and hence L = B(IN). We conclude

Rad(B(IN))� B(IN) and Rad(B) is right t-nilpotent by [40, 43.4].

Put X = {xλ}Λ. Since all Bx are local, there are unique maximal left ideals

xλB ⊂ Kλ ⊂ B, with Rad(Bxλ) = Kλ/xλB. On the other hand, for every maximal

left ideal K ⊂ B, the set {e ∈ B(R) | e(B/K) = 0} is a maximal ideal in B(R) and

we conclude that Rad(B) =
⋂

ΛKλ.

Now we claim that B̄ has no nilpotent elements. For this we have to show that

all nilpotent elements in B belong to Rad(B): Assume fn = 0, for some f ∈ B,

n ∈ IN . Then fnxλ = 0, for every xλ ∈ X , and hence Bf ⊂ ⋂Λ Kλ = Rad(B), implying

f ∈ Rad(B).

Next we show that Jac(B̄x) = 0, for every x ∈ X . Assume for f ∈ B̄ we have

fx ∈ Jac(B̄x). Then fnx = 0, for some some n ∈ IN , and hence efn = (ef)n = 0 for a

suitable e ∈ B(R) \ x. However, B̄ has no nilpotent elements and therefore ef = 0,

implying fx = 0.

From what we have seen so far we conclude that B̄x is a division ring for every

x ∈ X , and by 18.4, B̄ is a regular ring.

(c)⇒ (b) Since B̄ is regular, (B/Rad(B))x is also regular and hence (Rad(B))x =

Rad(Bx) is right t-nilpotent, for every x ∈ X .

Therefore idempotents lift modulo Rad(Bx). They also lift modulo xB (see 18.2).

Since idempotents in B are central, B̄x is a regular algebra without non-trivial idem-

potents (see 18.3), i.e., it is a division algebra.

(c)⇔ (d) Since M is finitely generated and self-projective we know that Jac(B) =

HomA(M,Rad(M)) and EndA(M̄) ' B/Jac(B) (see [40, 22.2]).

By our assumptions, M̄ is also a self-generator and hence M̄ is regular in σ[M̄ ] if

and only if B̄ is a regular ring.

It follows from [40, 43.4] that Rad(M (IN)) � M (IN) if and only if Jac(B) is right

t-nilpotent. 2

As a special case we describe commutative rings with perfect Pierce stalks which

are called locally perfect.

18.15 Commutative locally perfect rings.

For the ring R with Jacobson radical J, the following are equivalent:

(a) For every x ∈ X , Rx is a perfect ring;

(b) R̄ = R/J is regular and J is t-nilpotent;

(c) for every m ∈M, Rm is a perfect ring.

Proof. (a) ⇒ (b) Assume all Rx are perfect. Then Jac(Rx) is a nil ideal and hence

we obtain from 16.4 that Jac(Rx) = JRx. Rx has no non-trivial idempotents (see
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18.1) and idempotents lift modulo Jac(Rx). Hence (R/J)x ' Rx/JRx is a semisimple

ring without non-trivial idempotents, i.e., it is a field, and by 18.4, R/J is regular.

As in the proof of (b)⇒ (c) in 18.14 we see that J is t-nilpotent.

(b)⇒ (a) is a special case of 18.14.

(b)⇒ (c) If R/J is regular, (R/J)m ' Rm/JRm is a field and hence JRm = mRm,

for every m ∈M. Now t-nilpotence of J implies t-nilpotence of Jac(Rm) = mRm and

hence Rm is perfect.

(c) ⇒ (b) Assume all Rm are perfect. Then Jac(Rm) = mRm is a nil ideal and

hence we obtain JRm = mRm by 16.4. This implies that (R/J)m ' Rx/JRx ' R/m

is a field and hence R/J is regular by 17.9. 2

We close this section with a view on the Pierce stalks of the idempotent closure

of polyform modules.

18.16 Pierce stalks and polyform modules.

Let M be a polyform A-module, T = EndR(M̂), and B the Boolean ring of central

idempotents of T and M̃ = MB the idempotent closure of M (see 11.15).

For a maximal ideal x of B, denote by

ϕx : M̃ → M̃x, m 7→ m+ M̃x,

the canonical map of M̃ to the Pierce stalk M̃x. Then:

(1) Keϕx = {m ∈ M̃ | ε(m) ∈ x} and (M)ϕx = M̃x.

(2) If M is a PSP-module, then M̃x is strongly prime.

Proof. (1) Clearly (m)ϕx = 0 if and only if me = 0 for some e 6∈ x. According to

11.12, e ∈ (1− ε(m))C. Hence 1− ε(m) 6∈ x and ε(m) ∈ x.

Conversely, assume ε(m) ∈ x. Then 1 − ε(m) 6∈ x. Since m(1 − ε(m)) = 0 we

obtain (m)ϕx = 0.

Consider m ∈ M̃ . By 11.15, m =
∑n
i=1miei, where mi ∈ M and ei ∈ B are

pairwise orthogonal idempotents. If all these idempotents belong to x, then 0 =

(m)ϕx ∈ (M)ϕx. Assume e1 6∈ x. Then 1 − e1, e2, . . . , en ∈ x and m1 −
∑n
i=1miei ∈

M̃x. So also in this case, (m)ϕx = (m1)ϕx ∈ (M)ϕx. Hence (M)ϕx = M̃x.

(2) Let M be a PSP-module and 0 6= y ∈ M̃x. Clearly M̃x ⊂ M̂x and y = (z)ϕx
for some z ∈M . By 14.11, AzT = M̂ε(z). Since y = (z)ϕx 6= 0, ε(z) 6∈ x and hence

AyTx = (AzT )ϕx = (M̂ε(m))ϕx = M̂x.

Now it follows from 13.3(h) that M̃x is strongly prime. 2
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18.17 Exercises.

Let A denote an associative central R-algebra with unit.

(1) Show that a cyclic A-module M has local Pierce stalks if and only if, for any

m, k ∈M and Am = M , there exists an idempotent e ∈ R with A(k − em) = M .

(2) Show that the following are equivalent ([98, 102]):

(a) A has local Pierce stalks as left A-module;

(b) every element in A is the sum of a unit and a central idempotent;

(c) every cyclic left A-module has local Pierce stalks;

(d) AA is refinable and every idempotent in A is central.

(3) Assume A has local Pierce stalks as left A-module. Prove that A/Jac(A) is

biregular if and only if it is strongly regular ([98]).

(4) Assume A is finitely generated as an R-module and idempotents lift from

Ax/Jac(A)x to Ax, for every x ∈ X . Prove that idempotents lift from A/Jac(A) to A

([179, Proposition 2]).

(5) Prove that for the ring R, the following are equivalent ([125]):

(a) R is locally perfect;

(b) every non-zero R-module has a maximal submodule

(c) every non-zero Rx-module has a maximal submodule, for every x ∈ X .

References: Armendariz-Fisher-Steinberg [55], Bourbaki [7], Burgess-Raphael

[95], Burgess-Stephenson [96, 97, 98], Burkholder [99, 100, 102], Dauns-Hofmann

[113], Faith [125], Hamsher [148], Hofmann [160], Kambara-Oshiro [172], Kirkman

[179], Koifman [181], Lesieur [186], Matsumura [25], Nicholson [212], Oystaeyen-Geel

[218], Pierce [32], Renault [226], Stock [248], Szeto [252], Villamayor-Zelinsky [260],

Wisbauer [276].
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19 Projectives and generators

1.N -projective modules. 2.Self-projective modules. 3.Projective modules and

− ⊗ R/m. 4.Projective modules. 5.Faithfully flat algebras. 6.Generators. 7.Self-

generators. 8.Self-progenerators. 9.Progenerators in A-Mod. 10.Tensorproduct of

self-projective modules. 11.Exercises.

We continue to study properties of modules over associative R-algebras by prop-

erties of Pierce stalks or localizations at prime ideals.

Throughout this section A and B will be associative unital R-algebras.

19.1 N -projective modules.

Let M and N be A-modules with M finitely generated.

(1) If M is N-projective, then M ⊗RB is N ⊗RB-projective as A⊗RB-module and

HomA(M,N)⊗R B ' HomA⊗RB(M ⊗R B,N ⊗R B).

(2) The following assertions are equivalent:

(a) M is N-projective;

(b) for every x ∈ X , Mx is Nx-projective and

HomA(M,N)⊗R Rx ' HomAx(Mx, Nx);

(c) for every m ∈M, Mm is Nm-projective and

HomA(M,N)⊗R Rm ' HomAm(Mm, Nm).

If R is a locally perfect ring, or AM is finitely generated and RN is noetherian,

then (a)-(c) are also equivalent to:

(d) for every m ∈M, M/mM is N/mN-projective and

HomA(M,N)⊗R R/m ' HomA/mA(M/mM,N/mN).

Proof. (1) Assume M to be N -projective. Then it is also N ⊗R B-projective as an

A-module (see [40, 18.2]). From the isomorphism in 15.6,

HomA⊗RB(M ⊗R B,N ⊗R B) ' HomA(M,N ⊗R B),

we conclude that M ⊗R B is N ⊗R B-projective as an A⊗R B-module.

The isomorphism stated is taken from 15.8.

(2) (a)⇒ (b), (c), (d) is a consequence of (1).
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(b) ⇒ (a) Let K be a submodule of N . In an obvious way we construct the

commutative exact diagram with vertical monomorphisms obtained from 15.8,

0→HomA(M,K)⊗R Rx→HomA(M,N)⊗R Rx→HomA(M,N/K)⊗R Rx

↓ ↓' ↓
0→ HomAx(Mx, Kx) → HomAx(Mx, Nx) → HomAx(Mx, (N/K)x) → 0.

By assumption the central vertical map is an isomorphism. Therefore the other ver-

tical maps are also isomorphisms and the right morphism in the upper row is epic.

Since
⊕
X Rx is faithfully flat, this implies that

HomA(M,N)→ HomA(M,N/K)→ 0

is an exact sequence, i.e., M is N -projective.

(c)⇒ (a) is shown with the same proof.

(d)⇒ (a) Let us first assume that R is a local ring with t-nilpotent maximal ideal

m. In view of 17.3, we can follow the proof of (b)⇒ (a) replacing Rx by R/m to show

that M is N -projective.

Assume (d) for locally perfect R. Then Rm is local and perfect, the radical of Rm is

equal to mRm and is t-nilpotent. By the canonical isomorphism Rm/mRm ' R/m, we

see from above thatM⊗Rm isN⊗Rm-projective. From 15.8 we have a monomorphism

(∗) HomA(M,N)⊗R Rm → HomAm(Mm, Nm).

Tensoring with Rm/mRm we get

HomA(M,N)⊗R R/m → HomAm(Mm, Nm)⊗Rm Rm/mRm

' HomA/mA(M/mM,N/mN),

with an isomorphism given by 15.8. Since the composition of the two maps is an

isomorphism by assumption and mRm is t-nilpotent, we conclude from 17.3 that (∗)
is an isomorphism, for every m ∈M. Now apply (c) to see that M is N -projective.

Now assume (d) for AM finitely generated and RN noetherian. There exists an

exact sequence An →M → 0, for some n ∈ IN . From this we deduce

HomA(M,N) ⊂ HomA(An, N) ' Nn.

Since Nn is R-noetherian, HomA(M,N) is a finitely generated R-module and obvi-

ously HomA(M,N/K) is a finitely generated R-module for every submodule K ⊂M .

Referring to 17.3 we again follow the arguments for (b)⇒ (a) to get the desired result.

2
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19.2 Self-projective modules.

For a finitely generated A-module M , the following are equivalent:

(a) M is self-projective;

(b) M is finitely presented in σ[M ], and for every x ∈ X , Mx is self-projective;

(c) for every x ∈ X , Mx is self-projective and

EndA(M)⊗R Rx ' EndAx(Mx);

(d) for every m ∈M, Mm is self-projective and

EndA(M)⊗R Rm ' EndAm(Mm).

Proof. (a)⇔ (c)⇔ (d) follows from 19.1.

(c)⇒ (b) is clear and (b)⇒ (c) follows from 18.5. 2

19.3 Projective modules and −⊗R/m.

Put J = Jac(R). Consider the exact sequence of A-modules

(∗) 0 −→ K
α−→ P

β−→M −→ 0 ,

with P projective as an A-module and finitely generated as R-module. Then the fol-

lowing assertions are equivalent:

(a) (∗) splits in A-Mod;

(b) (∗) splits in R-Mod and 0→ K/JK
α′→ P/JP

β′→M/JM → 0

splits in A/JA-Mod;

(c) (∗) splits in R-Mod and 0→ K/mK
α′→ P/mP

β′→M/mM → 0

splits in A/mA-Mod, for every m ∈M.

Proof. (a)⇒ (b) and (a)⇒ (c) are obvious.

(b)⇒ (a) We construct the exact diagram with canonical projections,

0 −→ K
α−→ P

β−→ M −→ 0

↓ pK ↓ pP ↓ pM
0 −→ K/JK

α′−→ P/JP
β′−→ M/JM −→ 0 .

Since (∗) splits as an R-sequence, the lower sequence is exact. By assumption, there

exists γ : M → P/JP with γβ′ = pM . By the Homotopy Lemma we can find some

δ : P → K/JK with αδ = pK .

P being A-projective there exists h : P → K with hpk = δ and αhpK = αδ = pK .

Since JK � K this implies that αh is a surjective endomorphism of the finitely
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generated R-module K. Hence αh is an isomorphism by 17.4, and the upper sequence

splits in A-Mod.

(c)⇒ (a) Since (∗) splits in R-Mod, K is finitely generated as R-module and hence

as an A-module. This implies that M is finitely presented in A-Mod and by 15.8,

HomA(M,A)⊗R Rm ' HomAm(Mm, Am).

According to 19.1, (∗) splits (i.e., M is projective) if and only if (∗) splits after

tensoring with Rm (i.e., Mm is Am-projective).

Recall that in the local ring Rm, JacRm = mRm. By the canonical isomorphism

Rm/mRm ' R/m, we deduce from (b) ⇒ (a) that (∗) splits after tensoring with Rm

and the assertion is shown. 2

The above results yields several descriptions of projectives in A-Mod:

19.4 Projective modules.

Let M be a finitely generated A-module. The following are equivalent:

(a) M is A-projective (projective in A-Mod);

(b) M is finitely presented in A-Mod, and for every x ∈ X , Mx is Ax-projective;

(c) M is finitely presented in A-Mod, and for every m ∈M, Mm is Am-projective;

If A is finitely generated as an R-module, then (a)-(c) are equivalent to:

(d) There exists an (A,R)-exact sequence P → M → 0, where P is A-projective

and for every m ∈M, M/mM is A/mA-projective.

Proof. (a)⇔ (b)⇔ (c) follow from 19.1 and the fact that the isomorphisms necessary

hold for finitely presented A-modules (see 15.8).

(a)⇒ (d) is obvious.

(d) ⇒ (a) Since A and M are finitely generated as R-modules, we may assume

that P is also a finitely generated R-module. Now apply 19.3. 2

In the above cases we had to check a whole family of scalar extensions to get

results over the ring R. For associative algebras which are faithfully flat R-modules,

it is enough to consider only one extension:

19.5 Faithfully flat algebras.

Let M,N be A-modules. If B is faithfully flat as R-module, then:

(1) M is a finitely generated A-module if and only if M ⊗RB is a finitely generated

A⊗R B-module.

(2) M is a finitely presented A-module if and only if M ⊗RB is a finitely presented

A⊗R B-module.
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(3) Assume AM is finitely generated. Then M is N-projective if and only if M⊗RB
is N ⊗R B-projective and

HomA(M,N)⊗R B ' HomA⊗RB(M ⊗R B,N ⊗R B).

(4) M is finitely generated and A-projective if and only if M ⊗R B is finitely gen-

erated and A⊗R B-projective.

Proof. (1) If M is finitely generated there exists an epimorphism An → M yielding

an epimorphism (A ⊗R B)n → M ⊗R B. Hence M ⊗R B is finitely generated as

A⊗R B-module.

Assume M⊗RB is finitely generated with generating set m1⊗1, . . . ,mk⊗1. Denote

by M ′ the A-submodule of M generated by m1, . . . ,mk. Tensoring the inclusion

M ′ → M with − ⊗R B we get an epimorphism M ′ ⊗R B → M ⊗R B. Since B is

faithfully flat this means M ′ = M and AM is finitely generated.

(2) M is a finitely presented A-module if and only if there exists an exact sequence

0 → K → An → M → 0, where K is finitely generated. Tensoring with − ⊗R B
and applying (1), the resulting sequence shows that M ⊗R B is a finitely presented

A⊗R B-module.

The converse conclusion is obtained in a similar way.

(3) This is shown with the proof of 19.1.

(4) If M is finitely generated and A-projective, the epimorphism in the proof of

(1) splits and hence M ⊗R B is A⊗R B-projective.

Assume M ⊗R B to be finitely generated and A⊗R B-projective. Then by (2), M

is a finitely presented A-module and by 15.8,

HomA(M,A)⊗R B ' HomA⊗RB(M ⊗R B,A⊗R B).

Now we learn from (3) that M is A-projective. 2

Finally we investigate the behaviour of generators under localizations (see Section

5 for definitions). We start with a general observation:

19.6 Generators.

Let M be an A-module. If M is a generator in σ[M ], then M ⊗R B is a generator

in σ[M ⊗R B] as A⊗R B-module.

Proof. It is easily verified that M ⊗R B belongs to σ[M ] as an A-module. Then also

any A⊗RB-submodule L of (M ⊗RB)(IN) belongs to σ[M ] and hence is M -generated
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as an A-module. Applying an isomorphism from 15.6, we obtain the commutative

exact diagram

M ⊗R HomA(M,L) −→ L −→ 0

↓' ‖
(M ⊗R B)⊗B HomA⊗RB(M ⊗R B,L) −→ L −→ 0 .

Hence M⊗RB generates the submodules of (M⊗RB)(IN) and therefore it is a generator

in σ[M ⊗R B] as A⊗R B-module. 2

19.7 Self-generators.

Let M be an A-module which is finitely presented in σ[M ]. Then the following are

equivalent:

(a) M is a self-generator;

(b) for every x ∈ X , Mx is a self-generator as Ax-module.

Assume R is regular. Then (a),(b) are also equivalent to:

(c) For every m ∈M, Mm is a self-generator as Am-module.

Proof. (a) ⇒ (b), (c) For x ∈ X and m ∈ M, xM and mM are fully invariant

submodules. Since Mx ' M/xM and, for regular R, Mm ' M/mM , the assertion

follows from 5.2.

(b) ⇒ (a) M is a self-generator if the map µ : M ⊗R HomA(M,K) → K is

surjective, for every (cyclic) submodule K ⊂ M . Tensoring with Rx we obtain the

commutative diagram

M ⊗R HomA(M,K)⊗R Rx
µ⊗idRx−→ K ⊗R Rx

↓ ↓'
Mx ⊗Rx HomAx(Mx, Kx) −→ Kx −→ 0 .

By 18.5 and 15.6, the first vertical map is an isomorphism. By assumption, the lower

sequence is exact. Therefore µ ⊗ idRx is surjective, for every x ∈ X . Hence µ is

surjective by 18.1.

(c) ⇒ (a) This can be shown with the above proof. The necessary isomorphisms

are obtained from 17.8 and 15.6. 2

Applying our knowledge of projective modules we obtain the following local-global

characterization of self-progenerators (see 5.10):

19.8 Self-progenerators.

For a finitely generated A-module M, the following are equivalent:

(a) M is a self-progenerator;
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(b) M is finitely presented in σ[M ], and for every x ∈ X , Mx is a self-progenerator;

(c) for every x ∈ X , Mx is a self-progenerator and

EndA(M)⊗R Rx ' EndAx(Mx);

(d) for every m ∈M, Mm is a self-progenerator and

EndA(M)⊗R Rm ' EndAm(Mm).

Assume R is locally perfect. Then (a)-(d) are also equivalent to:

(e) for every m ∈M, M/mM is a self-progenerator and

EndA(M)⊗R R/m ' EndA/mA(M/mM).

Proof. (a) ⇒ (b) Since M is finitely generated and M -projective, it is finitely pre-

sented in σ[M ]. By 19.2, Mx is a self-projective Ax-module. By 19.6, Mx is a self-

generator as an Ax-module.

(b)⇒ (c), (d) The isomorphisms follow from 18.5.

(c) ⇒ (a) By 19.2, under the given conditions M is self-projective. The proof of

(b)⇒ (a) in 19.7 can be used to show that M is a self-generator.

(d)⇒ (a) Use the same argument as for (c)⇒ (a).

(a)⇒ (e) is obtained from 19.1 and 19.6.

(e)⇒ (a) By 19.2, M is self-projective. Applying 17.3(3), we again use the proof

of (b)⇒ (a) in 19.7 to conclude that M is a self-generator. 2

If M is a faithful A-module which is finitely generated as module over EndA(M),

then A is isomorphic to a submodule of a finite direct sum of copies of M (M is

cofaithful) and hence σ[M ] = A-Mod (4.4). From the preceding results we obtain:

19.9 Progenerators in A-Mod.

For a finitely generated A-module M and B = EndA(M), the following are equiv-

alent:

(a) M is a progenerator in A-Mod;

(b) AM is a faithful self-progenerator and MB is finitely generated;

(c) M is finitely presented in A-Mod and, for every x ∈ X , Mx is a progenerator in

Ax-Mod;

(d) M is finitely presented in A-Mod and for every m ∈ M, Mm is a progenerator

in Am-Mod.

If A is finitely generated as an R-module, then (a)-(d) are equivalent to:
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(e) For every m ∈M, M/mM is a progenerator in A/mA-Mod and

EndA(M)⊗R R/m ' EndA/mA(M/mM).

Proof. (a)⇒ (b) Any generator in A-Mod is finitely generated (and projective) over

its endomorphism ring (see 5.5).

(b)⇒ (a) As pointed out above, under the given conditions σ[M ] = A-Mod.

(a)⇒ (c), (d), (e) By 19.8, Mx and Mm are self-progenerators. Since MB is finitely

generated we deduce σ[Mx] = Ax-Mod and σ[Mm] = Am-Mod, for all x ∈ X and all

m ∈M.

(c) ⇒ (a) Since AM is finitely presented in A-Mod, for every A-module K,

yHomA(M,K) ⊗ Rx ' HomA(M,K ⊗ Rx) (see 18.5). By 19.8, M is a progener-

ator in σ[M ]. Following the proof (b) ⇒ (a) of 19.7, we see that M generates every

A-module K and hence σ[M ] = A-Mod.

(d)⇒ (a) is shown with the same proof.

(e) ⇒ (a) If the canonical map M ⊗ HomA(M,K) → K is surjective for every

finitely generated A-module K, then M is a generator in A-Mod.

Since A is a finitely generated A-module, K is also a finitely generated R-module.

Observing 17.3 we apply the proof of (b)⇒ (a) in 19.7 to obtain the assertion. 2

The type of modules considered above is closed under tensor products:

19.10 Tensorproduct of self-projective modules.

Let M be an A-module and N a B-module, both finitely generated.

(1) If M and N are self-projective, then M ⊗R N is self-projective as an A ⊗R B-

module.

(2) If M and N are self-progenerators, then M ⊗R N is a self-progenerator as an

A⊗R B-module.

(3) If M is A-projective and N is B-projective, then M ⊗RN is A⊗RB-projective.

(4) If M is a progenerator in A-Mod and N is a progenerator in B-Mod, then

M ⊗R N is a progenerator in A⊗R B-Mod.

In all these cases,

EndA⊗RB(M ⊗R N) ' EndA(M)⊗R EndB(N).

Proof. (1) For N there is an R-epimorphism R(Λ) → N . Tensoring with M yields

the A-epimorphism M ⊗R R(Λ) → M ⊗R N . This implies σ[M ⊗R N ] ⊂ σ[M ] and

similarly σ[M ⊗R N ] ⊂ σ[N ].

Consider an exact A⊗R B-sequence

(∗) M ⊗R N → X → 0.
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Since M is projective in σ[M ], we obtain the exact B-sequence

HomA(M,M ⊗R N)→ HomA(M,X)→ 0.

By 15.7, HomA(M,M ⊗R N) ' HomA(M,M) ⊗R N and we notice that the above

sequence lies in fact in σ[N ]. Hence HomB(N,−) yields the upper sequence exact in

the commutative diagram

HomB(N,HomA(M,M ⊗R N)) → HomB(N,HomA(M,X)) → 0

↓' ↓'
HomA⊗RB(M ⊗R N,M ⊗R N)) → HomA⊗RB(M ⊗R N,X) → 0 ,

with the vertical isomorphisms given in 15.6. So HomA⊗RB(M ⊗RN,−) is exact with

respect to (∗), i.e., M ⊗R N is self-projective.

(2) From the above proof we notice that

HomA⊗RB(M ⊗R N,−) ' HomB(N,HomA(M,−))

is a functorial isomorphism on σ[M ⊗R N ]. Since both functors on the right side are

exact and faithful, the same is true for HomA⊗RB(M ⊗R N,−) and hence M ⊗R N is

a generator in σ[M ⊗R N ].

(3),(4) Repeat the proof of (1),(2), replacing (∗) by exact sequences

A⊗R B → X → 0.

The isomorphism for the endomorphism rings follows from 15.9. 2

19.11 Exercises.

Let A be an associative unital R-algebra and M a finitely presented module in

A-Mod. Prove:

(1) For an A-module N , the following are equivalent:

(a) N is M -generated;

(b) for every m ∈M, Nm is Mm-generated;

(c) for every x ∈ X , Nx is Mx-generated.

(2) The following are equivalent:

(a) M is a generator in A-Mod;

(b) for every x ∈ X , Mx is a generator in Ax-Mod;

(c) for every m ∈M, Mm is a generator in Am-Mod.
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(3) For an exact sequence P →M → 0 in A-Mod, the following are equivalent:

(a) P →M → 0 splits in A-Mod;

(b) for every x ∈ X , Px →Mx → 0 splits in Ax-Mod;

(c) for every m ∈M, Pm →Mm → 0 splits in Am-Mod.

(In Szeto [254, Theorem 3.1] the first part is erroneously stated for M finitely

generated instead of finitely presented; see also Endo [122, Propositions 2.4, 2.5]).

References: Armendariz-Fisher-Steinberg [55], Burgess [94], Burkholder [99, 100,

102], Byun [103], Dauns-Hofmann [113], Endo [122], Magid [189], Matsumura [25],

Kambara-Oshiro [172], Pierce [32], Szeto [254], Villamayor-Zelinsky [260], Wisbauer

[276].
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20 Relative semisimple modules

1.Properties of (M,R)-projectives. 2.Characterization of (M,R)-injectives. 3.(A,R)-

projectives and (A,R)-injectives. 4.(M,R)-injectives in σ[M ]. 5.(A,R)-semisimple

and (A,R)-regular modules. 6.Properties of (A,R)-semisimple modules. 7.Finitely

generated (A,R)-semisimple modules. 8.Properties of (A,R)-regular modules. 9.Left

(A,R)-semisimple algebras. 10.Left (A,R)-semisimple algebras. Properties. 11.Left

(A,R)-regular algebras. 12.Left (A,R)-regular algebras. Properties. 13.Exercises.

Throughout this section A is an associative unital R-algebra. (Left) A-modules

are R-modules and exact sequences in A-Mod are also exact sequences in R-Mod.

Definitions. A sequence in A-Mod

(∗) 0 −→ K
f−→ L

g−→ N −→ 0

is said to be (A,R)-exact if it is exact in A-Mod and it splits in R-Mod. In this case

f is called an R-split A-monomorphism and g is an R-split A-epimorphism.

Let M,P,Q be A-modules. P is called (M,R)-projective if HomA(P,−) is exact

with respect to all (A,R)-exact sequences in σ[M ].

Q is called (M,R)-injective if HomA(−, Q) is exact with respect to all (A,R)-exact

sequences in σ[M ].

By standard arguments it is easily seen that direct sums and direct summands

of (M,R)-projective modules are again (M,R)-projective. Similarly, direct products

and direct summands of (M,R)-injective modules are (M,R)-injective.

Obviously, any projective module in σ[M ] is (M,R)-projective and every M -

injective module is (M,R)-injective.

If R is a semisimple ring, then for modules in σ[M ], (M,R)-projective and (M,R)-

injective are synonymous to projective and injective in σ[M ].

20.1 Properties of (M,R)-projectives. Let M,P be A-modules.

(1) If P is (M,R)-projective, then P ⊗R T is (M ⊗R T, T )-projective for any scalar

R-algebra T .

(2) For P ∈ σ[M ], the following are equivalent:

(a) P is (M,R)-projective;

(b) every (A,R)-exact sequence L→ P → 0 in σ[M ] splits.

If P is finitely presented in σ[M ], then (a) is equivalent to:

(c) for every x ∈ X , Px is (Mx, Rx)-projective.

If P is finitely presented in A-Mod, then (a) is equivalent to:

(d) for every m ∈M, Pm is (Mm, Rm)-projective.
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Proof. (1) By 15.6, there is a functorial isomorphism on σ[M ⊗R T ],

HomA⊗T (P ⊗R T,−) ' HomA(P,−).

(2) (a)⇒ (b) is obvious and (a)⇒ (c), (d) is clear by (1).

(b)⇒ (a) Consider an (A,R)-exact sequence (∗) in σ[M ] and a morphism P → N .

Forming a pullback we have the commutative exact diagram

0 → K → Q → P → 0

‖ ↓ ↓
0 → K → L → N → 0 .

Since the lower sequence is R-splitting, the same holds for the upper sequence, which

in fact splits as an A-sequence by (b). Hence P is (M,R)-projective.

(c)⇒ (a) From an (A,R)-exact sequence (∗) in σ[M ] and isomorphisms provided

by 18.5, we have the commutative diagram

HomA(P,L)⊗R Rx → HomA(P,N)⊗R Rx

↓' ↓'
HomAx(Px, Lx) → HomAx(Px, Nx) → 0.

By assumption, the lower row is exact and hence the upper morphism is epic, for all

x ∈ X . By 18.1, HomA(P,L)→ HomA(P,N) is epic and P is (M,R)-projective.

(d)⇒ (a) Apply the same proof as above with isomorphisms from 15.8. 2

Dual to part of 20.1 we have the

20.2 Characterization of (M,R)-injectives.

For an A-module M and Q ∈ σ[M ], the following are equivalent:

(a) Q is (M,R)-injective;

(b) every (A,R)-exact sequence 0→ Q→ L in σ[M ] splits.

There need not be (M,R)-projectives in σ[M ] but there are enough (M,R)-

injectives. To see this we first look at the situation in A-Mod.

20.3 (A,R)-projectives and (A,R)-injectives.

(1) For any R-module X, A⊗R X is (A,R)-projective.

(2) An A-module P is (A,R)-projective if and only if the map

A⊗R P → P, a⊗ p 7→ ap,

splits in A-Mod.
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(3) For any R-module Y , HomR(A, Y ) is (A,R)-injective.

(4) An A-module Q is (A,R)-injective if and only if the map

Q→ HomR(A,Q), q 7→ [a 7→ aq],

splits in A-Mod.

Proof. (1) By 15.6, there is a functorial isomorphism on R-Mod,

HomA(A⊗R X,−) ' HomR(X,−).

Since the functor on the right is exact on (A,R)-exact sequences, the same is true for

the functor on the left.

(2) The A-epimorphism A⊗R P → P is R-split by m 7→ 1⊗m. Hence it is A-split

if and only if P is (A,R)-projective.

(3) By Hom-tensor relations ([40, 12.12]), there are functorial isomorphisms on

A-Mod,

HomR(−, Y ) ' HomR(A⊗A −, Y ) ' HomA(−,HomR(A, Y )).

The functor on the left is exact on (A,R)-exact sequences and so the same holds for

the functor on the right.

(4) The A-monomorphism Q → HomR(A,Q) is R-split by f 7→ (1)f . So it is

A-split if and only if Q is (A,R)-injective. 2

With the above we are now able to show:

20.4 (M,R)-injectives in σ[M ].

Let M be an A-module. Every module in σ[M ] is an R-split submodule of an

(M,R)-injective module in σ[M ].

Proof. By 20.3, every N ∈ σ[M ] is an R-split submodule of the (A,R)-injective

module HomR(A,N).

Choose any generator G in σ[M ] and form the trace in A-Mod,

Ñ = Tr(G,HomR(A,N)).

Then N is an R-split submodule of Ñ ∈ σ[M ] and it is easily verified that Ñ is

(M,R)-injective. 2

Definitions. An A-moduleM is said to be (A,R)-semisimple if every (A,R)-exact

sequence in σ[M ] splits. M is called (A,R)-regular if every (A,R)-exact sequence is

pure in σ[M ] (see 7.2).

Obviously, over a semisimple ring R, every (A,R)-semisimple module is a semisim-

ple A-module and every (A,R)-regular module M is regular in σ[M ]. In general we

have the following characterizations:
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20.5 (A,R)-semisimple and (A,R)-regular modules.

(1) For an A-module M , the following are equivalent:

(a) M is (A,R)-semisimple;

(b) every A-module (in σ[M ]) is (M,R)-projective;

(c) every A-module (in σ[M ]) is (M,R)-injective.

(2) For an A-module M , the following are equivalent:

(a) M is (A,R)-regular;

(b) every pure projective module in σ[M ] is (M,R)-projective;

(c) every finitely presented module in σ[M ] is (M,R)-projective.

Proof. (1) The assertions follow easily from the definitions.

(2) (a)⇒ (b) Given (a), every pure projective module in σ[M ] is projective relative

to (A,R)-exact sequences.

(b)⇒ (c) Finitely presented modules are pure projective in σ[M ].

(c)⇒ (a) Given (c), every (A,R)-exact sequence is pure in σ[M ]. 2

We consider some properties of these modules.

20.6 Properties of (A,R)-semisimple modules.

Assume M is an (A,R)-semisimple A-module. Then:

(1) Every module in σ[M ] is (A,R)-semisimple.

(2) For every ideal I ⊂ R, M/IM is (A/IA,R/I)-semisimple.

(3) For every multiplicative subset S ⊂ R, MS−1 is (AS−1, RS−1)-semisimple.

(4) If R is an integral domain with quotient field Q, then M ⊗R Q is a semisimple

A⊗R Q-module.

(5) If R is hereditary and M is R-projective, then M is hereditary in σ[M ].

Proof. (1) is easy to see and (2) is a consequence of (1).

(3) Every N ∈ σ[MS−1] is (M,R)-projective and hence N ⊗R RS−1 ' N is

(MS−1, RS−1)-projective by by 20.1.

Therefore MS−1 is (AS−1, RS−1)-semisimple by 20.5.

(4) By (3), M⊗RQ is (A⊗RQ,Q)-semisimple and hence semisimple as an A⊗RQ-

module.

(5) Since every submodule of M is projective as an R-module, it is also projective

in σ[M ]. 2
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20.7 Finitely generated (A,R)-semisimple modules.

Let M be an (A,R)-semisimple A-module.

(1) If R is a perfect ring, or M is finitely generated as R-module and R is a semilocal

ring, then Rad(AM) = Jac(R)M .

(2) If M is finitely generated and self-projective as A-module, and R is locally per-

fect, then M is a progenerator in σ[M ].

(3) If M is finitely generated as R-module and self-projective as A-module, then M

is a progenerator in A/An(M)-Mod.

Proof. (1) Denote J = Jac(R). By 6.17, JM ⊂ Rad(AM).

Since M ⊗R R/J 'M/JM is a semisimple A-module, Rad(AM) ⊂ JM .

(2) For every m ∈ M, M/mM is a semisimple A-module and hence a self-pro-

generator. So the assertion follows from 19.8.

(3) Under the given conditions, M is finitely generated over its endomorphism ring

and hence σ[M ] = A/An(M)-Mod (4.4). Now the statement follows from (2). 2

20.8 Properties of (A,R)-regular modules.

Assume M is an (A,R)-regular A-module and there is a generating set of finitely

presented modules in σ[M ]. Then:

(1) For every multiplicative subset S ⊂ R, MS−1 is (AS−1, RS−1)-regular.

(2) If R is an integral domain with quotient field Q, then M ⊗R Q is regular in

σ[M ⊗R Q].

Proof. Since there are enough finitely presented objects in σ[M ], pure exact sequences

are direct limits of splitting sequences in σ[M ] (see 7.2).

(1) Consider an RS−1-splitting sequence in σ[MS−1],

(∗) 0→ K → L→ N → 0 .

This is also an R-splitting sequence in σ[M ] and hence - by assumption - a direct

limit of splitting sequences in σ[M ],

0→ Kλ → Lλ → Nλ → 0.

Tensoring with RS−1 we obtain a family of splitting sequences in σ[MS−1] whose

direct limit yields (∗). Hence (∗) is pure in σ[MS−1].

(2) By (1), M ⊗R Q is (A⊗R Q,Q)-regular and hence regular in σ[M ⊗R Q]. 2

Definitions. An R-algebra A is called left (A,R)-regular if A is (A,R)-regular as

left A-module. A is said to be left (A,R)-semisimple if A is (A,R)-semisimple as left

A-module.

These classes of algebras have nice properties.
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20.9 Left (A,R)-semisimple algebras. Characterizations.

For the algebra A the following are equivalent:

(a) A is left (A,R)-semisimple;

(b) every left A-module is (A,R)-projective;

(c) for any A-module N, A⊗R N → N , a⊗ n 7→ an, splits in A-Mod;

(d) every left A-module is (A,R)-injective;

(e) for any A-module N, N → HomR(A,N), n 7→ [a 7→ an], splits in A-Mod.

Proof. (a)⇔ (b)⇔ (d) is clear by 20.5.

(b)⇔ (c) and (d)⇔ (e) follow from 20.3.

(a)⇒ (d) and (a)⇒ (e) follow from 20.8. 2

20.10 Left (A,R)-semisimple algebras. Properties.

Let A be a left (A,R)-semisimple algebra and M ∈ A-Mod.

(1) For every ideal I ⊂ R, A/IA is (A/IA,R/I)-semisimple.

(2) If M is a flat R-module, then M is a flat A-module.

(3) If M is a projective R-module, then M is a projective A-module.

(4) If M is an injective R-module, then M is an injective A-module.

(5) If R is a regular ring, then A is a regular ring.

(6) If R is a hereditary ring and A is a projective R-module, then A is a left hered-

itary ring.

(7) If R is a locally perfect ring, or A is finitely generated as R-module and R is a

semilocal ring, then Jac(A) = Jac(R)A.

Proof. (1) and (6) follow from 20.6. (3) and (4) are obvious.

(7) is a consequence of 20.7.

(2) and (5) will be shown in 20.12 in a more general situation. 2

20.11 Left (A,R)-regular algebras. Characterizations.

For the algebra A, the following are equivalent:

(a) A is left (A,R)-regular;

(b) every pure projective (finitely presented) module in A-Mod is (A,R)-projective;

(c) for any finitely presented A-module N, A ⊗R N → N , a ⊗ n 7→ an, splits in

A-Mod;
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(d) every pure injective module in A-Mod is (A,R)-injective;

(e) for every x ∈ X , Ax is left (Ax, Rx)-regular;

(f) for every m ∈M, Am is left (Am, Rm)-regular.

Proof. (a)⇔ (b)⇒ (d) is clear by 20.5.

(b)⇔ (c) follows from 20.3.

(d)⇔ (a) If every pure injective module is injective with respect to a short exact

sequence, then this sequence is pure (see 7.2).

(a)⇒ (e) and (a)⇒ (f) follow from 20.8.

(e) ⇒ (b) For any finitely presented A-module P and x ∈ X , Px is a finitely

presented Ax-module and hence is (Ax, Rx)-projective by (d). As shown in 20.1, this

implies that P is (A,R)-projective and hence A is left (A,R)-regular.

(f)⇒ (b) This is seen with the same proof. 2

Clearly, a regular algebra A is left (and right) (A,R)-regular for any R. For regular

rings R the converse is also true:

20.12 Left (A,R)-regular algebras. Properties.

Assume the R-algebra A is left (A,R)-regular. Then:

(1) A left A-module which is flat as an R-module is flat as an A-module.

(2) If R is a regular ring, then A is a regular ring.

Proof. (1) Let M be an A-module which is flat as R-module. Then M is a direct

limit of finitely generated projective R-modules Pλ, λ ∈ Λ. Obviously all A⊗R Pλ are

projective A-modules and hence

A⊗RM ' lim
−→

(A⊗R Pλ)

is a flat A-module. Since A⊗RM →M splits in A-Mod, M is also a flat A-module.

(2) Assume R is regular. Then every R-module is flat and by (1), every A-module

is flat in A-Mod. Hence A is regular. 2

Remarks. The investigations in this section are part of relative homological al-

gebra. The basic idea is that the class of short exact sequences as central notion is

replaced by a more restricted class and homological algebra is developped relative to

this class. For this, notions like relative projective, relative injective, relative projec-

tive resolutions, and so on, are used. This can be subsumed under general purity (see

Exercise 5 below). A presentation of these ideas for arbitrary categories can be found

in Schubert [38].
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20.13 Exercises.

Let A be an associative R-algebra with unit.

(1) Schanuel’s Lemma (compare [40, 50.2]).

For an A-module M , consider (A,R)-exact sequences in σ[M ],

0→ K → P → N → 0 and 0→ L→ Q→ N → 0,

where P and Q both are (M,R)-projective. Prove K ⊕Q ' L⊕ P .

(2) Show that the following statements are equivalent:

(a) Every (A,R)-projective A-module is A-projective;

(b) every short exact sequence in A-Mod is (A,R)-exact;

(c) every left ideal A is an R-direct summand;

(d) every (A,R)-injective A-module is A-injective.

(3) Assume A is a finitely presented R-module and R is regular. Show that every

finitely presented (A,R)-projective A-module is projective.

(4) Let A be left (A,R)-semisimple and projective as R-module. Prove:

(i) If R is a perfect ring, then A is a left perfect ring.

(ii) If R is a QF (quasi Frobenius) ring, then A is a QF ring.

(5) Consider the class of A-modules

P = {A⊗R X | X ∈ R-Mod }.

Show:

(i) An exact sequence is (A,R)-exact if and only if it is P-pure

(i.e., every P ∈ P is projective with respect to it).

(ii) A is left (A,R)-semisimple if and only if every P-pure exact sequence splits

(i.e., A is P-pure semisimple).

(6) Assume M is an (A,R)-semisimple self-projective A-module, and A and M

are finitely generated as R-modules.

Show that EndA(M) is left (EndA(M), R)-semisimple.

(7) For any subring B ⊂ A, the definition of (A,B)-exact sequences and (A,B)-

projective modules (as given at the beginning of this section) makes sense. Many of

the results obtained hold in fact in this more general situation.

Assume C ⊂ B ⊂ A are subrings with the same unit element. Show for an A-

module M :

(i) If M is (A,B)-projective and (B,C)-projective, then M is (A,C)-projective.

(ii) If M is (A,C)-projective, then M is (A,B)-projective.

References: Cunningham [112], Hattori [153], Higman [157], Hirata-Sugano [158],

Hochschild [159], McMahon-Mewborn [196], Mishina-Skornjakov [26], Schubert [38],

Sugano [250, 251], Wisbauer [271].
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Radicals of algebras

21 Radicals defined by some classes of algebras

1.Simple factor algebras. 2.Radicals defined by simple algebras. 3.Radicals of finite

dimensional algebras. 4.Stalks with zero radical. 5.Proposition. 6.Brown-McCoy

radical. 7.Structure of module finite algebras. 8.Prime and semiprime. 9.The prime

radical. 10.Weakly local algebras. 11.Uniserial algebras. 12.The weakly local radical.

13.Exercises.

The classical Wedderburn Structure Theorem for a finite dimensional associative

algebra A over a field states that the factor algebra A/N by the nil radical N is a

finite direct product of simple algebras. These simple algebras are matrix rings over

division rings.

There were many attempts to extend this type of theorem to more general situa-

tions. For associative rings A the Jacobson radical JacA can be defined as the sum

of all quasi-regular (left) ideals and A/JacA is a subdirect product of primitive rings.

Again, a certain ideal is determined by properties of its elements and the factor ring

by this ideal allows certain statements about its structure.

In general, looking for a radical X in any algebra A there are two points to be

watched. On the one hand one has to care for the structure of A/X, and on the other

hand one would like to have an internal characterization of the ideal X.

Let us start with the first problem.

Definitions. An algebra without any proper non-zero ideals is called quasi-simple.

A quasi-simple algebra A with A2 6= 0 is called simple.

An ideal K ⊂ A is said to be modular if there exists e ∈ A with

e 6∈ K, a− ae ∈ K, a− ea ∈ K for every a ∈ A.

Obviously, the image of such an element e under A → A/K is the unit element in

A/K. In a unital algebra every proper ideal is modular (with e = 1).

From the above definitions we obtain by 1.8:

176
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21.1 Simple factor algebras.

Consider an ideal K in an algebra A.

(1) The factor algebra A/K is quasi-simple if and only if K is a maximal M(A)-

submodule (maximal ideal) of A.

(2) A/K is a simple algebra if and only if K is a maximal ideal with A2 6⊂ K.

(3) A/K is a simple ring with unit if and only if K is a maximal modular ideal.

The representation of algebras as subdirect products of factor algebras described

in 1.10 yields our next results. As for associative rings, the descending chain condition

(dcc) on ideals is of importance:

21.2 Radicals defined by simple algebras.

Let A be an R-algebra.

(1) The radical of A as an M(A)-module is

Rad(A) =
⋂
{K ⊂ A | K a maximal ideal },

and Rad(A/Rad(A)) = 0.

Rad(A) = 0 if and only if A is a subdirect product of quasi-simple algebras.

If A has dcc on ideals, then A/Rad(A) is a finite product of quasi-simple algebras.

(2) The Albert radical of A is defined as

Alb(A) =
⋂
{K ⊂ A | K a maximal ideal with A2 6⊂ K},

and Alb(A/Alb(A)) = 0.

Alb(A) = 0 if and only if A is a subdirect product of simple algebras.

If A has dcc on ideals K with A2 6⊂ K, then A/Alb(A) is a finite product of

simple algebras.

(3) The Brown-McCoy radical of A is defined as

BMc(A) =
⋂
{K ⊂ A | K a maximal modular ideal },

and BMc(A/BMc(A)) = 0. BMc(A) = 0 if and only if A is a subdirect product

of simple algebras with units.

If A has dcc on modular ideals, then A/BMc(A) is a finite product of simple

algebras with units.

(4) Jac(M(A))A ⊂ Rad(A) ⊂ Alb(A) ⊂ BMc(A).

If A2 = A, then Rad(A) = Alb(A).

If A has a unit, then Rad(A) = Alb(A) = BMc(A).
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(5) Assume A is a finitely generated R-module, or R is a perfect ring.

Then Jac(R)A ⊂ Rad(A).

Proof. As mentioned above, most of the statements are immediately derived from

1.10. For the second part of (3) it is to check that, for any modular ideals U, V with

U + V = A, U ∩ V is also a modular ideal:

Assume e ∈ A with e 6∈ U, a− ae ∈ U, a− ea ∈ U for a ∈ A. It is easily verified

that we may assume e ∈ V . Choosing similarly an f 6∈ V and f ∈ U the element

e+ f shows that U ∩ V is a modular ideal.

(4) These relations follow from the definitions and 6.16.

(5) This is a special case of 6.17. 2

For finite dimensional algebras we obtain as a corollary:

21.3 Radicals of finite dimensional algebras.

Let A be a finite dimensional algebra over a field K. Then:

(1) Rad(A) = 0 if and only if A is a direct product of quasi-simple algebras.

(2) Alb(A) = 0 if and only if A is a direct product of simple algebras.

(3) BMc(A) = 0 if and only if A is a direct product of simple algebras with unit.

Next we show that the above radicals of A are zero if all Pierce stalks have zero

radical. Recall that we denote by X the set of all maximal ideals in the Boolean ring

of idempotents of R (see 18.1).

21.4 Stalks with zero radical. Let A be an R-algebra.

(1) If RadM(Ax)(Ax) = 0 for every x ∈ X , then Rad(A) = 0.

(2) If Alb(Ax) = 0 for every x ∈ X , then Alb(A) = 0.

(3) If BMc(Ax) = 0 for every x ∈ X , then BMc(A) = 0.

Proof. (1) A is a subdirect product of the Ax by 18.1. Assume all RadM(Ax)(Ax) = 0.

Then the Ax are subdirect products of algebras without non-trivial ideals and the

same is true for A, i.e., Rad(A) = 0.

The same argument yields (2) and (3). 2

21.5 Proposition. Let A be an R-algebra. The Brown-McCoy radical and the Albert

radical of the R-algebra A are equal to the corresponding radical of the ZZ-algebra

(ring) A.
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Proof. We have to show that maximal ZZ-ideals I ⊂ A with A2 6⊂ I are also R-ideals.

Assume I is a maximal ZZ-ideal in A. Then RI is an R- and a ZZ-ideal containing

I and hence RI = I or RI = A. However, the last equality would imply A2 ⊂ RIA ⊂
IRA ⊂ IA ⊂ I, contradicting the choice of I. 2

By construction the radicals defined above yield satisfying structure theorems for

algebras with zero radical. However, so far we have no internal characterizations

for these radicals. For the Brown-McCoy radical we can get such a characterazition

similar to the Jacobson radical of associative algebras (see 6.16).

For an element a in any algebra A we define S(A) as the ideal of A generated by

the elements ax− x+ ya− y for all x, y ∈ A, i.e.

S(a) := < {ax− x+ ya− y | x, y ∈ A} > ⊂ A.

An element a ∈ A is called S-quasi-regular if a ∈ S(a).

An ideal I ⊂ A is said to be S-quasi-regular if every element of I is S-quasi-regular.

21.6 Brown-McCoy radical. Internal characterization.

(1) For any algebra A the Brown-McCoy radical BMc(A) is equal to the largest

S-quasi-regular ideal.

(2) BMc(A) contains no central idempotents.

Proof. (1) Assume a ∈ A is not S-quasi-regular, i.e. a 6∈ S(a). Then the set of ideals

I ⊂ A with S(a) ⊂ I and a 6∈ I is non-empty and inductive (by inclusion). By Zorn’s

Lemma it contains a maximal element, say J . We show that this is a maximal ideal

in A.

Consider b ∈ A \ J and the ideal < b > generated by b. Then, by maximality of

J , a ∈< b > +J and hence

a+ ax− x ∈ < b > +J, for all x ∈ A.

This implies < b > +J = A. Since S(a) ⊂ J , J is modular and hence J is a maximal

modular ideal not containing a, i.e. a 6∈ BMc(A).

Now let Q be an S-quasi-regular ideal and K a maximal modular ideal in A.

Assume Q 6⊂ K. Then K + Q = A. By assumption, there exists e ∈ A \ K with

b− be ∈ K and b− eb ∈ K for every b ∈ A. Let us write e = k+ q with k ∈ K, q ∈ Q.

Then

b− be = b− bq − bk ∈ K, and hence b− bq ∈ K.

Similarly we obtain b− qb ∈ K. Since q is S-quasi-regular we conclude

q ∈ S(q) ⊂ K and e = k + q ∈ K,
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contradicting the choice of e. Hence Q ⊂ BMc(A).

(2) Assume e ∈ BMc(A) is a central idempotent. Then e = ex−x for some x ∈ A
implying e = e2 = ex− ex = 0. 2

If the R-algebra A is finitely generated as R-module, then M(A) ⊂ Ak for some

k ∈ IN (see 2.12). Hence the structure of M(A) is related to the structure of A:

21.7 Structure of module finite algebras.

Assume the R-algebra A is finitely generated as R-module.

(1) The following statements are equivalent:

(a) A is a finite direct product of quasi-simple algebras;

(b) M(A) is left semisimple.

(2) If R is artinian, then the following are equivalent:

(a) A is a finite direct product of quasi-simple algebras;

(b) Rad(A) = 0;

(c) M(A) is left semisimple;

(d) Jac(M(A)) = 0.

(3) If R is artinian, then:

(i) A/Rad(A) is a finite direct product of quasi-simple algebras.

(ii) M(A)/Jac(M(A)) is a left semisimple algebra.

(iii) Rad(A)Jac(M(A)) · A.

Proof. (1) (a)⇒ (b) Since M(A) ⊂ Ak and A is a semisimple M(A)-module, M(A)

is left semisimple.

(b)⇒ (a) If M(A) is left semisimple, every left M(A)-module is semisimple.

(2) Since R is artinian, A and M(A) have dcc on (left) ideals. Hence (a)⇔ (b) by

21.2 and (c)⇔ (d) by the structure theory of associative left artinian rings.

(a)⇔ (c) is shown in (1).

(3) (i) and (ii) are obvious by (2).

We always have Jac(M(A)) ·A ⊂ Rad(A). By (i), A/(Jac(M(A)) ·A) is a semisim-

ple M(A)-module and hence Jac(M(A)) · A ⊃ Rad(A). 2

Definitions. Let A be an R-algebra. A proper ideal P ⊂ A is called a prime

ideal if, for any two ideals U, V ⊂ A, UV ⊂ P implies U ⊂ P or V ⊂ P .

P is a semiprime ideal if U2 ⊂ P implies U ⊂ P , for every ideal U ⊂ A.

A is called a prime algebra if 0 is a prime ideal. It is called a semiprime algebra if

the ideal 0 is semiprime, i.e., if A has no non-zero ideals whose square is zero.
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21.8 Prime and semiprime. Let A be an R-algebra.

(1) Every maximal ideal K ⊂ A with A2 6⊂ K is a prime ideal.

(2) A is a semiprime algebra if and only if, for any ideals U, V ⊂ A, UV = 0 implies

U ∩ V = 0.

(3) If A is (semi-) prime, then the centroid C(A) is also a (semi-) prime algebra.

Proof. (1) Consider ideals U, V ⊂ A with UV ⊂ K. Assume U 6⊂ K and V 6⊂ K.

Then K + U = K + V = A and

A2 = (K + U)(K + V ) ⊂ K,

a contradiction.

(2) Assume A is semiprime and UV = 0. Then (U ∩ V )2 ⊂ UV = 0 and hence

U ∩ V = 0. If the second property is given and U2 = 0, then U = U ∩ U = 0, i.e., A

is semiprime.

(3) Let A be prime. Consider two ideals I, J ⊂ C(A) with IJ = 0. Then

(AI)(AJ) = A2IJ = 0 and hence AI = 0 or AJ = 0. This implies I = 0 or

J = 0 showing that C(A) is prime.

Putting I = J we obtain our assertion for semiprime algebras. 2

Obviously, P is a (semi) prime ideal if and only if A/P is a (semi) prime algebra.

It is easy to verify that A is (semi) prime as R-algebra if and only if it is (semi) prime

as a ZZ-algebra (ring).

21.9 The prime radical.

For an R-algebra A the prime radical is defined as

Pri(A) :=
⋂
{P ⊂ A | P is a prime ideal }.

It has the following properties:

(1) Pri(A) is a semiprime ideal and Pri(A/Pri(A)) = 0.

(2) Pri(A) = 0 if and only if A is a subdirect product of prime algebras.

(3) Pri(A) ⊂ Alb(A).

Proof. (1) and (2) are immediate consequences of 1.10.

(3) This follows from the fact that any simple algebra is prime. 2

A word of caution is in order. An associative algebras A with unit is semiprime if

and only if Pri(A) = 0 (e.g., [40, 3.13]). In general, Pri(A) = 0 still implies that A

is semiprime. However, the converse conclusion need no longer be true.
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Definitions. Let A be an R-algebra. An ideal L ⊂ A is called weakly local if it is

contained in a unique maximal ideal K ⊂ A with A2 6⊂ K.

A is called a weakly local algebra if 0 is a weakly local ideal.

Of course, every simple algebra is weakly local. The ring R is weakly local if and

only if it is local in the classical sense. In general we have the following characteriza-

tions:

21.10 Weakly local algebras.

For an R-algebra A the following are equivalent:

(a) A is a weakly local algebra;

(b) A is a local M(A)-module and Rad(A) = Alb(A);

(c) Rad(A) is a maximal ideal and A2 6⊂ Rad(A);

(d) A/Rad(A) is a simple algebra;

(e) A is finitely generated as M(A)-module, and

every factor algebra B of A is indecomposable and B2 6= 0.

Proof. (a) ⇒ (b) Assume K is the only maximal ideal in A and A2 6⊂ K. Then

K = Alb(A) = Rad(A).

(b)⇒ (c) Alb(A) is a maximal ideal and hence A2 6⊂ Rad(A).

(c)⇔ (d) This is clear from the definitions.

(c)⇒ (e) As a local M(A)-module, A is finitely generated and every factor algebra

is indecomposable (see 8.2). The kernel of every surjective algebra morphism A→ B

is contained in Rad(A) and A2 6⊂ Rad(A) implies B2 6= 0.

(e)⇒ (a) Consider two maximal ideals K1, K2 ⊂ A. Since (A/Ki)
2 6= 0, A2 6⊂ Ki.

Assume K1 6⊂ K2. Then A/(K1∩K2) ' A/K1⊕A/K2 is a non-trivial decomposition

of a factor algebra, a contradiction. 2

Recall that a module M is called uniform if every submodule is essential in it, and

M is uniserial if its submodules are linearly ordered by inclusion.

21.11 Uniserial algebras.

For an R-algebra A the following statements are equivalent:

(a) The ideals in A are linearly ordered by inclusion;

(b) every factor algebra B of A is a uniform M(B)-module.

Under these conditions, an algebra A with unit is weakly local.
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Proof. (a)⇒ (b) Factor modules of uniserial modules are uniserial, hence uniform.

(b) ⇒ (a) Every factor algebra B of A has simple or zero socle as an M(B)- and

M(A)-module and hence is uniserial by 8.15.

If A has a unit, Rad(A) is a unique maximal ideal. 2

Based on the notions considered above we introduce another radical:

21.12 The weakly local radical.

For an R-algebra A the weakly local radical is defined as

Loc(A) :=
⋂
{L ⊂ A | L is a weakly local ideal }.

It has the following properties:

(1) Loc(A/Loc(A)) = 0 and Loc(A) ⊂ Alb(A).

(2) Loc(A) = 0 if and only if A is a subdirect product of weakly local algebras.

(3) If A2 = A and A is finitely generated as M(A)-module and has dcc on ideals,

then A/Loc(A) is a finite product of weakly local algebras.

Proof. (1), (2) follow immediately from the definitions and 1.10.

(3) We may assume Loc(A) = 0. Choose a minimal set of weakly local ideals Li
with L1∩ · · ·∩Lk = 0 and denote by Ki the unique maximal ideal of A with Li ⊂ Ki.

Suppose Ki = Kj for some i 6= j. Then Li ∩ Lj is a weakly local ideal: Assume

Li ∩ Lj ⊂ K for some maximal ideal K 6= Ki. Then LiLj ⊂ K and hence Li ⊂ K or

Lj ⊂ K, since K is a prime ideal. Hence Li or Lj is contained in two maximal ideals,

a contradiction.

Therefore, by our minimality assumption, we have Ki 6= Kj for i 6= j and Li + Lj
is not contained in any maximal ideal of A. Hence Li + Lj = A and the assertion

follows from the Chinese Remainder Theorem 1.10. 2

21.13 Exercises.

(1) Let A be an associative algebra. Show for matrix rings (n ∈ IN):

BMc(A(n,n)) = (BMc(A))(n,n).

(2) Let A be an associative semiperfect ring with unit. Assume {e1, . . . , en} to be

a complete set of primitive central idempotents modulo Jac(A). Prove that ([178])

Loc(A) =
∑
i 6=j

AeiAejA.

(3) Let (A,+, · ) be a simple associative ring. Prove ([247]):
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(i) Assume S ⊂ A is a subring such that S2 6= 0 and SAS = S. Then S has a unique

maximal ideal

{t ∈ S |StS = 0}.

(ii) Let a ∈ A such that a2 6= 0. Then the ring aAa has a unique maximal ideal

{s ∈ aAa | asa = 0}.

(iii) Let c ∈ A such that AcA 6= 0. Define a new product on (A,+) by

∗ : A× A→ A, (a, b) 7→ acb.

Then the ring (A,+, ∗) has a unique maximal ideal {a ∈ A | cac = 0}.

(4) Let A be an associative ring with unit which has a unique maximal ideal M .

Prove ([240, Theorem 3]):

A is either a local ring or every maximal right ideal I 6= M is an idempotent

non-two-sided ideal.

Furthermore, (IJ)2 = IJ for any maximal right ideals I, J different from M .

References: Albert [43], Behrens [68, 69], Brown-McCoy [91], Gray [17], Jenner

[167], Kerner-Thode [178], Pritchard [223], Satyanarayana-Deshpande [240], Schafer

[37], Stewart-Watters [247], Zwier [289].
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22 Solvable and nil ideals

1.Solvable ideals. 2.The solvable radical. 3.Nilpotent ideals. 4.Nil ideals. 5.The nil

radical. 6.Exercises.

Now we consider some radicals defined by internal properties. In order to transfer

nilpotency of ideals to non-associative algebras the following notion is useful:

For a subalgebra B of an R-algebra A the derived series of subalgebras is formed

by

B(1) := B, B(2) := B2, B(n+1) := B(n)B(n), for n ∈ IN.

Observe that, for an ideal B in a non-associative algebra A, in general B(n) need not

be an ideal in A. It is an ideal in associative and in alternative algebras. However,

A(2) is an ideal in any algebra A.

A subalgebra B of an algebra A is called solvable if B(n) = 0 for some n ∈ IN .

Of course, in associative algebras a subalgebra is solvable if and only if it is nilpo-

tent. The usefulness of this notion is based on technical properties:

22.1 Solvable ideals. Let A be an R-algebra.

(1) Assume B is an ideal in A. Then A is solvable if and only if B and A/B are

solvable.

(2) If B and C are solvable ideals in A, then B + C is also a solvable ideal.

Proof. (1) Subalgebras and factor algebras of solvable algebras are again solvable.

AssumeB andA/B are solvable and p : A→ A/B is the canonical homomorphism.

Since p(A(n)) = (p(A))(n) = 0 for some n ∈ IN , we have A(n) ⊂ B. Choosing t ∈ IN
such that B(t) = 0 yields

A(n+t) = (A(n))(t) ⊂ B(t) = 0 ,

i.e., A is solvable.

(2) By isomorphism theorems (see 1.8), (B + C)/C ' B/(B ∩ C) and hence is

solvable. Now (1) implies that B + C is also solvable. 2

The sum of all solvable ideals in A is called the solvable radical and we denote it

by Sol(A). In general Sol(A) need not be a solvable ideal and it may happen that

Sol(A/Sol(A)) 6= 0. In case A has the ascending chain condition on ideals, Sol(A) is

a finite sum of solvable ideals and hence is solvable by 22.1.

We collect some properties of this radical:
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22.2 The solvable radical.

Let A be an R-algebra with solvable radical Sol(A). Then:

(1) Every finitely generated ideal B with B ⊂ Sol(A) is solvable.

(2) Assume D is an R-algebra with Sol(D) = 0. Then every surjective algebra

morphism f : A→ D factorizes over A/Sol(A).

(3) Sol(A) ⊂ Alb(A).

(4) If Sol(A) is solvable, then Sol(A/Sol(A)) = 0.

(5) Assume for every ideal B ⊂ A, B2 is also an ideal. Then

Sol(A) ⊂ Pri(A) and A is semiprime if and only if Sol(A) = 0.

Proof. (1) Every finitely generated ideal B ⊂ Sol(A) is contained in a finite sum of

solvable ideals and hence is solvable by 22.1.

(2) If B is a solvable ideal in A then f(B) is a solvable ideal in D and hence is

zero. Therefore B ⊂ Kef and Sol(A) ⊂ Kef and the factorization follows by 1.7.

(3) If A/K is a simple factor algebra of A, then Sol(A/K) = 0 and Sol(A) ⊂ K

by (2). This implies Sol(A) ⊂ Alb(A).

(4) Let p : A → A/Sol(A) denote the canonical morphism. Assume for the ideal

B ⊂ A that p(B) is solvable. Then (B+Sol(A))/Sol(A) ' p(B) and hence is solvable.

Now B + Sol(A) is solvable by 22.1, i.e., B ⊂ Sol(A) and p(B) = 0.

(5) Under the given condition, for every prime ideal P ⊂ A, the algebra A/P

contains no solvable ideal. Hence Sol(A) ⊂ Pri(A).

Sol(A) = 0 if and only if A has no non-zero ideals B with B2 = 0. 2

Another extension of nilpotency of ideals to non-associative algebras is based on

the following notion:

A subalgebra B of an R-algebra A is said to be nilpotent (of degree t) if, for some

t ∈ IN , any product of t elements b1, . . . , bt ∈ B is zero with every possible bracketing.

Nilpotent ideals can be characterized in the multiplication algebra.

For any subset B ⊂ A we denote by MB(A) the subalgebra of M(A), generated

by left and right multiplication with elements from B, i.e.

MB(A) := < {Rb, Lb | b ∈ B} > ⊂M(A).

22.3 Nilpotent ideals.

An ideal B of an R-algebra A is nilpotent if and only if MB(A) is a nilpotent

subalgebra of M(A).
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Proof. Assume B ⊂ A is nilpotent of degree k ∈ IN . Then any product with more

than k elements from B is zero.

A product of k elements Ti from MB(A), T = T1 · · ·Tk, is a sum of expressions

containing a product of at least k left or right multiplications Si with elements from

B. Since B is an ideal, for any x ∈ A, we have S1x ∈ B and Sk · · ·S1x = 0. Hence

T = 0 and MB(A) is nilpotent (of degree k).

Now assume B is a subalgebra of A and MB(A) is nilpotent of degree t ∈ IN . We

first show that any product of at least 2n (n ∈ IN) elements from B can be written as

Sn · · ·S1b with b ∈ B and Si ∈MB(A).

This is obtained by induction on n. For n = 1 we observe that every product of two

elements b, b1 ∈ B can be written as

bb1 = Rb1b = S1b with S1 := Rb1 ∈MB(A).

Similarly, in every product of at least 2n+1 elements from B, there is a last left or

right multiplication Sn+1 ∈ MB(A) to be performed. By induction hypothesis, the

remaining factor is of the form Sn · · ·S1b with b ∈ B, Si ∈MB(A).

Since MB(A) is nilpotent of degree t, B is nilpotent of degree 2t. 2

Remark. If B is a nilpotent ideal in A and A/B is also nilpotent, then in general

A need not be nilpotent. Therefore this notion of nilpotency is not suitable for the

definiton of a radical for arbitrary algebras.

Obviously, the sum of all nilpotent ideals in A is contained in the solvable radical

Sol(A) of A. Let us now consider a radical which contains Sol(A).

An element a ∈ A is called nilpotent (of degree n ∈ IN) if an n-fold product of a

is zero for some suitable bracketing.

An ideal in A is said to be a nil ideal if every element in it is nilpotent. A is called

a nil algebra if every element in A is nilpotent.

For an n-fold product of a ∈ A there are finitely many possibilities of bracketing

which we enumerate with an index and we denote the ν-th possibility by P n
ν (a). With

this notation, a ∈ A is nilpotent if and only if P n
ν (a) = 0 for some pair n, ν ∈ IN .

Similarly to 22.1 we have:

22.4 Nil ideals. Let A be an R-algebra.

(1) Assume B is an ideal in A. Then A is a nil algebra if and only if B is a nil ideal

and A/B is a nil algebra.

(2) The sum of nil ideals in A is again a nil ideal.
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Proof. (1) We have to show that a ∈ A is nilpotent if B and A/B are nil. Let

p : A→ A/B denote the canonical morphism. Then there exist n, ν ∈ IN such that

P n
ν (p(a)) = p(P n

ν (a)) = 0, i.e., P n
ν (a) ∈ B.

Since B is nil, there exist m,µ ∈ IN with Pm
µ (P n

ν (a)) = 0. Hence we have an nk-fold

product of a which is zero.

(2) Applying an isomorphism theorem we conclude from (1) that every finite sum

of nil ideals is nil (see proof of 22.1(2)).

Every element in an infinite sum of nil ideals is contained in a finite partial sum

and hence is nilpotent by the above argument. Therefore any sum of nil ideals is a

nil ideal. 2

The sum of all nil ideals in an R-algebra A is called the nil radical of A and is

denoted by Nil(A). It is easy to see that the nil radical of an R-algebra A is equal to

the nil radical of A as ZZ-algebra (ring). It has the following properties:

22.5 The nil radical. Let A be an R-algebra.

(1) For surjective algebra morphisms f : A→ B, f(Nil(A)) ⊂ Nil(B).

(2) Nil(A/Nil(A)) = 0.

(3) Sol(A) ⊂ Nil(A) ⊂ BMc(A).

(4) Nil(R)A ⊂ Nil(A).

Proof. (1) This is clear since f(Nil(A)) is a nil ideal in B.

(2) is a consequence of 22.4.

(3) In every simple algebra with unit the nil radical is zero. Hence by (1), Nil(A)

is contained in every maximal modular ideal of A, i.e., Nil(A) ⊂ BMc(A).

Since every solvable ideal is nil, Sol(A) ⊂ Nil(A).

(4) is obvious. 2

In general, Nil(A) need not be contained in Alb(A). For example, in any simple

Lie algebra A, Alb(A) = 0 and Nil(A) = A.

For finite dimensional associative algebras A over fields, the properties of an ideal

to be nil, nilpotent or solvable are equivalent and hence Sol(A) = Nil(A).

This is also true for finite dimensional alternative and Jordan algebras (e.g., Schafer

[37, Theorem 3.2 and 4.3]). In these algebras also Nil(A) = BMc(A) holds (see [37,

3.12 and 4.6]).
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22.6 Exercises.

(1) Let A be an associative algebra. An ideal I ⊂ A is called semi-nilpotent if

each subring generated by a finite subset of I is nilpotent. The Levitzki radical of A

is defined by

Lev(A) :=
∑
{I ⊂ A | I a semi-nilpotent ideal}.

Prove that Lev(A) is a semi-nilpotent ideal and Lev(A/Lev(A)) = 0.

(2) Let A be a Lie algebra. The Frattini subalgebra Φ(A) of A is defined as the

intersection of all maximal subalgebras of A.

An element x ∈ A is said to be non-generating if the following holds: If x ∈ S for

some generating set S ⊂ A, then S \ {x} is also a generating set. Prove:

(i) Φ(A) is the set of all non-generating elements of A.

(ii) If A is nilpotent, then A2 ⊂ Φ(A).

(iii) Assume A has finite length as an R-module and let K ⊂ L ⊂ A be ideals such

that K ⊂ Φ(A) and L/K is nilpotent. Then L is a nilpotent Lie algebra.

(3) Let A be a solvable Lie R-algebra which has finite length as an R-module.

Prove that the Frattini subgroup Φ(A) is a nilpotent ideal in A.

(4) Let A be a Lie algebra with an ideal K ⊂ A such that A/K2 is nilpotent.

Prove that A is also nilpotent.

(5) Prove that the following are equivalent for a Lie algebra A:

(a) For some l ∈ IN , A(l−1) 6= 0 and A(l) = 0 (A is solvable);

(b) for some l ∈ IN , there exists a series of ideals (or subalgebras)

A = I0 ⊃ I1 ⊃ · · · ⊃ Il = 0,

with I2
i ⊂ Ii+1 for i = 0, . . . , l − 1.

(6) Let A be a Lie R-algebra which has finite length as an R-module. Prove:

(i) The sum of all nilpotent ideals is a nilpotent ideal in A.

(ii) The sum of all solvable ideals is a solvable ideal in A.

References: Albert [43], Bakhturin [3], Behrens [68, 69], Brown-McCoy [91],

Gray [17], Jenner [167], Schafer [37].
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Modules for algebras

Bimodules over arbitrary R-algebras A are defined as R-modules M with two R-linear

maps

A⊗RM →M, M ⊗R A→M.

With obvious notation, for these modules associator and commutator are defined for

a, b ∈ A, m ∈M (compare 1.11),

(a, b,m) = (ab)m− a(bm), [a,m] = am−ma,

and similarly (a,m, b) and (m, a, b).

For bimodules over associative algebras additional conditions are imposed:

(a, b,m) = (a,m, b) = (m, a, b) = 0, for all a, b ∈ A, m ∈M.

Following a suggestion in Eilenberg [120], bimodules over algebras with identities

can be defined by imposing corresponding identities in terms of the module multipli-

cation. For example, bimodules over alternative algebras A should satisfy

(a, a,m) = (a,m, a) = (m, a, a) = 0, for all a ∈ A, m ∈M,

and over Jordan algebras A, for all a, b ∈ A, m ∈M (see [19, p. 95]),

am = ma, a(a2m) = a2(am) and (a2, b,m) = 2(a, b, am).

The category of alternative (Jordan) bimodules over an alternative (Jordan) al-

gebra A is equivalent to the full module category over the corresponding associative

universal enveloping algebra U(A) (see [19]). Hence this setting provides a connection

between A and a full module category over an associative ring. Such a connection

turned out to be so useful for associative algebras A (with A-Mod). However, in gen-

eral, the algebra U(A) is not closely related to the algebra A. For example, A need

not be a faithful module over U(A). Therefore it may be very difficult to conclude

from properties of A to properties of U(A) (e.g., [166]). Moreover, U(A) has to be

defined for every variety of algebras independently and the definitions are quite cum-

bersome. For these reasons, by the approach outlined above it is not so easy to apply

the rich module theory over associative rings to non-associative algebras. Results

in this direction can be found in Jacobson [166, 19], Schafer [241], Zhevlakov [287],

Slinko-Shestakov [243] and Zhevlakov-Slinko-Shestakov-Shirshov [41].

In the next section we suggest a different approach to make associative module

theory accessible to non-associative algebras without referring to identities.
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23 The category σ[A]

1.Properties of σ[A]. 2.The centre of an M(A)-module. 3.Algebras with units. 4.A

finitely presented in M(A)-Mod. 5.Proposition. 6.A as an Ae-module. 7.Direct pro-

jectivity. 8.Weak product of quasi-simple algebras. 9.Corollary. 10.Finite product of

simple algebras. 11.Modules for quasi-simple algebras. 12.Properties of weak products

of quasi-simple algebras.

To apply module theory to arbitrary algebras A, it makes sense not to focus on

the relationship between A and the category of all (non-associative) bimodules over A

but to a suitable subcategory of it. This category should be small enough to be closely

related to the algebra A and should be large enough to provide effective techniques

from category theory. Both requirements are met by the category σ[A], a subcategory

of M(A)-Mod (and the bimodules over A), which is nothing but a special case of the

category σ[M ] defined for any module M over an associative algebra. We repeat some

definitions and properties in this new context.

Let A be an R-algebra and M(A) its multiplication algebra (see 2.1). We consider

A as a left module over the associative algebra M(A). The M(A)-submodules are the

(two-sided) ideals of A and C(A) := End(M(A)A) is the centroid of A (see 2.6).

An M(A)-module is called A-generated if it is a homomorphic image of a direct

sum A(Λ) in M(A)-Mod, for some index set Λ.

For two modules M,N ∈ σ[A] the trace of M in N is defined as

Tr(M,N) :=
∑
{Imf | f ∈ HomM(A)(M,N)} = MHomM(A)(M,N).

N is M -generated if and only if N = Tr(M,N) = MHomM(A)(M,N).

By σ[A], or σ[M(A)A], we denote the full subcategory of M(A)-Mod whose objects

are submodules of A-generated module.

σ[A] is a Grothendieck category and with the above notation we have from 4.4:

23.1 Properties of σ[A]. Let A be an R-algebra.

(1) Morphisms in σ[A] have kernels and cokernels.

(2) For objects {Nλ}Λ in σ[A], the direct sum
⊕

ΛNλ in M(A)-Mod belongs to σ[A]

and is the coproduct in σ[A].

(3) The finitely generated (cyclic) submodules of A(IN) form a set of generators in

σ[A]. The direct sum of these modules is a generator in σ[A].

(4) Objects in σ[A] are finitely (co-) generated in σ[A] if and only if they are finitely

(co-) generated in M(A)-Mod.

(5) For objects {Nλ}Λ in σ[A], let
∏

ΛNλ denote the product in M(A)-Mod (carte-

sian product). Then Tr(σ[A],
∏

ΛNλ) is the product of {Nλ}Λ in σ[A].
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(6) Every simple module in σ[A] is a factor module of an ideal of A.

(7) If A is a finitely generated C(A)-module, then σ[A] = M(A)-Mod.

Although the category σ[A] has a generator, it need not have a finitely generated

or a projective generator. This is the main difference to full module categories. If

σ[A] has a finitely generated projective generator, then it is equivalent to a full module

category (see 5.10).

Every left M(A)-module may be regarded as left module over the left multiplica-

tion algebra L(A) and the right multiplication algebra R(A).

Recall that for any a ∈ A, we denote by La and Ra the left and the right multi-

plication by a in A (see 2.1). Putting Lam = am and Ram = ma we see that every

M(A)-module is also a bimodule over A.

23.2 The centre of an M(A)-module.

In any M(A)-module M , we define the centre ZA(M) of M as

{m ∈M | Lam = Ram, LaLbm = Labm, RbRam = Rabm, for all a, b ∈ A}.

Using associator and commutator we have

ZA(M) = {m ∈M | [a,m] = 0, (a, b,m) = (m, a, b) = 0, for all a, b,∈ A}.

Obviously, ZA(A) = Z(A), the centre of the algebra A (see 1.11) and ZA(M) is a

Z(A)-submodule of M .

Moreover, for any ideal I ⊂ A, ZA(I) = I ∩ Z(A).

It is easy to verify that over algebras with units the centre of modules is closely

connected to morphisms:

23.3 Algebras with units.

Let A be an R-algebra with unit eA and M ∈M(A)-Mod. Then the map

HomM(A)(A,M)→ ZA(M), γ 7→ (eA)γ,

is a Z(A)-module isomorphism.

M is A-generated as an M(A)-module if and only if

M = AHomM(A)(A,M) = AZA(M).

An ideal I ⊂ A is A-generated if and only if

I = AHomM(A)(A, I) = A(I ∩ Z(A)).
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23.4 A finitely presented in M(A)-Mod.

Let A be an R-algebra. Assume M(A) is finitely generated as an R-module. If

A has a unit or A is finitely generated and projective as R-module, then A is finitely

presented in M(A)-Mod.

Proof. Let A have a unit. The map M(A)→ A, λ 7→ λ(1), splits as an R-morphism

and hence its kernel is a finitely generated R-module. Then it is also a finitely gener-

ated M(A)-module and A is a finitely presented M(A)-module.

Now assume A is a finitely generated and projective R-module. Then there exists

an M(A)-epimorphism M(A)k → A, for some k ∈ IN , which splits as an R-morphism.

Hence its kernel is finitely generated as an R-module and as an M(A)-module. So A

is a finitely presented M(A)-module. 2

In general, we do not know if for any module finite R-algebra A, M(A) is also

finitely generated as an R-module. However we conclude from 3.7 and 3.13:

23.5 Proposition. Let A be an alternative or a Jordan algebra which is a finitely

generated R-module. Then M(A) is finitely generated as an R-module.

A is called an affine R-algebra if it is finitely generated as an R-algebra. Obviously,

any unital R-algebra which is a finitely generated R-module is an affine R-algebra.

For associative algebras A we have a special situation. Recall that such an A is a

left module over Ae = A⊗R Ao (by (a⊗ b) · x = axb).

23.6 A as an Ae-module.

Let A be an associative R-algebra with unit.

(1) µ : Ae → A, a⊗ b 7→ ab, is a surjective Ae-module morphism.

(2) Keµ is generated as an Ae-submodule by {a⊗ 1− 1⊗ a | a ∈ A}.

(3) If A is an affine R-algebra, then A is finitely presented in Ae-Mod.

Proof. (1) This is easily verified.

(2) For
∑
ai ⊗ bi ∈ Keµ, µ(

∑
ai ⊗ bi) =

∑
aibi = 0 and hence∑

ai ⊗ bi =
∑

(ai ⊗ 1)(1⊗ bi − bi ⊗ 1).

(3) Let A be generated as an R-algebra by a1, . . . , ak ∈ A. We want to show that

Keµ is generated as an Ae-module by {ai ⊗ 1− 1⊗ ai | i ≤ k}.
By assumption we know that every element in A is an R-linear combination of

finite products of the elements a1, . . . , ak. Assume a ∈ A is a product of n + 1 such

elements. Without restriction a = a1b, with b a product of n of these elements, and

a1b⊗ 1− 1⊗ a1b = (a1 ⊗ 1)(b⊗ 1− 1⊗ b) + (1⊗ b)(a1 ⊗ 1− 1⊗ a1).

By induction we see that any a ⊗ 1 − 1 ⊗ a belongs to the Ae-submodule generated

by {ai ⊗ 1− 1⊗ ai | i ≤ k}. 2
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An important effect of a unity in an associative algebra is that it makes the algebra

projective as a left module. In general, a unit still implies a weak form of projectivity

for the bimodule structure.

23.7 Direct projectivity.

Let A be a unital algebra.

(1) Let e ∈ A be a central idempotent and U ⊂ A an ideal. Then every M(A)-

epimorphism h : U → Ae splits.

(2) A is a direct projective M(A)-module.

(3) Let h : A → A be an M(A)-epimorphism. Then (Z(A))h = Z(A) and h is an

isomorphism.

(4) Let e ∈ A be a central idempotent and assume Ae is a local M(A)-module. Then

eZ(A) is a local ring.

(5) Assume A has a unique maximal ideal. Then Z(A) is a local ring.

Proof. (1) For a central idempotent e ∈ A and U ⊂ A, consider an M(A)-epi-

morphism h : U → Ae. Choose x ∈ U with (x)h = e. Then for any a ∈ A,

a(ex) = e(ax) = (x(ax))h = x(ae) = (ex)a.

Similarly for any a, b ∈ A,

(ab)(ex) = (a(b(x)h))x = (a(bx))hx = (a(bx))e = a(b(ex)).

So [a, ex] = 0 and (a, b, ex) = 0 = (ex, a, b), for all a, b,∈ A, i.e., ex ∈ Z(A) ∩ U .

Hence the map

k : Ae→ U, ae 7→ aex,

is an M(A)-homomorphism with kh = idAe.

(2) Any direct summand of A is of the type Ae, for some central idempotent e ∈ A.

By (1), any epimorphism A→ Ae splits, i.e., A is a direct projective M(A)-module.

(3) For an epimorphism h : A → A, obviously (Z(A))h ⊂ Z(A). By (1), there

exists k : A → A with kh = idA. Since EndM(A)(A) ' Z(A) is commutative, also

hk = idA and so h and k are isomorphisms. Hence

Z(A) = (Z(A))kh ⊂ (Z(A))h ⊂ Z(A).

(4) Under the given conditions, Ae has a unique maximal M(A)-submodule. Since

Ae is direct projective (by (2)), EndM(A)(Ae) ' eZ(A) is a local ring by 8.3.

(5) is a special case of (4). 2
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Assume A has a decomposition as a direct sum of M(A)-submodules (ideals),

A =
⊕

Λ Iλ. Then it is easily checked that IλIµ = 0 if λ 6= µ. Hence the product in

A can be formed by components and A can be considered as the weak product of the

algebras Iλ (see 1.4).

Transferring the characterization of semisimple modules in 6.9, we obtain char-

acterizations of special classes of algebras which demonstrate the usefulness of our

concepts. The assertions about the radicals are taken from 21.2.

Recall that for module finite R-algebras A, σ[A] = M(A)-Mod.

23.8 Weak product of quasi-simple algebras.

For an R-algebra A the following statements are equivalent:

(a) A is a weak product of quasi-simple algebras;

(b) every ideal in A is a direct summand;

(c) every module in σ[A] is semisimple;

(d) every module in σ[A] is A-projective;

(e) every module in σ[A] is A-injective;

(f) every short exact sequence in σ[A] splits;

(g) every simple module in σ[A] is A-projective;

(h) every cyclic module in σ[A] is A-injective.

If A is a finitely generated M(A)-module, then (a)-(h) are equivalent to:

(i) RadM(A)(A) = 0 and A is finitely cogenerated as M(A)-module.

If A is a finitely generated R-module, then (a)-(i) are equivalent to:

(j) M(A) is a left semisimple algebra.

23.9 Corollary. Let A be a weak product of quasi-simple algebras. Then:

(1) The centroid C(A) is a regular ring and A is a projective generator in σ[A].

(2) If A is a finitely generated M(A)-module, then C(A) is a left semisimple ring.

In the above situation we may have A2 = 0. In the next cases this trivial situation

is excluded. Recall that the centroid of algebras A with A2 = A is commutative (see

2.7).
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23.10 Finite product of simple algebras.

Let A be an R-algebra which is finitely generated as M(A)-module.

(1) The following statements are equivalent:

(a) A is a finite product of simple algebras;

(b) A2 = A and every module in σ[A] is semisimple;

(c) Alb(A) = 0 and A is finitely cogenerated as M(A)-module.

Under theses conditons, C(A) is a finite product of fields.

(2) The following are also equivalent:

(a) A is a finite product of simple algebras with units;

(b) A has a unit and every module in σ[A] is semisimple;

(c) BMc(A) = 0 and A is finitely cogenerated as M(A)-module.

Under theses conditons, C(A) ' Z(A) is a finite product of fields.

Of course, all the module theoretic formulations in 23.8 also apply to 23.10.

It is known from linear algebra that a ring R is a field if and only if every R-module

is free. Applying the above results this can be extended to arbitrary algebras:

23.11 Modules for quasi-simple algebras.

For any algebra A the following are equivalent:

(a) A is quasi-simple;

(b) every module in σ[A] is isomorphic to A(Λ), for some set Λ.

Proof. (a)⇒ (b) Assume A is quasi-simple. Then A is a generator in σ[A] and every

module N ∈ σ[A] is a sum of submodules isomorphic to A. Hence N is a direct sum

of such modules (e.g. [40, 20.1]), i.e., N ' A(Λ) for some Λ.

(b) ⇒ (a) Consider any simple module E ∈ σ[A]. By assumption, E ' A(Λ) and

hence A ' E is a simple M(A)-module, i.e., A is a quasi-simple algebra (see 21.1). 2

The algebras considered in 23.8 and 23.10 have all good properties we may expect

in module theory. In fact it is easy to show (compare [40, 20.4]):

23.12 Properties of weak products of quasi-simple algebras.

Assume the algebra A is a weak product of quasi-simple algebras. Then:

(1) σ[A] has a semisimple cogenerator;

(2) every (finitely generated) ideal of A is projective in σ[A];

(3) every finitely generated ideal of A is a direct summand;
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(4) every simple module in σ[A] is A-injective;

(5) for all N ∈ σ[A], RadM(A)(A) = 0;

(6) every (finitely) A-generated module has a projective cover in σ[A];

(7) A is a projective generator in σ[A];

(8) A is an injective cogenerator in σ[A].

None of these properties is sufficient to assure thatA is a semisimpleM(A)-module.

They characterize various interesting larger classes of algebras.

Remarks. (1) Let A be an alternative, Jordan, Lie or Malcev algebra and denote

by U(A) the corresponding universal enveloping algebra. By the properties of U(A),

there exists an algebra morphism U(A) → EndR(A) whose image is just the multi-

plication algebra M(A). Hence every M(A)-module - in particular every module in

σ[A] - is an U(A)-module, i.e., it is an alternative, Jordan, Lie or Malcev (see [121])

module, respectively.

(2) In case A is an associative and commutative algebra with unit, say A = R, we

have M(A) = A and σ[A] = A-Mod. Hence in general results about σ[A] extend the

module theory over associative commutative rings.

References. Elduque [121], Jacobson [166], Wisbauer [270, 267].
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24 Generator properties of A

1.Algebras with large centroid. 2.Algebras with unit and large centre. 3.Self-generator

algebras. 4.Finitely presented self-generators. 5.Algebras satisfying (G.4). 6.A as a

generator in σ[A]. 7.Properties of generator algebras. 8.A generating M(A)-Mod.

9.Example. 10.Tensor product of Azumaya algebras.

In general, A is far from being a generator in σ[A]. In this section we investigate

the following conditions on an algebra A related to this property:

(G.1) For every non-zero ideal U ⊂ A, U ∩ Z(A) 6= 0.

(G.2) For every non-zero ideal U ⊂ A, HomM(A)(A,U) 6= 0.

(G.3) Every ideal in A is A-generated.

(G.4) For every morphism f : Ak → An in σ[A], k, n,∈ IN , Kef is A-generated.

(G.5) A is a generator in σ[A].

(G.6) A is a generator in M(A)-Mod.

We always have (G.6)⇒ (G.5)⇒ (G.4) and (G.5)⇒ (G.3)⇒ (G.2).

If A has no absolute zero-divisors, then (G.1) ⇒ (G.2). In algebras A with unit,

we may assume U ∩ Z(A) = HomM(A)(A,U) for every ideal U ⊂ A, and hence

(G.1)⇔ (G.2).

Definitions. We say an algebra A has large centre if A satisfies (G.1), and A has

large centroid if it satisfies (G.2).

24.1 Algebras with large centroid.

Let A be an algebra with large centroid. Then:

(1) For any ideal U ⊂ A, Tr(A,U) is an essential M(A)-submodule of U .

(2) A is quasi-simple if and only if C(A) is a division algebra.

(3) A is a finite product of quasi-simple algebras if and only if C(A) is left semi-

simple.

Proof. (1) For every non-zero submodule K ⊂ U , there exists a non-zero α ∈
Hom(A,K) and 0 6= Aα ⊂ K ∩ Tr(A,U).

(2) If A is quasi-simple, C(A) is a divison algebra by Schur’s Lemma.

Assume C(A) is a division algebra and consider any ideal U ⊂ A. Then there

exists a non-zero α ∈ Hom(A,U) ⊂ C(A). Since α is invertible, A = Aα ⊂ U and

hence U = A.

(3) If A is a finite product of quasi-simple algebras, then C(A) is left semisimple

by 23.8.
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Now assume C(A) is left semisimple and consider any ideal U ⊂ A. By (1),

Tr(A,U) = AHom(A,U) is an essential submodule of U . Hom(A,U) is a left ideal

in C(A) and hence is generated by some idempotent e ∈ C(A) and Tr(A,U) = Ae.

Therefore Ae is essential and a direct summand in U , i.e., U = Ae is a direct summand

in A and A is a direct sum of simple M(A)-modules (see 23.8).

Since there are only finite families of orthogonal idempotents in C(A), A is a finite

product of quasi-simple algebras. 2

For algebras with unit the above statements have the following form:

24.2 Algebras with unit and large centre.

Assume A is an algebra with unit and large centre. Then:

(1) For every ideal U ⊂ A, A(U ∩ Z(A)) is an essential M(A)-submodule of U .

(2) A is simple if and only if Z(A) is a field.

(3) A is a finite product of simple algebras if and only if Z(A) is a finite direct

product of fields.

(4) A is (semi-) prime if and only if Z(A) is (semi-) prime.

Proof. (4) Obviously, for a (semi-) prime A, Z(A) is also (semi-) prime.

Let U, V ⊂ A be ideals with UV = 0. Then (U ∩ Z(A))(V ∩ Z(A)) = 0. If Z(A)

is prime this implies U ∩ Z(A) = 0 or V ∩ Z(A) = 0 and hence U = 0 or V = 0.

Putting U = V we obtain the assertion for semiprime algebras. 2

Algebras A with property (G.3) are self-generators as M(A)-modules; we call them

self-generator algebras. Besides the properties shown in 24.1 and 24.2 we observe:

24.3 Self-generator algebras.

Assume the algebra A is a self-generator as an M(A)-module. Then:

(1) A generates every simple module in σ[A].

(2) For every ideal U ⊂ A with U C(A) ⊂ U , A/U is a self-generator algebra.

(3) For every a ∈ A and f ∈ End(AC(A)), there exists µ ∈M(A) with f(a) = µa.

(4) If C(A) is a regular algebra, then every ideal in A, which is finitely generated

as an M(A)-module, is a direct summand.

(5) If A has a unit, then for every ideal U ⊂ A, U = A(U ∩Z(A)), and every factor

algebra of A is a self-generator algebra.

(6) If A has a unit, then Nil(Z(A))A = Nil(A).
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Proof. (1) By 23.1, every simple module in σ[A] is a factor module of an ideal in A.

Since ideals in A are A-generated, all simple modules in σ[A] are A-generated.

(2) Under the given conditions, U is a fully invariant submodule of A and the

assertion follows from 5.2.

(3) This is also shown in 5.2.

(4) Consider a finitely generated ideal U ⊂ A. Then there is a module epimorphism

f : Ak → U , k ∈ IN , which may be regarded as an element of the regular ring

EndM(A)(A
k). Therefore (Ak)f = U is a direct summand in A (see 7.6).

(5) The first assertion follows from 23.3. Every ideal in A is also a Z(A)-module

and hence the second assertion is obtained from (2).

(6) As already observed in 22.5, Nil(Z(A))A ⊂ Nil(A) always holds. By (4),

Nil(A) = (Nil(A) ∩ Z(A))A. Since Nil(A) ∩ Z(A) ⊂ Nil(Z(A)) the statement is

proved. 2

Under a certain finiteness condition, 19.7 yields a local-global characterization for

self-generator algebras. Again X denotes the set of maximal ideals in the Boolean

ring of idempotents of R.

24.4 Finitely presented self-generators.

Assume A is an R-algebra such that A is finitely presented in σ[A]. Then the

following are equivalent:

(a) A is a self-generator algebra;

(b) for every x ∈ X , Ax is a self-generator algebra.

Next we ask for algebras satisfying (G.4). Applying [40, 15.9], we obtain:

24.5 Algebras satisfying (G.4).

For any algebra A with centroid C(A), the following are equivalent:

(a) For every morphism f : Ak → An, k, n ∈ IN , Ke f is A-generated;

(b) for every morphism f : Ak → A, k ∈ IN , Ke f is A-generated;

(c) A is flat as a right C(A)-module.

Since all modules over regular rings are flat, every algebra with regular centroid

satisfies (G.4) but need not satisfy (G.1) or (G.2).

Algebras with (G.5) we call generator algebras. By 5.3 and 23.3 they can be

described in the following way:
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24.6 A as a generator in σ[A].

For an R-algebra A with centroid C(A), the following are equivalent:

(a) A is a generator algebra (generator in σ[A]);

(b) the functor HomM(A)(A,−) : σ[A]→ C(A)-Mod is faithful;

(c) A generates every (cyclic) submodule of A(IN);

(d) A(IN) is a self-generator as an M(A)-module;

(e) for every (cyclic) submodule U ⊂ A(IN), U = AHomM(A)(A,U).

If A has a unit the following is also equivalent to (a)-(e):

(f) For every M ∈ σ[A], M = AZA(M).

In addition to the above these algebras have many nice properties:

24.7 Properties of generator algebras.

Assume A is a generator algebra. Then:

(1) A is flat as a C(A)-module.

(2) For any Λ, M(A)-submodules of A(Λ) are End(AC(A))-submodules.

(3) Every ideal of A is an End(AC(A))-submodule.

(4) M(A) is a dense subalgebra of End(AC(A)), i.e., for any a1, . . . , ak ∈ A and

f ∈ End(AC(A)), there exists µ ∈M(A) with f(ai) = µai for i = 1, . . . , k.

(5) σ[M(A)A] = σ[End(AC(A))A].

Proof. (1) follows from 24.5. (2),(3) and (4) are special cases of 5.3.

(5) σ[M(A)A] consists of modules of the form V/U with some M(A)-submodules

U ⊂ V ⊂ A(Λ). By (2), these are also End(AC(A))-submodules and hence belong to

σ[End(AC(A))A]. 2

Finally we turn to algebras satisfying (G.6):

24.8 A generating M(A)-Mod.

For an R-algebra A, the following are equivalent:

(a) A is a generator in M(A)-Mod;

(b) HomM(A)(A,−) : M(A)-Mod → C(A)-Mod is a faithful functor;

(c) A is a generator in σ[A] and is finitely generated as a C(A)-module;

(d) M(A) ' End(AC(A)) and A is finitely generated and projective as a C(A)-

module.
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If A is central (i.e., R = C(A)), then (a)-(d) are also equivalent to:

(e) A is a finitely generated, projective generator in M(A)-Mod;

(f) HomM(A)(A,−) : M(A)-Mod → R-Mod is a category equivalence.

Proof. (a)⇔ (b) For this apply 5.3.

(a)⇔ (d) See the characterization of generators in full module categories in 5.5.

(a)⇔ (c) If A is a finitely generated C(A)-module, σ[A] = M(A)-Mod (23.1).

(d)⇒ (e) Since R is commutative this follows from 5.5(2).

(e)⇒ (a) is trivial.

(e)⇔ (f) is a consequence of 5.10. 2

Definiton. A central R-algebra A which is a generator in M(A)-Mod is called an

Azumaya algebra over R.

24.9 Example. Assume A is a quasi-semisimple algebra which is finitely generated

as C(A)-module and C(A) is commutative. Then A is an Azumaya algebra over C(A).

In particular, every quasi-semisimple algebra with A2 = A is an Azumaya algebra

over C(A).

Proof. As a semisimple M(A)-module, A is a generator in σ[A] and, by 23.1, σ[A] =

M(A)-Mod. A2 = A implies that C(A) is commutative (see 2.7) and the assertion

follows from 24.8. 2

Besides the characterization for Azumaya algebras considered in 24.8 we will find

additional descriptions when studying projectivity properties in the next sections.

One of the important properties is immediately obtained from 19.10:

24.10 Tensor product of Azumaya algebras.

Assume A and B are unital Azumaya algebras over R. Then A ⊗R B is also an

Azumaya algebra over R.

References. Delale [115], Wisbauer [267].
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25 Projectivity properties of A

1.Semi-projective algebras. 2.Intrinsically projective algebras. 3.Properties of intrin-

sically projective algebras. 4.Intrinsically projective unital algebras. 5.Self-projective

algebras. 6.A projective in σ[A]. 7.Self-projective unital algebras. 8.Radical of self-

projective algebras. 9.A projective inM(A)-Mod. 10.Properties of projective algebras.

11.Tensor product of projective algebras. 12.Scalar extensions of projective algebras.

13.Exercises.

We are interested in the following projectivity properties of an algebra A as an

M(A)-module:

(P.1) A is intrinsically projective as an M(A)-module (see 5.7), i.e., every diagram of

M(A)-modules with exact row,

A

↓
An

g−→ U −→ 0 ,

with n ∈ IN and U ⊂ A, can be extended commutatively by some morphism

A→ An. A is semi-projective if the above condition holds for n = 1.

(P.2) A is self-projective as an M(A)-module, i.e., every diagram of M(A)-modules

with exact row,

A

↓
A

g−→ X −→ 0 ,

can be extended commutatively by some morphism A→ A.

(P.3) A is projective in σ[A].

(P.4) A is projective in M(A)-Mod.

The implications (P.4) ⇒ (P.3) ⇒ (P.2) are trivial. Since A-projective implies

An-projective we also have (P.2)⇒ (P.1).

For associative unital A we may also ask when A is projective in A ⊗R Ao-Mod.

Such algebras are called separable R-algebras (see 28.2). Obviously they satisfy (P.4).

For algebras satisfying identities, one might also consider the case that A is pro-

jective over the corresponding universal enveloping algebra. This condition is stronger

than (P.4). For example, it is satisfied by separable alternative or Jordan algebras

over R (see Remarks 29.10).

We are going to characterize algebras with the properties given above.
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25.1 Semi-projective algebras.

For an algebra A with centroid C(A), the following are equivalent:

(a) A is semi-projective (i.e., satisfies (P.1) for n = 1);

(b) for any f ∈ C(A), C(A)f = HomM(A)(A,Af);

(c) the map J 7→ AJ from cyclic left ideals in C(A) to ideals of A is injective.

If A has a unit, then (a)-(c) are equivalent to:

(d) For every c ∈ Z(A), Z(A)c = Ac ∩ Z(A).

Proof. Apply the proof of 5.7 for n = 1. 2

25.2 Intrinsically projective algebras.

For an algebra A with centroid C(A), the following are equivalent:

(a) A is intrinsically projective (i.e., satisfies (P.1));

(b) for any finitely generated left ideal J ⊂ C(A), J = HomM(A)(A,AJ).

If A is a finitely generated M(A)-module, then (a), (b) are equivalent to:

(c) For every left ideal J ⊂ C(A), J = HomM(A)(A,AJ);

(d) the map J 7→ AJ from left ideals in C(A) to ideals of A is injective.

If A has a unit, then (a)− (c) are equivalent to:

(e) For every ideal I ⊂ Z(A), I = AI ∩ Z(A).

Proof. The assertions are special cases of 5.7. 2

25.3 Properties of intrinsically projective algebras.

Assume A is intrinsically projective and finitely generated as an M(A)-module by

a1, . . . , ak ∈ A. Then (see 2.11)

C(A) ' (a1, . . . , ak)C(A) ⊂ Ak.

(1) For every left ideal J ⊂ C(A),

(a1, . . . , ak)C(A) ∩ (Ak)J = (a1, . . . , ak)J.

(2) For every proper left ideal J ⊂ C(A), A 6= AJ .

(3) If AC(A) is flat, then (a1, . . . , ak)C(A) is a pure submodule of AkC(A).

(4) If AC(A) is a projective C(A)-module, then C(A) is isomorphic to a direct sum-

mand of AkC(A) (and hence AC(A) is a generator in Mod-C(A)).

Proof. This is a particular case of the situation described in 5.8. 2

For unital algebras the above proposition yields:
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25.4 Intrinsically projective unital algebras.

Assume A is a intrinsically projective unital algebra with centre Z(A).

(1) If AZ(A) is flat, then Z(A) is a pure submodule of AZ(A).

(2) If AZ(A) is a projective Z(A)-module, then Z(A) is a direct summand of AZ(A).

Proof. Put k = 1 and a1 = 1 in 25.3. 2

Property (P.2) defines a class of algebras of particular interest:

25.5 Self-projective algebras.

(1) For an algebra A, the following are equivalent:

(a) A is self-projective (as an M(A)-module);

(b) A is An-projective for all n ∈ IN .

(2) Let A be a self-projective algebra, U ⊂ A an ideal with U C(A) ⊂ U , and

p : A→ A/U the canonical map. Then:

(i) HomM(A)(A, p) : C(A)→ C(A/U) is surjective.

(ii) A/U is self-projective (as M(A/U)-module).

(iii) For every ideal J ⊂ C(A), A/AJ is self-projective.

(iv) For every scalar R-algebra S, A⊗R S is a self-projective algebra.

Proof. (1) This is a basic property of projectivity (see [40, 18.2]).

(2) (i) By A-projectivity of A, the map

HomM(A)(A, p) : HomM(A)(A,A)→ HomM(A)(A,A/U)

is surjective. Since U is fully invariant we identify HomM(A)(A,A/U) = C(A/U).

(ii) The factor of the self-projective M(A)-module A by a fully invariant sub-

module U is again a self-projective M(A)-module (see [40, 18.2]). Then A/U is also

self-projective as M(A/U)-module (see 2.3).

(iii) For any ideal J ⊂ C(A), AJ is fully invariant in A.

(iv) This follows from 19.1. 2

Before turning to unital algebras we consider general algebras with (P.3).

25.6 A projective in σ[A].

For an algebra A, the following are equivalent:

(a) A is projective in σ[A];

(b) A is A(Λ)-projective for any set Λ;
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(c) the functor HomM(A)(A,−) : σ[A]→ C(A)-Mod is exact.

If A is a finitely generated M(A)-module, (a)-(c) are equivalent to:

(d) A is self-projective;

(e) A is finitely presented in σ[A], and for every x ∈ X , Ax is self-projective;

(f) for every x ∈ X , Ax is self-projective with centroid C(A)x;

(g) for every m ∈M, Am is self-projective with centroid C(A)m.

If A is projective in σ[A], then for any left ideal J ⊂ C(A),

J = HomM(A)(A,AJ).

Proof. The first equivalences are obtained from [40, 18.3 and 18.4]. The rest is an

application of 19.2. 2

Now we investigate the properties regarded above for unital algebras.

25.7 Self-projective unital algebras.

For a unital algebra A, the following are equivalent:

(a) A is self-projective (as an M(A)-module);

(b) A is projective in σ[A];

(c) for any surjective algebra morphism f : A→ B, Z(A)f = Z(B),

i.e., for every ideal U ⊂ A,

Z(A/U) = Z(A)/(U ∩ Z(A));

(d) every factor algebra of A is self-projective;

(e) for any A-generated M(A)-module M and epimorphism g : M → N ,

ZA(M)g = ZA(N);

(f) for any M ∈ σ[A], a1, . . . , ak ∈ A and m1, . . . ,mk ∈ ZA(M):

if
∑k
i=1 aimi ∈ ZA(M), then there exist c1, . . . , ck ∈ Z(A) with

k∑
i=1

aimi =
k∑
i=1

cimi ;

(g) for any a ∈ A,

(a+ < {[a, x], (a, x, y), (y, x, a) |x, y ∈ A} >) ∩ Z(A) 6= ∅,

where < X > denotes the ideal generated by X ⊂ A.
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Proof. (a)⇔ (b) is shown in 25.6.

(b) ⇒ (c) In a unital algebra all ideals are fully invariant and C(A) ' Z(A). So

the assertion follows from 25.5(2).

(c)⇒ (a) Consider the diagram with exact row,

A

↓f
A

g−→ X −→ 0 .

Then (1)f ∈ Z(B) and hence there exists some e ∈ Z(A) with (e)g = 1. Now the

morphism A→ A defined by 1 7→ e, extends the diagram as desired.

(b) ⇔ (e) Using the isomorphism ZA(M) ' HomM(A)(A,M), this is shown simi-

larly to (a)⇔ (c).

(b)⇒ (f) With the elements given in (f) we have the diagram

A

↓g
Ak

f−→ ∑
Ami ,

with (b1, . . . , bk)f :=
∑
bimi for bi ∈ A and (1)g :=

∑k
i=1 aimi.

By (b), there exists a morphism h = (h1, . . . , hk) : A→ Ak with hf = g. For this

we have (1)hi =: ci ∈ Z(A) and

(1)g =
k∑
i=1

aimi = (1)hf =
k∑
i=1

cimi .

(f)⇒ (c) is obvious by putting M = A.

(c)⇔ (g) For a ∈ A and f : A→ B we have (a)f ∈ Z(Af) if and only if

Ia :=< {[x, a], (a, x, y), (y, x, a) | x, y ∈ A} > ⊂ Ke f.

If (a + Ia) ∩ Z(A) 6= ∅, then there exists an element in Z(A) which is mapped to

(a)f and so (c) holds true.

Now assume (c). For the canonical map g : A → A/Ia, (a)g ∈ Z(Ag), and there

exists a preimage b ∈ Z(A) of (a)g, which means b ∈ (a+ Ia) ∩ Z(A). 2

For the radical of the centroid of a self-projective ring we obtain:

25.8 Radical of self-projective algebras.

Let A be finitely generated and self-projective as an M(A)-module. Then:

(1) Jac (C(A)) = HomM(A)(A,RadA).
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(2) C(A/RadA) ' C(A)/Jac (C(A)).

(3) If A has a unit, then

Jac (Z(A)) = Z(A) ∩ BMc(A) and Jac (Z(A))A ⊂ BMc(A).

(4) If A has a unit and is a self-generator, then BMc(A) = Jac (Z(A)) · A.

Proof. (1) and (2) are known for endomorphism rings of finitely generated self-

projective modules (see [40, 22.2]).

(3) For a ring A with unit, Rad(A) = BMc(A). From (1) we obtain

Jac (Z(A)) = HomM(A)(A,BMc(A)) = Z(A) ∩ BMc(A).

(4) Since A is a self-generator, I = (I ∩ Z(A)) · A for any ideal I ⊂ A (see 24.3).

Hence the assertion follows from (3). 2

In the next proposition we state properties equivalent to (P.4) which are immedi-

ately obtained from general module theory:

25.9 A projective in M(A)-Mod.

For any algebra A, the following assertions are equivalent:

(a) A is projective in M(A)-Mod;

(b) A is a direct summand of M(A)(Λ), for some set Λ;

(c) the functor HomM(A)(A,−) : M(A)-Mod→ C(A)-Mod is exact.

If A has a unit e the next assertions are also equivalent to (a):

(d) The surjective map M(A)→ A, ρ 7→ ρ · e, splits in M(A)-Mod;

(e) the map HomM(A)(A,M(A))→ Z(A), f 7→ (e)f · e, is surjective.

From this we derive as a corollary:

25.10 Properties of projective algebras.

Assume the algebra A is finitely generated and projective in M(A)-Mod. Then:

(1) C(A) is a direct summand of AkC(A), for some k ∈ IN .

(2) AC(A) is a generator for the right C(A)-modules.

(3) If A has a unit, then Z(A) is a direct summand in AZ(A).

Proof. (1) There exists a splitting sequence M(A)k → A → 0 of M(A)-modules.

Applying HomM(A)(−, A) we get the splitting sequence 0→ C(A)→ Ak.

(2) This property is equivalent to (1).

(3) In case A has a unit we can chose k = 1 in (1). 2
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A remarkable property of the class of projective R-algebras is that it is closed

under tensor products:

25.11 Tensor product of projective algebras.

Assume A and B are unital R-algebras such that A and B are projective as M(A)-,

resp. M(B)-modules.

Then A⊗R B is projective as an M(A⊗R B)-module and

Z(A)⊗R Z(B) ' Z(A⊗R B).

Proof. Since the algebras considered are unital there is a surjective map

M(A)⊗RM(B)→M(A⊗R B) (cf. 15.10) and the assertions follow from 19.10. 2

Since every scalar R-algebra S is projective over M(S) = S, we can specialize the

above results to scalar extensions:

25.12 Scalar extensions of projective algebras.

Let A be a unital R-algebra which is projective as an M(A)-module. Then:

(1) For any scalar R-algebra S, A ⊗R S is projective as M(A ⊗R S)-module with

centre Z(A)⊗R S.

(2) For every ideal I ⊂ Z(A), A/AI is a projective M(A/AI)-module with centre

Z(A)/I.

25.13 Exercises.

(1) Let A be a unital associative self-projective algebra. Show that for any n ∈ IN ,

the matrix algebra A(n,n) is also self-projective (as bimodule).

(2) Let A be a unital associative left self-injective regular algebra. Prove that A

is self-projective as an M(A)-module ([258, Theorem 4]).

References. Tyukavkin [258], Wisbauer [266, 267].
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26 Ideal algebras and Azumaya rings

1.Ideal algebras with units. 2.Ideal algebras. 3.Properties of ideal algebras. 4.Azu-

maya rings. 5.Azumaya rings with unit. 6.Properties of Azumaya rings. 7.Corre-

spondence of submodules. 8.Local-global characterizations of Azumaya rings. 9.Ideal

algebras and Azumaya rings. 10.Ideal algebras over locally perfect rings. 11.Example.

12.Exercises.

In this section we investigate algebras A which are projective generators in σ[A].

To begin with we consider a slightly more general class of algebras:

Definition. An R-algebra A is said to be an ideal algebra if the map I 7→ AI

defines a bijection between the ideals in R and the two-sided ideals of A.

For unital algebras we have:

26.1 Ideal algebras with units.

For an R-algebra A with unit, the following are equivalent:

(a) A is an ideal algebra;

(b) (i) for any ideal U ⊂ A, U = (U ∩R)A, and

(ii) for any (finitely generated) ideal I ⊂ R, I = R ∩ AI;

(c) (i) for any ideal U ⊂ A, U = (U ∩R)A, and

(ii) A is a faithfully flat R-module;

(d) for every m ∈M, Am is an ideal Rm-algebra;

(e) for every x ∈ X , Ax is an ideal Rx-algebra.

Proof. (a)⇔ (b) This is clear since the inverse map of I → AI is given by U → U∩R,

for ideals I ⊂ R, U ⊂ A.

(b)⇔ (c) follows from 5.9.

(c) ⇒ (d), (e) It follows from 5.9 that in fact AS−1 is an ideal RS−1-algebra for

every multiplicative S ⊂ R.

(d), (e) ⇒ (c) For any ideal U ⊂ A, A(U ∩ R) ⊂ U . Localizing with respect to

m ∈M we obtain by 16.5 and (d),

A(U ∩R)m = Am(U ∩R)m = Am(Um ∩Rm) = Um.

From this we conclude A(U ∩R) = U .

Since all Am are faithfully flat Rm-modules, A is a faithfully flat R-module.

The same proof applies for x ∈ X . 2
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By definition, a central R-algebra A is an ideal algebra if and only if it is an

ideal module over M(A). We transfer the characterization of these modules in 5.9 to

algebras.

Notice that for a central ideal R-algebra A and m ∈M, Am is an ideal Rm-algebras

(see above) but need not be a central Rm-algebra.

26.2 Ideal algebras.

Assume A is a central R-algebra and a finitely generated M(A)-module. Then the

following are equivalent:

(a) A is an ideal algebra;

(b) (i) A is a self-generator and

(ii) intrinsically projective as an M(A)-module;

(c) (i) A is a self-generator as an M(A)-module, and

(ii) faithfully flat as an R-module.

Proof. The assertions are derived from the description of ideal modules in 5.9 and

of intrinsically projective modules in 25.2. 2

The following properties are immediate consequences of 26.2.

26.3 Properties of ideal algebras.

Assume A is a central ideal algebra. Then:

(1) Every maximal ideal U ⊂ A is of the form U = Am, for some maximal ideal

m ⊂ R.

(2) A is a quasi-simple algebra if and only if R is a field.

(3) For every maximal ideal m ⊂ R, A/mA is a quasi-simple algebra.

By slightly strengthening the projectivity or the generator condition we arrive at

the following class of algebras:

Definition. A central R-algebra A is called Azumaya ring (over R) if A is finitely

generated, self-projective and self-generator as an M(A)-module.

Notice that by definition Azumaya rings have commutative centroids. Obviously,

quasi-simple rings (and finite products of quasi-simple rings) A with commutative

centroids are Azumaya rings (over C(A)).

Again applying results from module theory we obtain:

26.4 Azumaya rings.

Assume A is a central R-algebra and is finitely generated as an M(A)-module.

Then the following are equivalent:
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(a) A is an Azumaya ring;

(b) A is a projective generator in σ[A];

(c) A is a generator in σ[A] and

(α) AI 6= A for every (maximal) ideal I ⊂ R, or

(β) A is faithfully flat as an R-module;

(d) (i) AI 6= A for every (maximal) left ideal I ⊂ R, and

(ii) for any finitely A-generated M(A)-module U , the canonical map

A⊗R HomM(A)(A,U)→ U is injective;

(e) there are canonical isomorphisms

(i) for every R-module Y , Y ' HomM(A)(A,A⊗R Y ) and

(ii) for every X ∈ σ[A], A⊗R HomM(A)(A,X) ' X;

(f) HomM(A)(A,−) : σ[A]→ R-Mod is an equivalence of categories.

Proof. (a) ⇔ (b) A finitely generated self-projetive module A is projective in σ[A]

(see 5.1). A projective self-generator A is a generator in σ[A] (see [40, 18.5]).

If A is a generator in σ[A], A is a flat R-module (see 5.3) and hence in (c), (α)

and (β) are equivalent (see [40, 12.17]).

The remaining equivalences are special cases of 5.10. 2

For unital Azumaya rings A, R = C(A) is the centre of A and we have a nice

internal characterization:

26.5 Azumaya rings with unit.

For a central R-algebra A with unit, the following are equivalent:

(a) A is an Azumaya ring;

(b) for every ideal U ⊂ A,

U = (U ∩R)A and Z(A/U) = R/U ∩R.

Proof. We take Z(A) = R. For unital algebras A, the first condition in (b) is

equivalent for A to be a self-generator (see 24.3) and the second condition is equivalent

for A to be self-projective (see 25.7). 2

26.6 Properties of Azumaya rings.

Assume A is an Azumaya ring over R. Then:

(1) A is an ideal algebra.

(2) M(A) is dense in EndR(A).

(3) For every ideal U ⊂ A, A/U is an Azumaya ring (over C(A/U)).
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(4) For every maximal ideal m ⊂ R, A/Am is a central quasi-simple R/m-algebra.

(5) If A2 = A, then, for every maximal ideal m ⊂ R, A/Am is a central simple

R/m-algebra.

(6) If A has a unit, then for any unital R-algebra B, Z(A⊗R B) ' Z(B).

Proof. (1) is obvious by 26.2, (2) is shown in 24.7.

(3) By 19.7, A/U is a self-generator and by 25.5, A/U is self-projective.

(4),(5) Notice that Am ∩ R = m by 26.2. Hence by (3), A/Am is an Azumaya

ring with centroid R/m (see 25.5).

If A2 = A, then (A/mA)2 6= 0 and A/mA is simple by 26.2.

(6) Applying the isomorphism B ' HomM(A)(A,A⊗R B) (see 26.4) the assertion

is derived from 15.12. 2

26.7 Correspondence of submodules.

Assume A is an Azumaya R-algebra and B any R-algebra.

(1) There is an isomorphism of M(B)-modules,

B → HomM(A)(A,A⊗R B), b 7→ [a 7→ a⊗ b].

(2) There is a bijection between the M(A)⊗RM(B)-submodules

U ⊂ A⊗R B and the left ideals I ⊂ B, given by

U 7→ HomM(A)(A,U), I 7→ A⊗R I.

(3) Assume A2 = A and B has a unit. Then (identifying B with 1⊗ B) the above

bijection is between the ideals U ⊂ A⊗R B and ideals I ⊂ B, given by

U 7→ U ∩B and I 7→ A⊗R I.

Proof. (1) Obviously the isomorphism in 26.4(e) is in fact an M(B)-morphism.

(2) By (1), we may identify HomM(A)(A,U) with an ideal in B. Regarding

M(A)⊗RM(B)-submodules of A⊗R B as M(A)- and M(B)-submodules, the corre-

spondence is provided by the canonical isomorphisms in 26.4(e).

Notice that in general M(A) ⊗R M(B)-submodules need not coincide with the

M(A⊗R B)-submodules (ideals) of A⊗R B.

(3) Consider an ideal U ⊂ A ⊗R B. Since B has a unit, there is an algebra

homomorphism M(A)→M(A⊗R B) and hence U is an M(A)-submodule.

From the canonical isomorphisms in 26.4(e), we obtain an M(A)-isomorphism

U ' A ⊗R HomM(A)(A,U). If we show that HomM(A)(A,U) is an M(B)-submodule

the correspondence wanted follows from (2).
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For any a ∈ A and b ∈ B, La ⊗ Lb ∈M(A⊗R B) and hence

La ⊗ Lb(A⊗R HomM(A)(A,U)) = LaA⊗R LbHomM(A)(A,U) ⊂ U.

Now A2 = A implies

A⊗R LbHomM(A)(A,U) = A⊗R HomM(A)(A,LbU) ⊂ U.

Since A generates LbU as an M(A)-module we deduce LbU ⊂ U . A similar argument

shows RbU ⊂ U , for all b ∈ B, and so U is an M(B)-module. 2

Remarks. The correspondence considered in 26.7 was originally proved for asso-

ciative central simple algebra (e.g., Jacobson [19, p. 109]). It was observed in Stewart

[246, Corollary 2.2] that it also holds for non-associative algebras. For associative

Azumaya rings with units the result is due to Azumaya [60, Proposition 2.9]. Similar

relations for strictly simple m-ary algebras over fields are given in Röhrl [229, § 5].

To formulate some characterizations of Azumaya rings recall that we denote by

M the set of all maximal ideals of R (see 17.1) and by X the set of all maximal ideals

in the ring of idempotents of R (see 18.1).

From 19.8 we obtain:

26.8 Local-global characterizations of Azumaya rings.

Let A be a central R-algebra which is finitely generated as an M(A)-module. Then

the following are equivalent:

(a) A is an Azumaya ring;

(b) A is finitely presented in σ[A] and, for every x ∈ X , Ax is an Azumaya ring;

(c) for every x ∈ X , Ax is an Azumaya ring with centroid Rx;

(d) for every m ∈M, Am is an Azumaya ring with centroid Rm.

Assume R is locally perfect. Then (a)-(d) are also equivalent to:

(e) For every m ∈M, A/mA is a central quasi-simple R/m-algebra.

Our next results show that ideal algebras are very close to Azumaya rings.

26.9 Ideal algebras and Azumaya rings.

(1) For a central R-algebra A the following are equivalent:

(a) A is an Azumaya ring;

(b) A is an ideal algebra and is a self-projective M(A)-module;

(c) A is an ideal algebra and is a generator in σ[A].
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(2) Let A be an ideal algebra over R.

If A is a projective R-module, then A is a generator in Mod-R and is an Azu-

maya ring. In particular, if R is perfect then A is an Azumaya ring.

Proof. (1) (a)⇔ (b) is clear from 26.2. (a)⇒ (c) is obvious.

(c) ⇒ (a) A is a finitely generated generator in σ[A] which is faithfully flat over

its endomorphism ring. Hence A is projective in σ[A] by 5.10.

(2) The first assertion follows from 5.9.

If R is perfect, the flat R-module A is projective. 2

26.10 Ideal algebras over locally perfect rings.

Assume A is a central R-algebra and R is locally perfect. Then the following are

equivalent:

(a) A is an Azumaya ring;

(b) A is finitely presented in σ[A] and A is an ideal algebra;

(c) A is finitely presented in σ[A] and, for every x ∈ X , Ax is an ideal algebra;

(d) for every x ∈ X , Ax is an ideal algebra with centroid Rx;

(e) for every m ∈M, Am is an ideal algebra with centroid Rm.

Proof. (a) ⇒ (b) Follows from 26.6 and the fact that Azumaya algebras are finitely

generated and projective in σ[A].

(b)⇒ (c) Apply 5.9(2).

Recalling 26.9(2), the remaining assertions are derived from 26.8. 2

26.11 Example.

Consider the central R-algebra B = EndR(R(IN)), the ideal

I = {f ∈ B | Im f ⊂ Rk for some k ∈ IN},

and put A = B/I. Then (cf. [99]):

(1) A is an R-central algebra.

(2) If R is a field, A is a central simple R-algebra.

(3) For any m ∈M, A/mA is a central simple R/m-algebra.

(4) A is an Azumaya ring if and only if R is artinian.

(5) Let R be a non-artinian ring with the maximal ideals finitely generated. Then

for every m ∈ M, A/mA is a central simple R/m-algebra but A is not an

Azumaya ring.
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(6) If R is a field, then I is the only ideal in B and B is a self-projective M(B)-

module but is not an Azumaya ring.

Remarks. The investigation of (unital associative) ideal algebras was initiated in

Ranga Rao [224].

The study of associative unital Azumaya rings A by properties of bimodules related

to A already occurs in Artin [57]. His incorrect Proposition 2.3 was the first attempt

to characterize these rings. The investigation was continued in Delale [115]. For

associative rings, 26.5 corresponds to [115, Théorème 5.1]. Delale calls these rings

anneaux affines sur le centre or algèbres affines. In Azumaya [60], the same rings

are studied under the name separable rings, and in Burkholder [99] they are called

Azumaya rings.

Here we use the name Azumaya rings also more generally for non-associative rings

of this type. They were already considered in [267].

The investigations in Burkholder [101] are concerned with the question when prod-

ucts of associative Azumaya rings or simple rings are Azumaya rings. In particular it

is pointed out that an infinite product of isomorphic copies of a simple ring need not

be an Azumaya ring whereas any product of division rings is an Azumaya ring.

26.12 Exercises.

(1) Let A be a central R-algebra which is finitely generated as an M(A)-module.

Assume R is a semihereditary ring. Prove:

(i) If A is a self-generator, then A is a semi-projective M(A)-module.

(ii) If A is flat R-module, then A is intrinsically projective as M(A)-module.

(iii) If A is a generator in σ[A], then A is an Azumaya ring.

Hint: 5.6.

(2) Assume A is an associative unital Azumaya ring over R. Show that every

module in σ[A] is (A,R)-projective as a left A-module.

References: Artin [57], Azumaya [60], Burkholder [99, 100, 101], Delale [115],

Jacobson [19], Pierce [32], Ranga Rao [224], Röhrl [229], Stewart [246], Wisbauer

[267].
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27 Cogenerator and injectivity properties of A

1.Algebras satisfying (C.1). 2.Self-cogenerator algebras. 3.Algebras satisfying (C.3).

4.Semi-injective algebras. 5.Intrinsically injective algebras. 6.Self-injective algebras.

7.Cogenerator algebras. 8.Cogenerator algebras with unit. 9.Azumaya rings as co-

generators. 10.Azumaya algebras as cogenerators. 11.Algebras with Morita dualities.

12.Quasi-Frobenius algebras. 13.Projective Quasi-Frobenius algebras. 14.Exercises.

Dual to generator properties we consider cogenerator conditons on an algebra A.

(C.1) For every proper ideal U ⊂ A, HomM(A)(A/U,A) 6= 0.

(C.2) For every ideal U ⊂ A, A/U is cogenerated by A.

(C.3) For every f : Ak → An in σ[A], k, n,∈ IN , Coke f is cogenerated by A.

(C.4) A is a weak cogenerator in σ[A].

(C.5) A is a cogenerator in σ[A].

We always have (C.5) ⇒ (C.4), (C.5) ⇒ (C.2) ⇒ (C.1) and (C.5) ⇒ (C.3). If A

is a finitely generated M(A)-module, then (C.4)⇒ (C.3).

27.1 Algebras satisfying (C.1).

Let A be an algebra.

(1) Assume A satisfies (C.1). Then A is

quasi-simple if and only if C(A) is a division algebra;

a weak product of quasi-simple algebras if and only if C(A) is regular;

a finite product of quasi-simple algebras if and only if C(A) is left semisimple.

(2) If A is finitely generated as an M(A)-module, the following are equivalent:

(a) A satisfies (C.1);

(b) for every maximal ideal I ⊂ A, AnC(A)(I) 6= 0.

Proof. (1) If A is quasi-simple, C(A) is a divison algebra. If A is a weak (finite)

product of quasi-simple algebras, then C(A) is regular (left semisimple) by 23.9.

For any ideal U ⊂ A, consider a non-zero f : A/U → A and the projection

p : A→ A/U . Then pf ∈ C(A).

If C(A) is a division algebra, then pf is invertible and U ⊂ Ke pf = 0.

Assume C(A) is regular. Let U �A. Without restriction we may assume that f is

injective. Then Ke pf = U is a direct summand (see 7.6), hence U = A. This implies

that A is a semisimple M(A)-module.

If C(A) is left semisimple, there are only finite families of orthogonal idempotents

in C(A) and A is a finite product of quasi-simple algebras.

(2) This is obvious by the fact that every proper ideal of A is contained in a

maximal ideal of A. 2
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An algebra A which satisfies (C.2) is called a self-cogenerator algebra. From Mod-

ule Theory and 27.1 we obtain:

27.2 Self-cogenerator algebras.

Let A be a self-cogenerator algebra. Then:

(1) A cogenerates every simple module in σ[A].

(2) For every a ∈ A and f ∈ End(AC(A)), there exists µ ∈M(A) with f(a) = µa.

(3) If C(A) is regular, then A is a weak product of quasi-simple algebras.

For algebras satisfying (C.3) we transfer from [40, 15.9]:

27.3 Algebras satisfying (C.3).

For any algebra A with centroid C(A), the following are equivalent:

(a) For every morphism f : Ak → An, k, n ∈ IN , Coke f is cogenerated by A;

(b) for every morphism f : A→ An, n ∈ IN , Coke f is cogenerated by A;

(c) A is FP-injective as a right C(A)-module.

Algebras with (C.5) we call cogenerator algebras. As we will see, such algebras are

self-injective provided they have commutative centroid. Hence we shall characterize

them after some remarks about injectivity properties of A.

Consider the following properties of A as M(A)-module:

(I.1) A is intrinsically injective as an M(A)-module (see 5.7), i.e., every diagram of

M(A)-modules with exact row,

0 −→ U −→ An

↓
A ,

with n ∈ IN and U a factor module of A, can be extended commutatively by

some An → A. A is called semi-injective if the above condition holds for n = 1.

(I.2) A is weakly A-injective.

(I.3) A is self-injective (i.e., injective in σ[A]).

The implication (I.3) ⇒ (I.2) is obvious. If A is finitely generated as an M(A)-

module, (I.2)⇒ (I.1) (then U in (I.1) is finitely generated).

We are going to characterize algebras with the properties given above. From 6.12

we obtain:
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27.4 Semi-injective algebras.

For a central R-algebra A, the following are equivalent:

(a) A is semi-injective;

(b) fR = HomM(A)(A/Ke f,A), for every f ∈ R (= C(A));

(c) the map I 7→ Ke I from cyclic right ideals in R to ideal of A is injective.

If A has a unit, then (a)-(c) are equivalent to:

(d) For every c ∈ R, cR = AnRAnA(cR).

Next we consider algebras with (I.1):

27.5 Intrinsically injective algebras.

For a central R-algebra A, the following are equivalent:

(a) A is intrinsically injective;

(b) I = HomM(A)(A/Ke I,A) for every finitely generated right ideal I ⊂ R;

(c) the map I 7→ Ke I from finitely generated right ideals in R to ideals of A is

injective.

If A has a unit, (a)-(c) are equivalent to:

(d) For every finitely generated ideal I ∈ R, I = AnRAnA(I).

Algebras with (C.3) are called self-injective algebras. They will be of great impor-

tance in localization theory. Here we list some elementary facts.

27.6 Self-injective algebras.

For a central R-algebra A, the following are equivalent:

(a) A is a self-injective algebra;

(b) A is injective in σ[A];

(c) the functor HomM(A)(−, A) : σ[A]→ Mod-R is exact.

If A has a unit, (a)-(c) are equivalent to:

(d) For every ideal U ⊂ A and f ∈ HomM(A)(U,A), there exists a ∈ R such that

(u)f = ua for all u ∈ U .

Proof. All these equivalences are clear from Module Theory. The characterization in

(d) corresponds to Baer’s Lemma for left modules over associative unital rings. 2

Remark. For an associative commutative algebra A with unit, the following are

equivalent:

(a) A is a cogenerator in A-Mod;



220 Chapter 7. Modules for algebras

(b) A is an injective cogenerator in A-Mod;

(c) A is finitely cogenerated and injective in A-Mod.

For non-commutative A, (b) and (c) are still equivalent (e.g., [40, 48.12]) but (a)

and (b) are not.

Replacing A-Mod by σ[A] we will see that the above equivalences remain true for

any algebra with unit. More generally we obtain as an application of 6.7:

27.7 Cogenerator algebras.

For a central R-algebra A, the following are equivalent:

(a) A is a cogenerator in σ[A];

(b) A is self-injective and self-cogenerator as M(A)-module;

(c) A =
⊕

Λ Êλ, where the Eλ form a (minimal) representing set of the simple

modules in σ[A] and Êλ is the injective hull of Eλ in σ[A];

(d) A =
⊕

ΛAλ, where the Aλ are R-algebras which are indecomposable self-injective

self-cogenerators as bimodules.

If A has a unit the decomposition above is finite and we get:

27.8 Cogenerator algebras with unit.

For a central R-algebra A with unit, the following are equivalent:

(a) A is a cogenerator in σ[A];

(b) A = Ê1⊕· · ·⊕ Êk, where the Ei are (up to isomorphism) all the simple modules

in σ[A], and Êi is the injective hull of Ei in σ[A];

(c) A = A1 ⊕ · · · ⊕Ak, where the algebras Ai are indecomposable self-injective self-

cogenerators as bimodules;

(d) R is a semiperfect ring and for every maximal ideal m ⊂ R, Am = A⊗R Rm is

a self-injective self-cogenerator algebra.

Under these conditions, AR cogenerates all simple R-modules and AR is FP-injective.

Proof. From 27.7 we get the equivalence of (a) to (c).

(b)⇒ (d) R is the endomorphism ring of a finitely cogenerated self-injective mod-

ule and hence semiperfect. By [40, 47.10], AR cogenerates all simple R-modules.

Hence Am 6= 0 for every maximal ideal m ⊂ R, and Ai ' A⊗Rmi , for maximal ideals

mi ⊂ R, by 6.7.

(d)⇒ (c) Since R is semiperfect we have R = Rm1 ⊕ · · · ⊕Rmk for maximal ideals

mi ⊂ R. Therefore A = (A ⊗R Rm1) ⊕ · · · ⊕ (A ⊗R Rmk), where the Ai = A ⊗R Rmi

are self-injective self-cogenerators by assumption.

Since A is a cogenerator in σ[A], the R-module AR is FP-injective (by 27.3). 2
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Remark. For a local-global characterization of A being a cogenerator in σ[A]

(as in (d)) the condition on R to be semiperfect is necessary. For example, for a

commutative regular ring R, the local rings Rm are in fact fields for every maximal

ideal m ⊂ R and R need not be a cogenerator in R-Mod.

Recall that a self-projective self-generator central R-algebra A is an Azumaya ring,

and it is an Azumaya algebra, provided it is a finitely generated module over R. From

6.8 we derive:

27.9 Azumaya rings as cogenerators.

For a self-projective central R-algebra A with unit, the following are equivalent:

(a) A is a cogenerator in σ[A];

(b) A is self-injective, self-generator and finitely cogenerated;

(c) every module which cogenerates A is a generator in σ[A];

(d) A is an Azumaya ring and R is a PF-ring.

For module finite algebras the above theorem specializes to:

27.10 Azumaya algebras as cogenerators.

For a central R-algebra A with unit, the following are equivalent:

(a) A is a self-projective cogenerator in σ[A] and AR is finitely generated;

(b) A is a self-projective cogenerator in σ[A] and σ[A] = M(A)-Mod;

(c) M(A) is left injective and finitely cogenerated (= left PF-ring);

(d) A is an Azumaya algebra and R is a PF-ring.

Proof. (a)⇒ (b) For AR finitely generated, σ[A] = M(A)-Mod.

(b)⇒ (a) Since M(A) ∈ σ[A] we have an exact sequence

0→M(A)→ Ak, k ∈ IN.

Exactness of HomM(A)(−, A) yields the exact sequence Rk → AR → 0. Hence AR is a

finitely generated R-module.

(b) ⇒ (c) According to 27.9 and 27.7, A is an injective generator in M(A)-Mod

and hence M(A) is a direct summand of Ak for some k ∈ IN .

(c) ⇒ (d) Since M(A) is cogenerated by A, condition (c) implies that M(A) is

a direct summand of a finite direct sum of copies of A. Hence A is a generator in

σ[A] = M(A)-Mod, i.e., an Azumaya algebra (24.8). A being a cogenerator in σ[A] we

know from 27.9 that A is self-injective and finitely cogenerated and R is a PF-ring.

(d) ⇒ (b) By 24.8, Hom(A,−) : σ[A] → R-Mod is an equivalence. Since R =

EndM(A)(A) is a PF-ring the module M(A)A is also a self-cogenerator. 2
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In view of 27.7, the description of Morita dualities in [40, 47.12] has the form:

27.11 Algebras with Morita dualities.

For a central R-algebra A, the following are equivalent:

(a) A is linearly compact as an M(A)-module and a cogenerator in σ[A];

(b) A is a cogenerator in σ[A] and AR is injective in R-Mod;

(c) HomM(A)(−, A) defines a duality between the submodules of finitely A-generated

M(A)-modules and the submodules of finitely generated R-modules;

(d) AR is an injective cogenerator in R-Mod with essential socle, R is linearly com-

pact, and M(A) is a dense subring of End(AR);

(e) all factor modules of M(A)A and RR are A-reflexive.

Combined with finiteness conditions our results yield the description of a two-sided

version of Quasi-Frobenius rings. For this we transfer from [40, 48.14.II]:

27.12 Quasi-Frobenius algebras.

For a central R-algebra A, the following statements are equivalent:

(a) A is a noetherian injective generator in σ[A];

(b) A is an artinian projective cogenerator in σ[A];

(c) A is a noetherian projective cogenerator in σ[A];

(d) A is an injective generator in σ[A] and R is artinian.

One interesting aspect of the above characterizations is the interplay between

projectivity and injectivity properties. In case we already know that A is projective

we obtain from [40, 48.14]:

27.13 Projective Quasi-Frobenius algebras.

For a self-projective central R-algebra A with unit, the following are equivalent:

(a) A is a noetherian cogenerator in σ[A];

(b) A is noetherian, self-injective and self-generator as M(A)-module;

(c) A is a cogenerator in σ[A] and R is artinian;

(d) A is artinian and noetherian and the A-injective hulls of simple modules are

projective in σ[A];

(e) every injective module is projective in σ[A];

(f) A is an Azumaya ring and every projective module is injective in σ[A];



27. Cogenerator and injectivity properties of A 223

(g) A(IN) is an injective cogenerator in σ[A].

Remark: It follows from [162, Proposition 3] that for self-injectiveA the ascending

(descending) chain condition on essential ideals already implies that A is noetherian

(artinian) as bimodule.

The algebra A in 27.12 and 27.13 has finite length as an M(A)-module and hence

HomM(A)(−, A) defines a duality between the finitely generated modules in σ[A] and

the finitely generated modules in R-Mod (see [40, 47.13]).

27.14 Exercises.

(1) Let A be an algebra which is coherent (or noetherian) in σ[A]. Assume that

for any finitely generated ideal U ⊂ A, every f ∈ HomM(A)(U,A) extends to A.

Prove that A is weakly A-injective.

(2) Let A be central R-algebra with unit. Prove:

(i) If A is weakly A-injective as an M(A)-module, then

(α) for any finitely generated ideals U, V ⊂ A,

AnR(U ∩ V ) = AnR(U) + AnR(V );

(β) for any finitely generated ideal I ⊂ R, I = AnRAnA(I).

(ii) Assume A is a self-generator and coherent (noetherian) in σ[A]. If A satisfies (α)

and (β) in (i), then A is weakly A-injective.

(3) Let A be an intrinsically injective central R-algebra. Prove that R is noetherian

if and only if A satisfies dcc on annihilators of finitely generated ideals of R.

References. Menini-Orsatti [197], Hauger-Zimmermann [154], Wisbauer [277].
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Separable and biregular algebras

28 Associative separable algebras

1.Associative Azumaya algebras. 2.Associative separable algebras. 3.Tensor product

of separable algebras. 4.Transitivity of separability. 5.Properties. 6.Separable and

relative semisimple algebras. 7.Separable and Azumaya algebras. 8.Characterizations

of separable algebras. 9.Local-global characterization. 10.Simple extensions. 11.Sep-

arable field extensions. 12.Separable algebras over fields. 13.Examples of separable

algebras. 14.Exercises.

In this section A will always denote an associative R-algebra with unit.

A is a left module over Ae = A⊗RAo and there is a surjective Ae-module morphism

(see 23.6)

µ : Ae → A, a⊗ b 7→ ab.

Recall that an Azumaya algebra (over R) is a central R-algebra A which is a

generator in M(A)-Mod (see 24.8).

Assume A is an Azumaya algebra. It is obvious from 24.8 that the opposite algebra

Ao is also an Azumaya algebra over R and by 24.10, Ae is an Azumaya algebra over

R. We can use this to prove:

28.1 Associative Azumaya algebras.

For a central R-algebra A the following are equivalent:

(a) A is an Azumaya algebra;

(b) Ae ' EndR(A) and A is a finitely generated, projective R-module;

(c) A is a generator in Ae-Mod;

(d) A is a projective generator in Ae-Mod;

(e) A is projective in Ae-Mod;

(f) A is a finitely generated R-module and one of the following holds:

(i) for every x ∈ X , Ax is an Azumaya algebra;

(ii) for every m ∈M, Am is an Azumaya algebra;

(iii) for every m ∈M, A/mA is an Azumaya algebra;

(iv) Ae is an ideal algebra.

224
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Proof. (a) ⇒ (b) The properties of A as an R-module follow from 24.8. It remains

to show that the map

ϕ : Ae →M(A) ' EndR(A), a⊗ b 7→ LaRb,

is injective. Ke ϕ is an ideal in Ae. Since by the preceding remark Ae is an Azumaya

algebra, we have Ke ϕ = I ·Ae for some ideal I ∈ R (see 24.3). This however implies

I · Ae · A = IA = 0, hence I = 0 and Ke ϕ = 0.

(b)⇔ (c) is another application of 5.5.

(c)⇔ (d) can be seen with the same proof as (d)⇒ (e) in 24.8.

(d)⇒ (e) is trivial.

(e)⇒ (d) will be shown in 28.7.

(a) ⇔ (f), (i), (ii) follows from the characterization of Azumaya rings 26.8 since

module finite Azumaya rings are Azumaya algebras.

(a)⇔ (f), (iii) can be derived from 19.3.

(a) ⇒ (f), (iv) By 19.10, the tensor product of Azumaya algebras is again an

Azumaya algebra and in particular an ideal algebra.

(f), (iv)⇒ (iii) Assume Ae is an ideal algebra. Then for every m ∈ M, Ae/mAe

is a semisimple algebra by 26.3 and hence A/mA is a separable R/m-algebra. 2

Definition. The (associative unital) R-algebra A is called separable over R, or

R-separable, if A is projective as an Ae-module.

Notice that this definition is only for unital algebras. A notion of separability for

associative algebras without units is considered in Taylor [257].

It follows from the surjective homomorphism of R-algebras (see 2.5),

Ae →M(A), a⊗ b 7→ LaRb,

that any separable R-algebra is projective in M(A)-Mod.

For the characterization of these algebras we have:

28.2 Associative separable algebras.

For the R-algebra A, the following are equivalent:

(a) A is a separable R-algebra;

(b) the map µ : Ae → A splits (in Ae-Mod);

(c) the functor HomAe(A,−) : Ae-Mod → Z(A)-Mod is exact;

(d) the map µ′ : HomAe(A,A
e)→ EndAe(A), f 7→ fµ, is surjective;
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(e) there exists e ∈ Ae with µ(e) = 1 and (a⊗ 1)e = (1⊗ a)e for all a ∈ A.

Such an e is called a separability idempotent for A.

Proof. The equivalence of (a), (b) and (c) follows from general module theory.

(b)⇒ (d) Apply HomAe(A,−) to the sequence in (b).

(d)⇒ (a) Since µ′ is surjective there exists an f : A→ Ae with fµ = idA. Hence

the sequence in (b) splits.

(b) ⇒ (e) The splitting of µ is established by an Ae-morphism ε : A → Ae with

εµ = idA. Then the element e := (1)ε has the desired properties.

On the other hand, assume some e ∈ Ae has the given properties. Then the map

ε : A→ Ae, a 7→ (a⊗ 1) · e, defines an Ae-morphism with εµ = idA. 2

Next we observe that the class of associative separable algebras is closed under

tensor products:

28.3 Tensor product of separable algebras.

Let S and T denote two scalar R-algebras.

(1) Assume A and B are separable algebras over S and T , respectively. Then A⊗RB
is a separable algebra over S ⊗R T and

Z(A⊗R B) ' Z(A)⊗R Z(B).

(2) Assume A is a separable R-algebra. Then A⊗R T is a separable T -algebra and

Z(A⊗R T ) ' Z(A)⊗R T.

Proof. (1) Apply 19.10. (2) is a special case of (1) (for B = T ). 2

28.4 Transitivity of separability.

Let S be a scalar R-algebra and A an S-algebra. Then A is also an R-algebra and:

(1) If A is separable over R, then A is separable over S.

(2) If A is S-separable and S is R-separable, then A is R-separable.

(3) Let A be separable over R and assume A is finitely generated, projective and

faithful as an S-module. Then S is separable over R.

Proof. (1) This follows from the surjective map A⊗R Ao → A⊗S Ao.
(2) Under the given conditions, for every A⊗R Ao-module M we have an isomor-

phism

HomA⊗RAo(A,M) ' HomA⊗SAo(A,HomS⊗RS(S,M)),

both sides being isomorphic to the centre of M (see 23.2).
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If A and S are separable as demanded, the two Hom-functors on the right side are

exact. Hence HomA⊗RAo(A,−) is also exact and A is R-separable.

(3) By assumption, A is a direct summand of A ⊗R Ao. Since A is S-projective,

A⊗R Ao is S ⊗R S-projective and so is A.

The map S → A, s 7→ s · 1, is injective and it follows from 17.5 that S is a direct

summand of A. Hence S is also S ⊗R S-projective, i.e., S is R-separable. 2

Although by definition separability is a two-sided property, our next results show

that it also has a strong influence on the one-sided structure of A:

28.5 Properties. Let A be a separable R-algebra. Then:

(1) A is left (A,R)-semisimple.

(2) For any maximal ideal I ⊂ A, I = mA for some maximal ideal

m ⊂ Z(A).

(3) If A is projective as an R-module, then A is finitely generated as an R-module.

Proof. (1) By 15.6, there is an isomorphism, functorial in M , N ∈ A-Mod,

HomAe(A,HomR(M,N))→ HomA(M,N).

By assumption, HomAe(A,−) is an exact functor. Since HomR(M,−) is exact on R-

splitting sequences, we conclude that HomA(M,−) is exact on (A,R)-exact sequences.

So every A-module M is (A,R)-projective and A is left (A,R)-semisimple.

(2) Consider the ideal m = I ∩Z(A) in Z(A). Since A is a separable Z(A)-algebra

(see 28.4), A/I is a simple algebra with centre Z(A)/m (see 25.7). This implies that

Z(A)/m is a field.

Since A/mA is a central separable Z(A)/m-algebra (see 28.3), it is left semisimple

(by (3)) with simple centre, i.e., A/mA is a simple algebra. Obviously mA ⊂ I and

maximality of mA implies I = mA.

(3) Assume A is projective as an R-module. Then Ao is projective as an R-module

and there are

{fλ : Ao → R}Λ and {gλ ∈ Ao}Λ with b =
∑

Λ(b)fλgλ for all b ∈ Ao,

where only a finite number of the (b)fλ’s are not zero (dual basis). In obvious notation

we have morphisms

Ao
f−→ R(Λ) g−→ Ao ,

b 7→ ((b)fλ)Λ 7→ ∑
Λ(b)fλgλ ,



228 Chapter 8. Separable and biregular algebras

with fg = idAo . Tensoring with A we obtain the maps

A⊗R Ao
id⊗f−→ A⊗R R(Λ) id⊗g−→ A⊗ Ao ,

a⊗ b 7→ (a⊗ (b)fλ)Λ 7→ ∑
a⊗ (b)fλgλ ,

and (id ⊗ f)(id ⊗ g) = idA⊗RAo . Let e =
∑
xi ⊗ yi denote a separability idempotent

of A (see 28.2). For any a ∈ A we have, with the above maps,

(α) (a⊗ 1)e =
∑
i≤k

axi ⊗
∑
Λ

(yi)fλgλ,

(β) (1⊗ a)e =
∑
i≤k

xi ⊗
∑
Λ

(yia)fλgλ.

By the choice of e ∈ Ae, (α) and (β) describe the same element. From (α) we see

that the subset Λ′ ⊂ Λ, for which the fλ occuring are nonzero, is finite. Applying the

map µ to the expression in (β), we obtain

a = µ((1⊗ a)e) =
∑
i≤k

∑
Λ′
xi((yia)fλ)gλ =

∑
i≤k

∑
Λ′

(yia)fλ · xigλ .

Hence the finite set {xigλ | i ≤ k, λ ∈ Λ′} generates Ao (and so A) as an R-module. 2

There is another important connection between separable and relative semisimple

algebras:

28.6 Separable and relative semisimple algebras.

Let S be a scalar R-algebra. Assume A is a separable R-algebra and B is a left

(B, S)-semisimple S-algebra.

Then A⊗R B is a left (A⊗R B, S)-semisimple algebra.

Proof. We have to show that every left A⊗RB-module M is (A⊗RB, S)-projective,

i.e., the following canonical map splits as an A⊗R B-morphism,

(A⊗R B)⊗S M →M, (a⊗ b)⊗m 7→ (a⊗ b)m.

By assumption, the canonical map B ⊗S M →M is split by some B-homomorphism

ε : M → B ⊗S M .

Choose a separability idempotent of A, e =
∑
xi ⊗ yi ∈ Ae (see 28.2). It is easily

verified that the map A⊗RM →M is split by

δ : M −→ A⊗RM, m 7→
∑

xi ⊗ yim.

By the way, this yields another proof for 28.5(1). Now the composition

M
δ−→ A⊗RM

id⊗ε−→ (A⊗R B)⊗S M, m 7→
∑

xi ⊗ ε(yim),

is the A⊗R B-morphism wanted. 2
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Now we show that associative central separable algebras are generators in Ae-Mod,

i.e., are Azumaya algebras. This completes the proof of 28.1.

28.7 Separable and Azumaya algebras.

For a central R-algebra A the following are equivalent:

(a) A is a separable R-algebra;

(b) A⊗R Ao is a separable R-algebra;

(c) A⊗R Ao is left (A⊗R Ao, R)-semisimple;

(d) A is finitely generated as R-module and A⊗R Ao is left (A⊗R Ao, R)-regular;

(e) M(A) is a separable R-algebra;

(f) A is finitely generated as R-module and M(A) is left (M(A), R)-semisimple;

(g) A is an Azumaya algebra.

Proof. (a)⇒ (b) is shown in 28.3; (b)⇒ (c) follows from 28.5.

(c)⇒ (a) is obvious since the canonical map A⊗R Ao → A is R-split.

(c)⇒ (d) is clear by (b)⇒ (g) (below).

(d) ⇒ (a) Since A is a finitely generated R-module, A is finitely presented in

Ae-Mod and the assertion is clear by 20.11.

(b) ⇒ (g) Since A is Ae-projective, the trace ideal of A, Tr(A,Ae) ⊂ Ae, has the

property Tr(A,Ae) · A = A (e.g., [40, 18.7]).

Assume Tr(A,Ae) 6= Ae. Then the trace ideal is contained in a maximal ideal of

Ae which is of the form m · Ae, for some maximal ideal m ⊂ R, i.e.,

Tr(A,Ae) ⊂ m · Ae and hence m · A = m · Ae · A = A.

This is not possible by 25.2, (e). Hence Tr(A,Ae) = Ae and A is a generator in

Ae-Mod (and also in M(A)-Mod).

In particular, A is finitely generated and projective as an R-module.

(g)⇒ (e) Since A is finitely generated and projective as an R-module,

M(A) ' EndR(A) is R-separable (see examples 28.13).

(e) ⇒ (g) Assume M(A) is R-separable. Since the map M(A) → A splits as

R-morphism, A is M(A)-projective by 28.5.

Since R is also the centre of M(A), we conclude from (a) ⇒ (g) that M(A) and

A are finitely generated and projective R-modules. So for any maximal ideal m ∈ R,

M(A) 6= mM(A) and A 6= mA. By this the left semisimple algebras A/mA are

generators for the left modules over M(A/mA) 'M(A)⊗R R/m.

By 19.9, this implies that A is a generator in M(A)-Mod.
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(e)⇒ (f) is clear by (e)⇒ (g) and 28.5.

(f) ⇒ (a) Assume M(A) is left (M(A), R)-semisimple. Since the canonical map

M(A)→ A is R-split, A is a projective M(A)-module and the assertion follows from

20.7. 2

The following theorem shows that the study of separable algebras can be split in

two parts: (central) Azumaya algebras and commutative separable algebras.

28.8 Characterizations of separable algebras.

For the R-algebra A with unit and centre Z(A), the following are equivalent:

(a) A is a separable R-algebra;

(b) A⊗R Ao is a separable R-algebra;

(c) A⊗R Ao is left (A⊗R Ao, R)-semisimple;

(d) M(A) is a separable R-algebra;

(e) A is an Azumaya algebra over Z(A) and Z(A) is separable over R.

If A is finitely generated as an R-module, then (a)-(e) are equivalent to:

(f) A⊗R Ao is left (A⊗R Ao, R)-regular;

(g) M(A) is left (M(A), R)-semisimple and Z(A) is separable over R.

Proof. All the statements are readily obtained from 28.4 and (the proof of) 28.7.

The implication (a)⇒ (c) also follows from 28.6. 2

If A is finitely generated as an R-algebra or as an R-module we also have nice

local-global characterizations for A to be separable:

28.9 Local-global characterization of separable algebras.

Let A be finitely generated as an R-algebra. The following are equivalent:

(a) A is a separable R-algebra;

(b) for every x ∈ X , Ax is a separable Rx-algebra;

(c) for every m ∈M, Am is a separable Rm-algebra.

(d) A⊗R S is a separable S-algebra for some scalar R-algebra S which is faithfully

flat as R-module.

If A is a finitely generated R-module, then (a)-(d) are equivalent to:

(e) for every m ∈M, A/mA is a separable R/m-algebra.
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Proof. (a)⇔ (b)⇔ (c) Since A is finitely generated as an R-algebra, A is a finitely

presented Ae-module by 23.6. Now apply 19.4.

(a)⇔ (d) follows from 19.5(4).

(a)⇒ (e) is a consequence of 28.3.

(e)⇒ (a) Assume A is a finitely generated R-module. The map µ : Ae → A splits

as an R-morphism and Ae is finitely generated as an R-module. Hence the statement

can be derived from 19.4(d). 2

There is also a notion of separability in field theory and we want to establish the

relationship with our considerations.

Recall that a non-constant polynomial in K[X] is called separable if its irreducible

factors have no multiple roots. A field extension L : K is called separable if for every

a ∈ L, the minimal polynomial of a over K is a separable polynomial.

28.10 Simple extensions.

Let L : K be a simple algebraic field extension, i.e., L = K(a) with a ∈ L algebraic

over K, and denote by f ∈ K[X] the minimal polynomial of a. For any field extension

Q : K assume

f = pn1
1 · · · p

nk
k ∈ Q[X],

with the pi distinct irreducible polynomials in Q[X] and ni ∈ IN . Then

L⊗K Q '
k∏
i=1

Q[X]/pnii Q[X].

Proof. From L ' K[X]/fK[X] we obtain by applying Q⊗K −,

Q⊗K L ' Q⊗K K[X]/fK[X] ' Q[X]/fQ[X] '
k∏
i=1

Q[X]/pnii Q[X],

with the last isomorphism given by the Chinese Remainder Theorem. 2

We see from 28.5 that separable algebras over a field are finite dimensional. Hence

we restrict the proof of the next observation to finite field extensions (the first three

conditions are also equivalent in the infinite case).

28.11 Separable field extensions.

For a finite dimensional field extension L : K, the following are equivalent:

(a) L : K is a separable field extension;

(b) for any (finite) field extension Q : K, Nil(L⊗K Q) = 0;

(c) Nil(L⊗K L) = 0;
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(d) L is separable as a K-algebra.

Proof. (a)⇒ (b) Since any finite separable field extension is simple we may assume

L = K(a) for some a ∈ L. For the separable minimal polynomial f ∈ K[X] of a, we

have f = p1 · · · pk ∈ Q[X], with the pi distinct irreducible polynomials in Q[X]. By

28.10, we have the isomorphism

L⊗K Q '
k∏
i=1

Q[X]/piQ[X],

where the Q[X]/piQ[X] are fields and hence L⊗K Q contains no nilpotent elements.

(b)⇒ (c) is trivial.

(c) ⇒ (d) It is well known that finite dimensional (commutative) algebras with

zero nil radical are semisimple. Over a semisimple algebra every module is projective.

In particular, L is L⊗K L-projective, i.e., L is a separable K-algebra.

(d) ⇒ (a) Assume L : K is not a separable field extension. Then K has charac-

teristic p 6= 0.

Let f ∈ K[X] be the minimal polynomial of some a ∈ L which is not separable

over K and denote by Q the splitting field of f . Then there exists a polynomial

h(X) =
r∑
i=1

biX
i with bi ∈ Q, br 6= 0, and f(X) = h(X)p.

Obviously r is smaller than the degree of f and hence the elements 1, a, . . . , ar in

L are linearly independent over K. Then also the elements 1⊗ 1, a⊗ 1, . . . , ar ⊗ 1 in

L⊗K Q are linearly independent over Q. In particular, 0 6= c :=
∑r
j=1 a

j ⊗ bj but

cp = (
r∑
j=1

aj ⊗ bj)p =
r∑
j=1

ajp ⊗ bpj =
r∑
j=1

(bja
j)p ⊗ 1 = h(a)p ⊗ 1 = 0.

So there is a non-zero nilpotent element in L ⊗K Q. This contradicts the fact that

the separable Q-algebra L⊗K Q is semisimple by 28.5. 2

We are now able to characterize separable algebras over fields in the following way:

28.12 Separable algebras over fields.

For a finite dimensional algebra A over a field K, the following are equivalent:

(a) A is a separable K-algebra;

(b) for any (finite) field extension L : K, Nil(A⊗K L) = 0;

(c) for any (finite) field extension L : K, A⊗K L is left semisimple;

(d) Nil(A⊗K Ao) = 0;
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(e) Nil(A⊗K Z(A)) = 0;

(f) A is left semisimple and Z(A) is a separable K-algebra;

(g) A⊗K Z(A) is a separable Z(A)-algebra.

Proof. (a)⇒ (b) For any field extension L : K, A⊗K L is a separable L-algebra and

hence is left semisimple by 28.5.

(b)⇔ (c) A finite dimensional associative algebra is left semisimple if and only if

it has zero nil (or Jacobson) radical.

(a) ⇔ (d) If A is K-separable, then A ⊗K Ao is also K-separable and hence has

zero radical (by 28.5).

On the other hand, if Nil(A⊗KAo) = 0, then A⊗KAo is left semisimple and every

A⊗K Ao-module is projective.

(d)⇔ (e) is obvious.

(e) ⇔ (f) From (e) it is easily seen that Nil(A) and Nil(Z(A) ⊗K Z(A)) are

zero. By the implication (a)⇔ (d) we conclude that Z(A) is K-separable. The same

conclusion could be derived from 28.4.

(f) ⇒ (a) Since A is left semisimple, it is also semisimple as A⊗Z(A) A
o-module.

Hence it is a projective generator in σ[A] which is equal to M(A)-Mod since A is

finitely generated as Z(A)-module (see 23.1). So A is an Azumaya algebra (see 28.1).

Now the assertion follows from 28.4.

(g)⇔ (a) This is a special case of 28.9. 2

We finally list some examples:

28.13 Examples of separable algebras.

As before R denotes an associative commutative ring with unit.

(1) For any multiplicative subset S ⊂ R, RS−1 is a separable R-algebra.

In particular, the field of rational numbers Q is a separable ZZ-algebra.

(2) For every n ∈ IN , the matrix ring R(n,n) is a separable R-algebra.

(3) For any finitely generated projective R-module M , EndR(M) is a separable

R-algebra.

(4) For any finite group G of order n, the group algebra R[G] is R-separable if n is

invertible in R.

Proof. (1) By 16.3, the map RS−1 ⊗R RS−1 → RS−1 is an isomorphism.

(2) Let eij denote the matrix in R(n,n) having 1 in the (i, j)-position and 0 else-

where. Then

e =
n∑
i=1

ei1 ⊗ e1i
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is a separability idempotent for R(n,n) (see 28.2). This is a special case of (3).

(3) Assume M is a finitely generated projective R-module. Then by 15.8,

EndR(M)⊗R R/m ' EndR/m(M/mM)

for every m ∈ M. On the right we have the endomorphism ring of the finite dimen-

sional R/m-vector space M/mM which is a simple algebra with centre R/m. Hence

EndR(M) is (central) R-separable by 28.9.

Another way to see that EndR(M) is R-separable is to refer to the fact that M

is a direct summand of a free module Rn, and hence EndR(M) = fR(n,n)f , for some

idempotent f ∈ R(n,n).

(4) A separability idempotent for R[G] is of the form

e =
1

n

∑
g∈G

g ⊗ g−1 ∈ R[G]⊗R R[G]o.

2

Remark. For the problem which (semi) group rings are Azumaya see Cheng [106],

DeMeyer-Hardy [116], DeMeyer-Janusz [117], Okninski [214], Szeto-Wong [256].

28.14 Exercises.

Let A denote an associative unital R-algebra.

(1) Assume A is finitely generated and projective as an R-module. Show that the

following are equivalent:

(a) A is R-separable;

(b) for any R-scalar algebra S, A⊗R S is left (A⊗R S, S)-semisimple;

(c) for any R-scalar algebra S, Jac(A⊗R S) = A⊗R JacS;

(d) for any R-scalar algebra S, Nil(A⊗R S) = A⊗R NilS;

(e) for any R-scalar algebra S, BMc(A⊗R S) = A⊗R JacS.

(2) Let A be R-separable with separability idempotent e ∈ Ae. Show that

Ae = Aee⊕ Ae(1− e), with Ae(1− e) = Keµ and Aee ' A as left Ae-modules.

(3) AssumeA to be finitely generated as anR-module and that for every associative

semiprime R-algebra B, A⊗R B is semiprime. Prove that A is R-separable ([239]).

(4) Let A be R-central. Prove that the following are equivalent ([86, 88, 119]):

(a) A is R-separable;

(b) there is some e ∈ Ae such that e1 = 1 and eA ⊂ R;

(c) Ae ⊗R (Ae)o ' EndR(Ae).

(5) Let R be a Prüfer ring (a semihereditary integral domain, [40, 40.4]). Assume

that A is a separable R-algebra which is finitely generated and torsion free as an

R-module. Prove that A is a left and right semihereditary ring ([264, 2.1]).
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References: Auslander-Goldman [58], Braun [86, 87, 88], Cheng [106], DeMeyer-

Hardy [116], DeMeyer-Ingraham [10], DeMeyer-Janusz [117], Dicks [119], Hattori

[153], Higman [157], Hirata-Sugano [158], Knus-Ojanguren [23], Magid [189], McMahon-

Mewborn [196], Okninski [214], Pierce [33], Ranga Rao [224], Saito [239], Sugano

[250, 251], Szeto-Wong [256], Taylor [257], Wehlen [264], Wisbauer [266, 271].
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29 Non-associative separable algebras

1.Azumaya and quasi-separable algebras. 2.Azumaya and separable algebras. 3.Azu-

maya algebras with unit. 4.Local-global characterizations of Azumaya algebras.

5.Quasi-separable algebras. 6.Separable algebras. 7.Quasi-separable algebras over

fields. 8.Separable algebras over fields. 9.Examples of non-associative separable alge-

bras. 10.Remarks. 11.Exercises.

As shown in 28.8, an associative unital algebra A is R-separable if and only if

its multiplication algebra M(A) is R-separable. Associative separable algebras are

assumed to have a unit. Studying non-associative algebras this is too strong a con-

dition, for example, it would exclude all Lie algebras from our considerations. These

observations motivate the following definitions (introduced in Müller [208]):

Definitions. An R-algebra A is called quasi-separable over R if its multiplication

algebra M(A) is an R-separable (associative) algebra. A is called separable over R if

M(A) is R-separable and M∗(A) = M(A) (see 2.1).

As mentioned before, associative unital algebras are separable in the above sense

if and only if they are separable in the sense of 28.2.

Again separable and Azumaya algebras are closely related. Our next result also

relates Azumaya (quasi-separable) algebras to quasi-simple central algebras. Recall

that M denotes the set of all maximal ideals of R.

29.1 Azumaya and quasi-separable algebras.

Assume A is a central R-algebra. Then the following are equivalent:

(a) A is an Azumaya algebra;

(b) A is an Azumaya ring and is a finitely generated R-module.

(c) A is a finitely generated, projective R-module and M(A) is a separable R-algebra;

(d) A is a finitely generated, projective R-module and M(A) is left

(M(A), R)-semisimple;

(e) A is a finitely generated, projective R-module and M(A) ' EndR(A);

(f) A is a finitely generated, projective R-module and for every m ∈M, A⊗RR/m
is a quasi-simple central R/m-algebra.

Proof. (a)⇔ (b) is trivial since σ[A] = M(A)-Mod (see 23.1).

(a)⇔ (c)⇔ (e) follows from 24.8. (a)⇒ (f) is clear by 26.6.

(c)⇒ (d) holds by 28.5 and (d)⇒ (a) by 20.7.
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(f)⇒ (e) The inclusion M(A)→ EndR(A) yields the commutative diagram

M(A)⊗R R/m −→ EndR(A)⊗R R/m
↓ ↓

M(A⊗R R/m) −→ EndR/m(A⊗R R/m) ,

with the first vertical map surjective and the second bijective by 15.11.

If A⊗RR/m is a quasi-simple central R/m-algebra, then the lower map is bijective.

Hence the upper map is surjective. Since EndR(A) is a finitely generated R-module,

M(A) = EndR(A) by 17.3. 2

29.2 Azumaya and separable algebras.

For a central R-algebra A, the following are equivalent:

(a) A is an Azumaya algebra and A2 = A;

(b) A is a finitely generated, projective R-module, M∗(A) = M(A) and M(A) is a

separable R-algebra;

(c) A is a finitely generated, projective R-module, M∗(A) = M(A) and M(A) is left

(M(A), R)-semisimple;

(d) A is finitely generated and projective as an R-module, and for every m ∈ M,

A⊗R R/m is a simple central R/m-algebra.

In particular, any R-algebra A, which is a finite product of simple algebras and is

finitely generated as R-module, is separable over its centroid.

Proof. (a)⇔ (b)⇔ (c) By 29.1, it only remains to show that for Azumaya algebras,

A2 = A is equivalent to M∗(A) = M(A).

Obviously, M∗(A) = M(A) implies A = M(A)A = M∗(A)A = A2.

Assume A2 = A and that M∗(A) is a proper ideal in M(A) ' End(RA). Then

M∗(A) is contained in a maximal ideal of M(A) which is of the form mM(A) for some

maximal ideal m ⊂ R (see 28.5). This implies

A = A2 = M∗(A)A ⊂ mM(A)A = mA,

which is not possible (e.g., [40, 18.9]). So M∗(A) = M(A).

(a)⇒ (d) A2 = A obviously implies (A/mA)2 6= 0 and hence the assertion follows

from 29.1.

(d)⇒ (b) For simple algebras A/mA, M∗(A/mA) = EndR/m(A/mA). Now follow

the proof (f)⇒ (e) in 29.1 with M(A) replaced by M∗(A).

Finally, assume A is a finite product of simple algebras and is finitely generated

as an R-module. Then σ[A] = A-Mod and M(A) is left semisimple (see 23.8). 2
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For unital algebras the above considerations simplify to:

29.3 Azumaya algebras with unit.

For a central R-algebra A with unit, the following are equivalent:

(a) A is an Azumaya algebra;

(b) M(A) is a separable R-algebra;

(c) A is a finitely generated R-module and M(A) is left (M(A), R)-semisimple;

(d) (i) A is a finitely generated, projective R-module and

(ii) for every m ∈M, A⊗R R/m is a simple algebra with centre R/m.

Proof. (a)⇔ (d)⇒ (b) and (d)⇒ (c) are clear by 29.2 and 28.5.

(c)⇒ (a) follows from 20.7.

(b)⇒ (a) By 29.2, it remains to show that A is a finitely generated and projective

R-module.

M(A) is a central separable R-algebra (see 2.10) and hence M(A) is finitely gen-

erated and projective as an R-module (see 28.8).

Since the map M(A)→ A, λ 7→ λ(1), splits as an R-morphism, it splits in fact as

an M(A)-morphism by 28.5. So A is a direct summand of M(A) and hence A is also

finitely generated and projective as an R-module. 2

If we assume M(A) to be finitely generated as R-module we obtain:

29.4 Local-global characterizations of Azumaya algebras.

Assume A is a central R-algebra with unit and M(A) is finitely generated as an

R-module. Then the following assertions are equivalent:

(a) A is an Azumaya algebra;

(b) A is an Azumaya ring;

(c) for every x ∈ X , Ax is an Azumaya algebra;

(d) for every m ∈M, Am is an Azumaya algebra;

(e) for every m ∈M, A/mA is a central simple R/m-algebra.

Proof. By 23.4, A is a finitely presented M(A)-module. Hence the assertions follow

from 19.9. 2

Now we turn to not necessarily central algebras. Nevertheless we usually want the

centroid to be commutative. Here we have to distinguish between the multiplication

algebras of A as an R-algebra and an C(A)-algebra (see 2.10).
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29.5 Quasi-separable algebras.

For an R-algebra A with commutative centroid C(A), the following are equivalent:

(a) A is a quasi-separable R-algebra and C(A) ⊂M(RA);

(b) A is an Azumaya algebra, C(A) ⊂M(RA) and C(A) is R-separable;

(c) A is a generator in M(RA)-Mod and C(A) is R-separable.

Proof. (a) ⇒ (b) C(A) ⊂ M(RA) implies that C(A) is the centre of M(RA) (see

2.10).

So M(RA) is a central separable C(A)-algebra and C(A) is separable over R by

28.4. Now we see from 29.1 that A is an Azumaya algebra over C(A).

(b)⇒ (c) A being an Azumaya algebra, A is a generator in M(C(A)A)-Mod. Under

the given conditions M(RA) = M(C(A)A).

(c) ⇒ (a) A being a generator in M(RA)-Mod, M(RA) ' End(C(A)A) and A

is a finitely generated and projective C(A)-module. This implies C(A) ⊂ M(RA),

M(RA) = M(C(A)A) and C(A) is the centre of M(RA) (see 2.10).

Hence M(RA) is a central separable C(A)-algebra. Since C(A) is separable over

R, M(RA) is R-separable by 28.4. 2

Similar to the above we characterize separable algebras. Here stronger conditions

imply that the centroid is commutative:

29.6 Separable algebras.

For an R-algebra A with centroid C(A), the following are equivalent:

(a) A is a separable R-algebra;

(b) A2 = A, A is an Azumaya algebra, C(A) ⊂M(RA) and C(A) is R-separable;

(c) A2 = A, A is a generator in M(RA)-Mod and C(A) is R-separable.

Proof. (a) ⇒ (b) Assume A is a separable R-algebra, i.e., M(RA) is separable and

M∗(A) = M(RA). This implies A2 = A and C(A) is the centre of M(RA) (see 2.10).

Now the assertion follows from 29.5.

(b) ⇒ (a) For an Azumaya algebra A with A2 = A, M∗(A) = M(C(A)A) by 29.2.

Since M(RA) = M(C(A)A) under the given conditions, the claim follows from 29.5.

(b)⇔ (c) follows immediately from 29.5. 2

29.7 Quasi-separable algebras over fields.

Assume A is a finite dimensional algebra A over a field K with commutative

centroid. Then the following are equivalent:

(a) A is a quasi-separable K-algebra;



240 Chapter 8. Separable and biregular algebras

(b) for any (finite) field extension L : K, A⊗K L is a finite product of quasi-simple

algebras;

(c) for any (finite) field extension L : K, Rad(A⊗K L) = 0;

(d) A is a finite product of quasi-simple algebras and C(A) is a separable K-algebra.

Proof. (a) ⇒ (b) By definition, M(A) is a finite dimensional, separable K-algebra.

For any field extension L : K, M(A) ⊗K L ' M(A ⊗K L) is a separable L-algebra

and hence is left semisimple by 28.5.

So A ⊗K L is a semisimple M(A ⊗K L)-module and hence it is a finite direct

product of quasi-simple algebras.

(c)⇔ (c) is obvious by the definition of the radical (see 21.2).

(b) ⇔ (d) For K = L we see that A is a product of quasi-simple algebras. For

any field extension L : K, the centroid of A⊗K L (' C(A)⊗K L) is a left semisimple

algebra and hence C(A) is separable over K by 28.12.

(d)⇒ (a) Since A is a product of quasi-simple algebras, A is an Azumaya algebra

(over C(A)). Hence M(A) is a separable C(A)-algebra. So M(A) is a separable

R-algebra by 28.4. 2

With nearly the same arguments we obtain characterizations of separable algebras

over fields. Condition (b) was originally used to define this class of algebras (e.g.,

[19]):

29.8 Separable algebras over fields.

Assume A is a finite dimensional algebra over a field K and M∗(A) = M(A).

Then the following are equivalent:

(a) A is a separable K-algebra;

(b) for any (finite) field extension L : K, A ⊗K L is a (finite) product of simple

algebras;

(c) for any (finite) field extension L : K, Alb(A⊗K L) = 0;

(d) A is a (finite) product of simple algebras and C(A) is a separable K-algebra;

(e) A⊗K C(A) is a separable C(A)-algebra.

Proof. Notice that M∗(A) = M(A) implies A2 = A and C(A) is the centre of M(A)

(see 2.10). Now the equivalences from (a) to (d) follow from 29.7.

(a)⇒ (e) By definition, M(A) is K-separabel, and hence

M(A)⊗K C(A) 'M(A⊗K C(A)) is C(A)-separabel.

(e) ⇒ (a) C(A) being the centre of M(A), the assertion follows from 28.12 and

the above isomorphism. 2
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From Müller [208] we have the following

29.9 Examples of non-associative separable algebras.

(1) For some n ∈ IN , let R be a ring with 2, 3, n invertible. Denote by gl(n,R) the

(n, n)-matrices R(n,n) with the Lie product [a, b] = ab− ba, and by sl(n,R) the

matrices in R(n,n) with trace zero. Then

gl(n,R) = Z(gl(n,R))⊕ sl(n,R),

and sl(n,R) is an Azumaya Lie algebra over R.

(2) Assume A is an associative Azumaya algebra with unit over a ring R with 1
2
∈ R.

Then A with the Jordan product a × b = 1
2
(ab + ba) (see 3.10) is an Azumaya

Jordan algebra.

The decomposition in (1) follows from linear algebra. For every maximal ideal

m ⊂ R, sl(A)⊗R R/m is a central simple R/m-algebra.

In (2), for every maximal ideal m ⊂ R, A/mA is a central simple associative

R/m-algebra. By a result of Herstein ([18, Theorem 1.1]), A is also central simple as

a Jordan algebra.

29.10 Remarks. Condition (b) in 29.8 was originally used to define (non-associative)

separable algebras over fields (cf. Jacobson [19]).

There are various definitions for non-associative separable algebras over rings in

the literature (e.g., [82, 83, 267, 271]). In Bix [82, 83] separability for alternative

and Jordan R-algebras A is defined through the separability of the associative unital

multiplication envelope U(A). For rings R with 2 invertible it was shown in [267, Satz

4.1] that these algebras are characterized by the separability of M(A) if A is finitely

generated as R-module. Hence, for all the definitions mentioned, the central separable

algebras A are exactly the Azumaya algebras (compare [271, Satz 2.1]).

The equivalence of (a) and (d) in 29.2 is proved, e.g., in Bix [82, 83] and [267, Satz

4.1] for alternative and Jordan algebras, and also in Zhelyabin [286, Lemma 3.1] for

central alternative algebras.

In Zhelyabin [286] examples of alternative and Jordan algebras A are given which

are projective over their universal enveloping algebra but are not separable, in contrast

to the associative case, where projectivity over Ae is sufficient for separability.

A unital alternative algebra A is R-separable if and only if A is a direct product

of an associative separable algebra and Cayley-Dickson (octonion) algebras whose

centres are separable R-algebras (cf. Bix [83, Theorem 4.5]).
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29.11 Exercises.

(1) Let A be a unital separable R-algebra which is finitely generated and projective

as R-module. Show that for any R-scalar algebra S,

BMc(A⊗R S) = A⊗R JacS.

(2) Prove that a central R-algebra A is Azumaya if and only if A is a finitely

generated projective R-module and for every m ∈M, M(A⊗RRm) is a finite matrix

ring over Rm.

(3) Assume A is an Azumaya algebra over R. Show that every algebra endomor-

phism of A is an automorphism.

References: Auslander-Goldman [58], Bix [82, 83], Hirata-Sugano [158], Müller

[208], Sugano [250, 251], Zhelyabin [286], Wisbauer [271, 266, 270].
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30 Biregular algebras

1.Biregular algebras. 2.Properties of biregular algebras. 3.Algebras with regular cen-

troid. 4.Characterization of biregular algebras. 5.A regular in σ[A]. 6.Biregular

Azumaya rings. 7.Biregular Azumaya algebras. 8.Module finite biregular algebras

with units. 9.Biregular algebras with units. 10.Co-semisimple algebras. 11.Self-

projective co-semisimple algebras. 12.Module finite multiplication algebras. 13.Ex-

amples. 14.Exercises.

Definition. An algebra A is called biregular if every principal ideal of A is a direct

summand.

Obviously, A is biregular if and only if every ideal I ⊂ A generated by a single

element is of the form I = Ae, for an idempotent e ∈ C(A).

First examples of biregular algebras are quasi-simple and weak products of quasi-

simple algebras (see 23.8). On the other hand, every biregular algebra which is locally

noetherian as an M(A)-module is a weak product of quasi-simple algebras.

An algebra A with unit is biregular if and only if every principal ideal is generated

by an idempotent of the centre of A. A commutative associative ring is biregular if

and only if it is (von Neumann) regular.

Remark. For associative rings biregularity was defined in Arens-Kaplansky [51]

by the property that every principal ideal is generated by a central idempotent. Since

in general C(A) 6⊂ A, this condition is stronger than our definition. Of course, for

rings with identity the two properties coincide.

Algebras who do not allow non-trivial idempotents may nevertheless be biregular

in our sense (e.g., semisimple Lie algebras).

For biregular algebras with commutative centroid we immediately obtain from

18.12 a characterization by their Pierce stalks. Again X denotes the set of maximal

ideals in the ring of idempotents of R:

30.1 Biregular algebras.

Assume A is a central R-algebra which is finitely generated as an M(A)-module.

Then the following are equivalent:

(a) A is biregular;

(b) every finitely generated ideal is a direct summand in A;

(c) for every x ∈ X , Ax is a quasi-simple algebra.

For biregular algebras with A2 = A we notice:
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30.2 Properties of biregular algebras.

Assume A is a central biregular R-algebra and A2 = A. Then:

(1) A is an ideal algebra and every finitely generated ideal is principal.

(2) Every ideal in A is idempotent and R is a regular ring.

(3) Every factor algebra of A is biregular.

(4) Every ideal in A is an intersection of maximal ideals.

(5) Every prime ideal is a maximal ideal in A.

(6) For every x ∈ X , Ax is a simple algebra.

Proof. (1) By definition, every finitely generated ideal U ⊂ A is A-generated and so

A is a self-generator.

Assume Ae and Af are principal ideals of A, with idempotents e, f ∈ C(A). Then

Ae+Af = A(e+f−ef) is a principal ideal and (by induction) every finitely generated

ideal is principal.

(2) Every principal ideal in A is of the form Ae, for some idempotent e ∈ R, and

(Ae)2 = (A2)e2 = Ae. This implies that every ideal of A is idempotent. By 2.7, R is

a (von Neumann) regular ring.

(3) The factor algebras are of the form A/AI ' A⊗R R/I and the canonical map

A→ A/AI preserves direct summands.

(4) Obviously a biregular algebra A has no superfluous M(A)-submodules. So

Rad(A) = 0, i.e., 0 is the intersection of maximal ideals in A.

By (3), every factor algebra of A is biregular and so every ideal in A is the inter-

section of the maximal ideals containing it.

(5) Assume A is a prime biregular ring. Any finitely generated ideal is of the

form Ae for some idempotent e ∈ R and Ae · A(1 − e) = 0. This implies Ae = 0 or

A(1− e) = 0 and A must be a simple algebra.

(6) This is clear by 30.1 since (Ax)
2 6= 0. 2

Before characterizing idempotent biregular algebras we have a look at algebras

with regular centroid.

30.3 Algebras with regular centroid.

Assume A is a central R-algebra, finitely generated as M(A)-module and R is

regular. Then:

(1) For every ideal I ⊂ R, I = HomM(A)(A,AI).

(2) For each m ∈M, there exists a maximal ideal M ⊂ A with m = HomM(A)(A,M).

If A has a unit, the above properties can be written in the following form:
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(3) For every ideal I ⊂ R, AI ∩R = I.

(4) For each m ∈M, there exists a maximal ideal M ⊂ A with M ∩R = m.

Proof. (1) This is a special case of the more general fact that finitely generated

modules with regular endomorphism rings are intrinsically projective (see 5.6).

(2) We see from (1) that Am 6= A for m ∈M. Hence Am ⊂M for some maximal

ideal M ⊂ A. By the maximality of m, m = HomM(A)(A,M).

Obviously, in unital algebras, (1) corresponds to (3) and (2) to (4). 2

Remark. For associative rings, (2) and (4) were proved in Nauwelaerts-Oystaeyen

[209]. In fact their proof also applies in the non-associative case.

30.4 Characterization of biregular algebras.

Assume A is a central R-algebra, is finitely generated in M(A)-Mod and A2 = A.

Then the following are equivalent:

(a) A is biregular;

(b) R is a regular ring and A is an ideal algebra;

(c) R is regular and A is a self-generator as an M(A)-module;

(d) for every x ∈ X , Ax is a simple algebra;

(e) R is regular and for every m ∈M, Am is a simple algebra;

(f) R is regular and for every maximal ideal M ⊂ A, M = AHomM(A)(A,M)

(i.e., M is A-generated).

Proof. (a)⇒ (b)⇒ (c) are clear by 30.2. (b)⇒ (f) is trivial.

(c)⇒ (a) This is shown in 24.3.

(d)⇔ (e) Over a regular ring R, localizing with respect to x ∈ X corresponds to

localizing with respect to m ∈M.

(f) ⇒ (b) For any m ∈ M, there is a maximal ideal M ⊂ A with m =

HomM(A)(A,M) (by 30.3) and hence Am = AHomM(A)(A,M) = M . This implies

that Am ' A/Am ' A/M is a simple algebra. 2

Recall that a short exact sequence (∗) 0 → K → L → N → 0 is pure in σ[A],

if the functor HomA(P,−) is exact with respect to (∗) for every finitely presented

module P in σ[A] (see 7.2).

A module L ∈ σ[A] is regular in σ[A] if every exact sequence of type (∗) is pure in

σ[A] (see 7.2). Regular modules generalize semisimple modules. They have a number

of interesting properties (see 7.3, or [40, 37.3, 37.4]). In particular we have for the

M(A)-module A:
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30.5 A regular in σ[A].

For an algebra A the following are equivalent:

(a) A is regular in σ[A];

(b) every short exact sequence in σ[A] is pure;

(c) every module in σ[A] is flat (or absolutely pure) in σ[A];

(d) every finitely presented module is projective in σ[A].

If A is finitely presented in σ[A], then (a)-(d) are equivalent to:

(e) Every module in σ[A] is weakly A-injective;

(f) A is a biregular algebra.

The algebras described in the second part of the theorem above have some more

interesting characterizations if they are idempotent:

30.6 Biregular Azumaya rings.

Assume A is a central R-algebra with A2 = A and is finitely generated as an

M(A)-module. Then the following conditions are equivalent:

(a) A is finitely presented and regular in σ[A];

(b) A is a biregular ring and is finitely presented in σ[A];

(c) A is a biregular ring and is self-projective as M(A)-module;

(d) A is a biregular ring and is a generator in σ[A];

(e) A is an Azumaya ring and R is regular;

(f) A is a generator in σ[A] and R is regular;

(g) A is finitely presented in σ[A] and for every x ∈ X , Ax is a simple algebra;

(h) R is regular and for every m ∈M, A⊗R/m is a central simple R/m-algebra.

Proof. (a)⇔ (b)⇔ (c) follows from 30.5.

(c)⇔ (d)⇔ (e) are special cases of 26.9(1). (e)⇒ (f) is clear.

(f) ⇒ (e) By 30.4, A is an Azumaya ring. So A is a generator in σ[A] which is

faithfully flat over its endomorphism ring R. By 5.10, A is projective in σ[A].

(b)⇔ (g) is shown in 30.2.

(e)⇔ (h) is an application of 26.8. 2

As seen in 29.1, Azumaya rings which are finitely generated as modules over their

centroid are Azumaya algebras. Recalling that for such algebras σ[A] = M(A)-Mod,

we obtain:
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30.7 Biregular Azumaya algebras.

Assume A is a central R-algebra, is finitely presented in M(A)-Mod and A2 = A.

Then the following conditions are equivalent:

(a) A is a biregular algebra and finitely generated as R-module;

(b) A is a biregular algebra and a generator in M(A)-Mod;

(c) A is an Azumaya algebra and R is a regular ring;

(d) M(A) is a (von Neumann) regular ring;

(e) for every x ∈ X , Ax is simple and finite dimensional over its centre.

Proof. (a)⇔ (b) is clear since σ[A] = M(A)-Mod. (a)⇔ (c) follows from 30.6.

(a)⇔ (d) Assume A is regular in σ[A] = M(A)-Mod. Then every finitely presented

module in M(A)-Mod is projective and hence M(A) is a (von Neumann) regular

algebra. On the other hand, if M(A) is regular, then A is regular as an M(A)-module

and hence it is biregular.

(a)⇔ (e) is an application of 19.9. 2

There are various ways to ensure that A is finitely presented in M(A)-Mod (see

23.4). We consider two particular cases.

30.8 Module finite biregular algebras with units.

Assume A is a central alternative or Jordan R-algebra with unit. Then the follow-

ing conditions are equivalent:

(a) A is a biregular algebra and finitely generated as R-module;

(b) A is a biregular algebra and a generator in M(A)-Mod;

(c) A is an Azumaya algebra and R is a regular ring;

(d) A is a finitely generated R-module and M(A) is a regular ring.

Proof. By 23.4, 3.7 and 3.13, any of the conditions implies that A is finitely presented

in M(A)-Mod and hence the assertions follow from 30.7. 2

30.9 Biregular algebras with units.

Assume A is a central R-algebra with unit and M(A) is finitely generated as R-

module. Then the following are equivalent:

(a) A is a biregular algebra;

(b) A is a biregular algebra and a generator in σ[A]-Mod;

(c) A is an Azumaya algebra (ring) and R is regular;



248 Chapter 8. Separable and biregular algebras

(d) M(A) is a regular ring.

Proof. Since M(A) is finitely generated as R-module, A is finitely presented in

M(A)-Mod by 23.4. Hence the statements follow from 30.7. 2

It is well-known that the ring R is regular if and only if every simple R-module is

injective, i.e., if R is a co-semisimple ring. This equivalence is no longer true for non-

commutative regular rings and left modules. What can be said about the relationship

between biregular rings and A-injectivity of simple M(A)-modules? We will see that

at least one of the above implications holds in the general case.

We call an algebra A co-semisimple if it is a co-semisimple M(A)-module, i.e., if

every simple module in σ[A] is A-injective. From 6.18 we have:

30.10 Co-semisimple algebras.

For an R-algebra A, the following are equivalent:

(a) A is a co-semisimple M(A)-module;

(b) every finitely cogenerated module in σ[A] is A-injective;

(c) for every ideal U ⊂ A, Rad(A/U) = 0;

(d) every proper ideal in A is the intersection of maximal ideals.

By the observations in 30.2, it is clear that biregular algebras A with A2 = A are

co-semisimple M(A)-modules.

30.11 Self-projective co-semisimple algebras.

Let A be a central R-algebra. Assume A is co-semisimple and self-projective as an

M(A)-module. Then:

(1) A is a generator in σ[A].

(2) If A is finitely generated as an M(A)-module, then A is a biregular Azumaya

ring and R is regular.

(3) If A is finitely generated as R-module, then A is an Azumaya algebra (and R is

regular).

Proof. (1) Since simple modules in σ[A] are injective, they are A-generated. A being

self-projective, it is a generator in σ[A] (see [40], 18.5).

(2) A is a progenerator in σ[A] and HomM(A)(A,−) : σ[A]→ R-Mod is an equiva-

lence of categories. This implies that R is a co-semisimple ring and hence is regular.

By this equivalence, it is easy to see that A is a biregular ring.

(3) This follows immediately from (2), since σ[A] = M(A)-Mod. 2



30. Biregular algebras 249

For module finite multiplication algebras several notions coincide:

30.12 Module finite multiplication algebras.

Let A be a central R-algebra with unit. Assume M(A) is a finitely generated R-

module. Then the following are equivalent:

(a) A is a co-semisimple M(A)-module;

(b) M(A) is left co-semisimple (left V-ring);

(c) A is biregular;

(d) M(A) is a regular ring;

(e) A is an Azumaya algebra and R is regular.

Proof. (a)⇔ (b) is clear since σ[A] = M(A)-Mod.

(c) ⇔ (d) ⇔ (e) This follows from σ[A] = M(A)-Mod and the fact that A is

finitely presented in M(A)-Mod (see 30.7).

(c)⇒ (a) is shown in 30.2.

(a) ⇒ (e) We know from (a) ⇔ (b) that M(A) is a fully idempotent algebra and

hence its centre R is regular (e.g., [40, 3.16]). Hence for every m ∈ M, Am ' A/mA

is a finite dimensional central R/m-algebra with BMc(A) = 0, i.e., A/mA is a finite

product of simple algebras (see 21.3). Therefore all A/mA are Azumaya algebras and

so is A by 29.4. 2

30.13 Examples.

Consider the ring R(2,2) of 2 by 2 matrices over R and some subring S ⊂ R(2,2). De-

note by AR,S the ring of sequences of elements in R(2,2) which are eventually constant

with values in S, i.e.,

AR,S = {(a1, . . . , ak, s, s, . . .) | k ∈ IN, ai ∈ R(2,2), s ∈ S}.

(1) Assume R is a field and S = {
(
r 0

0 t

)
, r, t ∈ R}.

Then AR,S is regular but not biregular (cf. [173]).

(2) Let R be a field and S = {
(

0 r

0 0

)
, r ∈ R}.

Then for every prime ideal P ⊂ AR,S, AR,S/P is regular but AR,S is not regular

(cf. [138]).

For Z = Z(AR,S), AR,S/ZAR,S is a nil ring and ZAR,S is regular and biregular

(cf. [173]).
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(3) Assume R = IR (the reals) and S = {
(

r t

−t r

)
, r, t ∈ IR}.

Then AR,S is biregular (all Pierce stalks are simple) but is not an Azumaya ring

(cf. [99, 100]).

Remarks. A is co-semisimple if for every ideal U ⊂ A, Rad(A/U) = 0. Varying

this condition one may ask when all Alb(A/U) = 0 or BMc(A/U) = 0. Associative

algebras satisfying the last condition were first considered in Andrunakievic [46] under

the name N-semisimple. For algebras with units all these properties coincide.

30.14 Exercises.

(1) Let A be a central R-algebra with unit. For an ideal I ⊂ A define the annihi-

lator

Ia = {a ∈ A | aI = Ia = 0}.

Show: (i) If I is A-generated or A is associative, then Ia is an ideal.

(ii) If A is biregular, then for any finitely generated ideal I ⊂ A, Iaa = I.

(iii) For any family of ideals Iλ ⊂ A, (
∑

Λ Iλ)
a =

⋂
Λ I

a
λ .

(iv) Assume A is associative or a self-generator (as M(A)-module) and Iaa = I for all

ideals I ⊂ A. Then

(α) For every maximal ideal M ⊂ A, Ma is a minimal ideal.

(β) If BMc(A) = 0, A is a finite product of simple algebras.

(v) Assume A is biregular and for every maximal ideal M ⊂ A, Ma 6= 0. Then A is a

finite product of simple algebras ([46]).

(2) Let A be an associative regular ring with unit which is left self-injective. Prove

that the following are equivalent ([228, Proposition 1.6]):

(a) A is biregular;

(b) every prime ideal in A is maximal.

(3) Let A be an associative biregular algebra. Prove that for any n ∈ IN , the

matrix ring A(n,n) is biregular.

(4) Let A be a semiprime alternative central R-algebra with unit. Assume A is a

finitely generated R-module and R is regular. Prove that A is an Azumaya algebra.

(5) Let A be an associative central R-algebra with unit which is finitely generated

as an R-algebra. Assume R is locally perfect and Z(A/AJ) = R/J for J = Jac(R).

Prove that A is an Azumaya ring if and only if A/AJ is biregular.
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(6) Let A be an associative algebra with unit. A is called π-regular if for every

a ∈ A there exist x ∈ A and n ∈ IN such that anxan = an.

Prove that a π-regular and reduced A is biregular.

(7) Let R be a regular ring and assume that A is an associative unital R-algebra

which is finitely generated as an R-module. Prove that the following are equivalent

([52, Theorem 2]):

(a) A is semiprime;

(b) A is regular;

(c) A is biregular;

(d) A is semiprime and separable over its centre.

(8) Let R be a self-injective regular ring. Let A be an associative unital semiprime

R-algebra which is finitely generated, non-singular and faithful as an R-module. Prove

that A is left and right self-injective and an Azumaya algebra over its centre ([146,

Proposition 3.3]).

(9) Prove that a biregular associative PI-ring is regular ([54]).

References: Andrunakievic [46], Arens-Kaplansky [51], Armendariz [52], Armen-

dariz-Fisher [54], Burkholder [99, 100, 101], Dauns-Hofmann [113], Goursaud-Pascaud-

Valette [146], Gray [17], Michler-Villamayor [199], Nauwelaerts-Oystaeyen [209], Re-

nault [228], Wehlen [263], Wisbauer [268, 269, 276, 270].
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31 Algebras with local Pierce stalks

1.Refinable algebras. 2.Idempotent refinable algebras. 3.Finitely lifting algebras.

4.Lifting algebras. 5.Supplemented algebras. 6.Self-projective f-semiperfect algebras.

7.Self-projective semiperfect algebras. 8.Perfect algebras. 9.Module finite perfect

algebras. 10.Semiperfect associative algebras. 11.Structure of semiperfect algebras.

12.Structure of left perfect algebras. 13.Structure of left and right perfect algebras.

14.Self-projective associative left semiperfect algebras. 15.Exercises.

Biregular rings were characterized by quasi-simple Pierce stalks. In 8.4 we in-

vestigated more generally modules whose Pierce stalks are local modules. We now

reconsider these properties for algebras as bimodules.

31.1 Refinable algebras.

Assume A is a central R-algebra and a finitely generated M(A)-module. Then the

following are equivalent:

(a) A is refinable as an M(A)-module;

(b) A is strongly refinable as an M(A)-module;

(c) every factor algebra of A is refinable over its multiplication algebra;

(d) direct summands (decompositions) lift modulo every ideal of A;

(e) for every x ∈ X , Ax is a local M(A)-module;

(f) A/Rad(A) is refinable and direct summands lift modulo Rad(A).

Proof. (a) ⇔ (b) ⇔ (c) Since ideals are fully invariant submodules of A, the asser-

tions follow from 8.5.

(a)⇔ (d) is clear by 8.4.

(a)⇔ (e)⇔ (f) is an application of 18.10. 2

Recall that an algebra A with A2 = A is said to be weakly local if it has a unique

maximal ideal (see 21.10).

31.2 Idempotent refinable algebras.

Assume A is a central R-algebra, is finitely generated in M(A)-Mod and A2 = A.

Then the following are equivalent:

(a) A is refinable as an M(A)-module;

(b) For every x ∈ X , Ax is a weakly local algebra;

(c) for every x ∈ X , xA is a weakly local ideal;

(d) A/Alb(A) is refinable and direct summands lift modulo Alb(A).
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Proof. (a)⇔ (b) is obvious by A2 = A.

(b)⇔ (c) Since Ax ' A/xA (see 18.1), the assertion is clear by the definitions.

(a)⇔ (d) For an idempotent algebra A, Rad(A) = Alb(A) (see 21.2). 2

A somewhat stronger condition is considered in the next proposition.

31.3 Finitely lifting algebras.

Assume A is a central R-algebra and a finitely generated M(A)-module. Then the

following are equivalent:

(a) A is a finitely lifting M(A)-module;

(b) A is f-supplemented and π-projective;

(c) for any cyclic (finitely generated) ideal U ⊂ A, there is a decomposition

A = X ⊕ Y , with X ⊂ U and Y ∩ U � Y ;

(d) for any finitely generated ideals U, V ⊂ A with U + V = A, there exists an

idempotent e ∈ R, with Ae ⊂ U and U(id− e)� A(1− e) (and A(id− e) ⊂ V );

(e) as an M(A)-module, A is amply f-supplemented and supplements are direct sum-

mands;

(f) A/Rad(A) is biregular and direct summands lift modulo Rad(A).

If A has a unit and satifies the above conditions, then R is an f-semiperfect ring

and Jac(R) = R ∩ BMc(A).

Proof. (a)⇔ (b) follows from 8.10(2). (a)⇒ (f) is clear by 8.8.

(a), (c), (d) and (e) are equivalent by 8.8.

(f)⇒ (a) By 31.1, A is strongly refinable and by 8.8, A is lifting.

Since algebras with units are direct projective (by 23.7) and C(A) = Z(A) = R,

the assertion about the centre follows from 8.3. 2

Remark. As shown in Nicholson [212, Theorem 2.1], a module has the exchange

property if and only if its endomorphism ring is (left) refinable. Since f-semiperfect

rings are refinable, we know from the preceding propositon that a finitely lifting

algebra A with unit has the exchange property as an M(A)-module.

Similar to 31.3 we find equivalent conditions for A to be lifting:

31.4 Lifting algebras.

Assume A is a central R-algebra and a finitely generated M(A)-module. Then the

following are equivalent:

(a) A is a lifting M(A)-module;
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(b) A is supplemented and π-projective;

(c) for every ideal U ⊂ A, there is a decomposition A = X ⊕ Y , with X ⊂ U and

Y ∩ U � Y ;

(d) for any ideals U, V ⊂ A with U + V = A, there is an idempotent e ∈ R, with

Ae ⊂ U and U(id− e)� A(id− e) (and A(id− e) ⊂ V );

(e) for every ideal U ⊂ A, there is an idempotent e ∈ R, with Ae ⊂ U and

U(id− e)� A(id− e);

(f) as an M(A)-module, A is amply supplemented and supplements are direct sum-

mands in A;

(g) A/Rad(A) is a finite product of quasi-simple algebras and direct summands lift

modulo Rad(A);

(h) A is a finite product of algebras with unique maximal ideals.

If A has a unit and the above properties, then R is a semiperfect ring and

Jac(R) = R ∩ BMc(A).

Proof. (a)⇒ (b) follows from 8.9.

The equivalence of (a), (c), (d) and (e) follows from 8.9 and 8.10(2).

(a)⇔ (f) See the corresponding proof in 31.3

(a)⇒ (g) This can be deduced from the decomposition theorem 8.11. It can also

be easily seen from (f) since in fact decompositions lift modulo Rad(A) (see 31.1).

(g) ⇒ (f) Assume A = A1 ⊕ . . . ⊕ An with each of the ideals Ai having unique

maximal ideals as algebras. Then

A/Rad(A) = A1/Rad(A1)⊕ . . .⊕ An/Rad(An)

is a finite product of simple algebras. Every summand in A/Rad(A) is a sum of the

simple components and so can be lifted to a direct summand of A.

Unital algebras are direct projective and hence the assertion about Jac(R) follows

from 8.3. 2

The characterization of supplemented modules in 8.6 yields:

31.5 Supplemented algebras.

Assume the algebra A is finitely generated as an M(A)-module.

(1) The following are equivalent:

(a) A is supplemented as an M(A)-module;

(b) every maximal ideal in A has a supplement in A;
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(c) A is an irredundant (finite) sum of local M(A)-submodules.

(2) If A is supplemented, A/Rad(A) is a finite product of quasi-simple algebras.

(3) If A is f-supplemented, then A/Rad(A) is biregular.

For self-projective (f-) supplemented algebras we get from 8.13:

31.6 Self-projective f-semiperfect algebras.

Assume the R-algebra A is finitely generated and self-projective as an M(A)-

module. Then the following are equivalent:

(a) A is f-semiperfect in σ[A];

(b) A is f-supplemented as an M(A)-module;

(c) A/Rad(A) is biregular and decompositions lift modulo Rad(A).

The algebras considered above are in particular refinable and finitely lifting. With-

out the finiteness restriction we have from 8.12:

31.7 Self-projective semiperfect algebras.

Assume the central R-algebra A is finitely generated and self-projective as an

M(A)-module. Then the following are equivalent:

(a) A is semiperfect in σ[A];

(b) A is supplemented as an M(A)-module;

(c) every finitely A-generated module has a projective cover in σ[A];

(d) A/Rad(A) is a finite product of simple algebras and decompositions lift modulo

Rad(A);

(e) every simple factor module of A has a projective cover in σ[A];

(f) A is a finite direct product of algebras with unique maximal ideals;

(g) R is a semiperfect ring.

Finally we transfer the charcterization of perfect modules from 8.14:

31.8 Perfect algebras.

Assume the central R-algebra A is finitely generated and self-projective as an

M(A)-module. Then the following are equivalent:

(a) A is perfect in σ[A];

(b) every (indecomposable) A-generated flat module is projective in σ[A];

(c) A(IN) is semiperfect in σ[A];
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(d) A/Rad(A) is semisimple and Rad (A(IN))� A(IN);

(e) R is a perfect ring.

From the above we see that, for example, an Azumaya ring over R is (semi-)

perfect in σ[A] if and only if R is a (semi-) perfect ring.

In the following situation perfectness of A and M(A) are related:

31.9 Module finite perfect algebras.

Let A be a self-projective central R-algebra and assume that A and M(A) are

finitely generated as R-modules.

Then A is perfect in σ[A] if and only if M(A) is a left (or right) perfect ring.

Proof. Under the conditions given for A, R is a perfect ring. As a module finite

algebra with perfect centre, M(A) is a left perfect ring (Exercise (4)).

Now assume M(A) is a left perfect ring. Then the self-projective M(A)-module

A(IN) is supplemented and hence A is perfect in σ[A]. 2

The next observation was already made in Miyashita [201, Proposition 4.4].

31.10 Semiperfect associative algebras.

Let A be an associative algebra with unit. If A is a left semiperfect ring, then A

is supplemented as an M(A)-module.

Proof. Consider an ideal U ⊂ A with left complement L and right complement K.

Then K ⊂ AK = UK+LK and A = U +LK. For any ideal V ⊂ A with A = U +V ,

KA = KU+KV and so A = U+KV . By minimality of K, K = KV ⊂ V . Similarly

we have L = V L ⊂ V and hence LK ⊂ V , showing that LK is an M(A)-complement

of U in A. 2

With this knowledge we can prove a structure theorem for left semiperfect al-

gebras which is partly due to Szeto [255, Theorem 2.1]. Notice that for such alge-

bras A/Jac(A) is left semisimple and hence a product of simple algebras, implying

Jac(A) = BMc(A) = RadM(A)(A).

31.11 Structure of semiperfect algebras.

Let A be an associative central R-algebra A with unit. Then the following are

equivalent:

(a) A is left semiperfect and π-projective as an M(A)-module;

(b) A is left semiperfect and refinable as an M(A)-module;

(c) A is left semiperfect and central idempotents lift modulo Jac(A);
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(d) A is a finite product of finite matrix rings over local rings.

Proof. (a)⇔ (b)⇔ (c) In view of 31.10, all these equivalences are clear by 31.4.

(a)⇒ (d) We know from 31.10 that A is a supplemented M(A)-module and hence

by 31.4, A is a finite product of algebras with unique maximal ideals.

So assume A itself has a unique maximal ideal. Being left semiperfect, A =

K1 ⊕ · · · ⊕Kr with local projective left A-modules Ki. The trace Tr(K,A) is a two-

sided ideal which is not superfluous and hence Tr(K,A) = A. From this it is obvious

that K1 ' Ki for i = 2, . . . , r.

So A ' EndA(Kr
1) ' S

(r,r)
1 , with the local ring S1 = EndA(K1).

(d) ⇒ (a) It is obvious that an algebra with this structure is left (and right)

semiperfect. Moreover, all these matrix rings have a unique maximal ideal and hence

the assertion follows from 31.4. 2

For left perfect associative algebras we have essentially the same characterization

with a stronger condition on the rings for the matrices. Since left semiperfect is in fact

equivalent to right semiperfect, the above theorem is left-right symmetric. However,

left perfect is not equivalent to right perfect.

31.12 Structure of left perfect algebras.

Let A be an associative central R-algebra A with unit. Then the following are

equivalent:

(a) A is left perfect and π-projective as an M(A)-module;

(b) A is left perfect and refinable as an M(A)-module;

(c) A is left perfect and central idempotents lift modulo Jac(A);

(d) A is a finite product of finite matrix rings over left perfect local rings.

Remarks. An associative ring S with unit is called a left Steinitz ring if any

linearly independent subset of a free left module F can be extended to a basis of

F . As shown in Lenzing [185] and Brodskii [90], left Steinitz rings are exactly the

left perfect local rings. Hence the rings considered in 31.12 correspond to the central

perfect rings as defined in Neggers-Allen [210]. The question which group rings share

these properties is discussed in [210].

Left perfect local rings need not be right perfect (cf. Example 2 in [90]). Hence

left and right perfect algebras for which central idempotents lift modulo the Jacob-

son radical form a proper subclass of the algebras considered in 31.12. They were

characterized in Courter [110] by the property that every module is rationally com-

plete. Since matrix rings are right perfect if and only if the base ring is, the following

statements (contained in the Main Theorem of [110]) follow immediately from 31.12.
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31.13 Structure of left and right perfect algebras.

Let A be an associative central R-algebra A with unit. Then the following are

equivalent:

(a) A is a finite product of left and right perfect algebras with unique maximal ideals;

(b) A is left and right perfect and central idempotents lift modulo Jac(A);

(c) A is a finite product of finite matrix rings over left and right perfect local rings.

For semiperfect associative algebras which are self-projective as M(A)-modules a

structure theorem was proved in Miyashita [201, Theorem 4.6]. It is a consequence of

our next theorem which can easily be deduced from the above results:

31.14 Self-projective associative left semiperfect algebras.

Let A be an associative central R-algebra A with unit. Then the following are

equivalent:

(a) A is left semiperfect (perfect) and self-projective as an M(A)module;

(b) A is a finite product of finite matrix rings over (left perfect) local rings which

are self-projective as bimodules.

Proof. (a) ⇒ (b) Because of 31.11 and 31.12 we have only to argue about self-

projectivity. At the end of the proof of 31.11 we had the isomorphismA ' EndA(Kr
1) '

S
(r,r)
1 , with S1 = EndA(K1). Since A is self-projective as a bimodule and ideals in A

are determined by ideals in S1 we see that S1 is also self-projective as a bimodule (see

25.7).

(b) ⇒ (a) Similar to the above argument we see that under the given conditions,

A is a product of algebras which are self-projective as bimodules. Now it is easily

checked that A is also self-projective as a bimodule.

The other assertions follow immediately from 31.11, respectively 31.12. 2

31.15 Exercises.

(1) A module M is called Σ-direct projective if any direct sum of copies of M is

direct projective (see [11, 11.2]).

Let A be a unital algebra. Assume A is a finite product of weakly local algebras.

Prove:

(i) A is Σ-direct projective as an M(A)-module.

(ii) Z(A) is a semiperfect ring.

(iii) If A is a generator in σ[A] then A is an Azumaya ring.
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(2) Let A be an associative unital algebra. Assume factor rings of A have no

proper (central) idempotents. Show that A has a unique maximal ideal.

(3) Let A be an associative unital algebra with unique maximal ideal M ⊂ A.

Prove:

(i) If every right ideal of A has a non-zero annihilator then A is a local ring.

(ii) A is a local ring or any maximal right ideal is an idempotent non-two-sided

ideal.

(4) Let A be an associative unital central R-algebra which is finitely generated as

an R-module. Prove that the following are equivalent ([272, Satz 4.5]):

(a) A is a left (or right) perfect ring+

(b) M(A) is a left (or right) perfect ring;

(c) R is a perfect ring.

References. Brodskii [90], Courter [110], Lenzing [185], Miyashita [201], Neggers-

Allen [210], Nicholson [212], Satyanarayana-Deshpande [240], Szeto [255], Wisbauer

[272].



Chapter 9

Localization of algebras

In this chapter we apply our knowledge about localization in categories of type σ[M ]

to algebras considered as bimodules. It turns out that in this setting many properties

known from the commutative case, which do not transfer to left modules over non-

commutative associative rings, are preserved. Moreover, associativity is not needed

for many basic constructions.

Consider three different methods to extend the integers ZZ to the rationals Q:

(I) Define an equivalence relation on the set ZZ × {ZZ \ 0} by

(a, b) ∼ (c, d)⇔ ad = bc.

On the set of equivalence classes ZZ × {ZZ \ 0}/ ∼, addition and multiplication is

introduced by
(a1, b1) + (a2, b2) = (a1b2 + a2b1, b1b2),

(a1, b1) · (a2, b2) = (a1a2, b1b2).

These definitions are independent of the choice of representatives and the construction

yields (a model of) the rationals Q.

(II) Q can be identified with the injective hull of ZZ.

(III) Q can be represented as a direct limit of ZZ-modules,

Q ' lim
−→
{HomZZ(nZZ,ZZ) |n ∈ IN}.

These constructions are readily extended to any prime commutative ring and they

yield isomorphic quotient rings.

For non-commutative associative prime rings A the situation is different. In gen-

eral, a relation defined as in (I) would no longer be an equivalence relation. Special

conditions (Ore conditions) are necessary to copy this construction. Trying (II) we

realize that the injective hull of A in A-Mod need not have a ring structure - unless

A is left non-singular. Similar problems arise if we try to imitate (III).

Applying torsion theory we find that (II) and (III) still are of interest for associative

rings A (and yield isomorphic results) if we replace injective hull in (II) by the quotient

module QT (A) for a suitable hereditary torsion class T in A-Mod, and replace in (III)

the ideals by T -dense left ideals in A (see 9.20). This follows from the fundamental

formula

lim
−→
{HomA(U,A/QT (A)) |U ∈ L(A, T )} ' HomA(A,QT (A)),

260
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where L(A, T ) is the set of T -dense left ideals, derived in 9.17. From there we also

have the isomorphisms

QT (A) ' HomA(A,QT (A)) ' HomA(QT (A), QT (A)),

which allow to transfer the ring structure of the endomorphism ring to the quotient

module QT (A). Since endomorphism rings are associative it is clear that this kind

of constructing quotient rings only apply to associative A. Notice that here we get a

quotient ring by module theoretic construction and not by inverting certain elements.

The above considerations have a two-sided counterpart. For a torsion theory T in

σ[A], the fundamental formula reads as

lim
−→
{HomM(A)(U,A/QT (A)) |U ∈ L(A, T )} ' HomM(A)(A,QT (A)),

with L(A, T ) the set of T -dense (two-sided) ideals. We still have the isomorphism

HomM(A)(A,QT (A)) ' EndM(A)(QT (A)).

Now suppose that QT (A) is A-generated as M(A)-module. Then we get

QT (A) = AHomM(A)(A,QT (A)) ' A/T (A) EndM(A)(QT (A)),

which means that QT (A) is written as a kind of product of the ring A/T (A) and

the ring EndM(A)(QT (A)). It is tempting to introduce a multiplication on QT (A) by

putting

(as) · (bt) := (ab)st, for a, b ∈ A, s, t ∈ EndM(A)(QT (A)),

and linear extension to all elements of QT (A). Of course, this assignement has to be

independent of the choice of representatives of an element of type as. This is the case

if EndM(A)(QT (A)) is a commutative ring. Observe that along this way associativity

of A is no longer of importance and QT (A) will certainly be as non-associative as

A/T (A).

We will study such situations in the next sections. For prime and semiprime rings

A we will consider the torsion class in σ[A] determined by the injective hull of A in

σ[A]. More general, we will also use the torsion class determined by the injective hull

of A/I in σ[A] for any (semi-) prime ideal I ⊂ A.

Another approach to find quotient rings for associative algebras A from bimodule

properties is to study torsion theories in the category A⊗R Ao-Mod and then restrict

the constructions to A-generated modules. We refer to [259, 93, 8] for details.

There is yet another possibility to generalize construction (II) from ZZ to an ar-

bitrary central R-algebra A which is non-singular as R-module by defining a multi-

plication on the R-injective hull of A (almost classical localization). More details are

given in Exercise 32.12(12). For regular R this construction can be related to the

orthogonal completion of A (see [73, 4, 22]).
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32 The central closure of semiprime rings

1.Extended centroid of a semiprime algebra. 2.Central closure of semiprime algebras.

3.Properties of the central closure. 4.Self-injective semiprime algebras. 5.Idempotent

closure of semiprime algebras. 6.Semiprime algebras with non-zero socle. 7.Algebras

with large centroids. 8.Large centres and finite uniform dimension. 9.Semiprime rings

as subgenerators. 10.Corollary. 11.Central orders in Azumaya algebras. 12.Exercises.

The following observation is very important for our further investigations. It shows

that - generalizing the situation for commutative associative rings - any semiprime

algebra A is non-A-singular (polyform) as a bimodule. This allows us to apply our

results concerning this type of modules to semiprime algebras.

Recall that Â denotes the A-injective hull of A (in σ[A]), C(A) = EndM(A)(A) is

the centroid of A.

32.1 Extended centroid of a semiprime algebra.

Let A be any semiprime algebra and T := EndM(A)(Â). Then:

(1) A is a polyform M(A)-module.

(2) C(A) ⊂ T and T is a commutative, regular and self-injective ring.

(3) Â is the quotient module of A for the Lambek torsion theory in σ[A] and

T ' lim
−→
{HomM(A)(U,A) |U � M(A)A} ' HomM(A)(A, Â).

(4) T is semisimple if and only if A has finite uniform dimension as M(A)-module.

T is called the extended centroid of A.

Proof. (1) According to 10.8, we have to show that for any essential ideals U ⊂ V

of A, HomM(A)(V/U,A) = 0.

Take any f ∈ HomM(A)(V/U,A). Then (V/U)f is an ideal in A and obviously

{U∩(V/U)f}2 = 0. Now A semiprime implies U∩(V/U)f = 0 and hence (V/U)f = 0

(since U � A), i.e., f = 0.

(2) By (1) and 11.2, C(A) ⊂ T and T is regular and self-injective ring.

To prove commutativity consider any f, g ∈ T . Then U := Af−1 ∩Ag−1 ∩A is an

essential ideal in A. For any ideal K ⊂ A we observe U2 ∩ K ⊃ (U ∩ K)2 6= 0 and

hence the ideal generated by U2 is also essential in A. Moreover, for any a, b ∈ U ,

(ab)fg = (a(bf))g = (ag)(bf) = (ab)gf.

This implies U2(fg− gf) = 0 and fg− gf annihilates the ideal generated by U2, i.e.,

fg = gf (by (1)).

(3) Apply 9.13 and 9.17. (4) holds by 11.2. 2



32. The central closure of semiprime rings 263

32.2 Central closure of semiprime algebras.

Let A be any semiprime algebra with A-injective hull Â and T := EndM(A)(Â).

Then:

(1) Â = AHomM(A)(A, Â) = AT , and a ring structure is defined on Â by

(as) · (bt) := (ab)st, for a, b ∈ A, s, t ∈ T,

and linear extension.

(2) A is a subring of Â.

(3) Â is a semiprime ring with centroid C(Â) = T (hence a T -algebra).

(4) Â is self-injective as an M(Â)-module.

(5) If A is a prime ring, then Â is also a prime ring.

Â is called the central closure of A.

Proof. (1) Every injective module in σ[A] is A-generated, in particular

Â = AHomM(A)(A, Â).

By 32.1, A is polyform (non-A-singular) and hence (by 9.17)

HomM(A)(A, Â) = EndM(A)(Â).

To show that the definition makes sense, we verify that for ai, b ∈ A, si, t ∈ T ,

∑
aisi = 0 implies (

∑
aisi)(bt) = 0 and (bt)(

∑
aisi) = 0.

By definition, (
∑
aisi)(bt) :=

∑
(aib)sit = (

∑
aisi)tb = 0, and

by commutativity of T , (bt)(
∑
aisi) :=

∑
(bai)tsi = b(

∑
aisi)t = 0.

(2) Obviously, A ' A · id
Â
⊂ AT .

(3),(4) For any ideal U ⊂ Â, U∩A is an ideal in A and U2 = 0 implies (U∩A)2 = 0.

Hence U ∩ A = 0 and U = 0, i.e., Â is semiprime.

By the definitions, we may assume T,M(A) ⊂ EndT (Â) and M(Â) = M(A)T .

This implies

T = EndM(A)(Â) = End
M(Â)

(Â) = C(Â).

Moreover, from the middle equality we conclude that the self-injective M(A)-module

Â is also self-injective as an M(Â)-module. 2

Recalling results about polyform modules from 11.11, 11.12 and 11.13, we have:
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32.3 Properties of the central closure.

Let A be a semiprime algebra, Â its central closure and T = End
M(Â)

(Â).

(1) For any m ∈ Â, AnT (m) is generated by an idempotent in T and Â is a non-

singular right T -module.

(2) Every essential ideal of Â is essential as an M(A)-submodule.

(3) For every submodule (subset) K ⊂ Â, there exists an idempotent ε(K) ∈ T ,

such that AnT (K) = (1− ε(K))T .

(4) For M(A)-submodules K � L ⊂ Â, ε(K) = ε(L).

(5) Every finitely generated T -submodule of Â is T -injective.

(6) If Â is a finitely generated M(Â)-module, then Â is a generator in T -Mod.

(7) For q1, . . . , qn ∈ Â assume q1 6∈
∑n
i=2 qiT . Then there exists µ ∈ M(A) such

that µq1 6= 0 and µqi = 0 for i = 2, . . . , n.

The central closure of a semiprime algebra is self-injective (as bimodule). This

class of rings obviously contains all rings which are direct sums of simple algebras.

We list some of their properties from 11.13 and 32.4.

32.4 Self-injective semiprime algebras.

Let A be a self-injective semiprime central R-algebra.

(1) For m1, . . . ,mn ∈ A, the following are equivalent:

(a) m1R ∩
∑n
i=2miR = 0.

(b) AnM(A)(m2, . . . ,mn)m1 � Am1.

(2) For any ideal N ⊂ A and m ∈ A, (TN(A) : m)M(A) = AnM(A)(mε(N)).

(3) For m1, . . . ,mn,m ∈ A and U = AnM(A)(m2, . . . ,mn) are equivalent:

(a) There exists h ∈M(A) with hm1 = mε(Um1) and

hmi = 0, for i = 2, 3, . . . , n;

(b) there exist r1, . . . , rk ∈M(A) such that for s1, . . . , sn ∈M(A) the relations∑n
l=1 slrjml = 0 , for j = 1, . . . , k, imply s1m ∈ TUm1(A).

Applying the construction of the idempotent closure of a module (in 11.15) to an

algebra, we obtain a subalgebra of the central closure:
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32.5 Idempotent closure of semiprime algebras.

Let A be a semiprime R-algebra, T = EndM(A)(Â), B the Boolean ring of idem-

potents of T . The idempotent closure of A as an M(A)-module, Ã = AB, is an

R-algebra and:

(1) For any a ∈ Ã, there exist a1, . . . , ak ∈ A and pairwise orthogonal e1, . . . , ek ∈ B,

such that

(i) a =
∑k
i=1 aiei,

(ii) ei = ε(ai)ei, for i = 1, . . . , k, and

(iii) ε(a) =
∑k
i=1 ei.

(2) For every prime ideal K ⊂ Ã, P = K ∩ A is a prime ideal in A and

Ã/K = (A+K)/K ' A/P.

The set x = {e ∈ B|Ãe ⊂ K} is a maximal ideal in B and K = PB + Ãx.

(3) For any prime ideal P ⊂ A, there exists a prime ideal K ⊂ Ã with K ∩A = P .

Proof. (1) This follows immediately from 11.15.

(2) Consider two ideals I, J ⊂ A with IJ ⊂ P . Then IB and JB are ideals

in Ã and (IB)(JB) ⊂ K. Hence IB ⊂ K or JB ⊂ K. Assume IB ⊂ K. Then

I ⊂ IB ⊂ K ∩ A ⊂ P . So P is a prime ideal in A.

Consider a ∈ A and e ∈ B. Since (Ãe)[Ã(1 − e)] = 0, Ãe ⊂ K or Ã(1 − e) ⊂ K.

Hence ae ∈ K or a(1− e) ∈ K, which means ae+K = K or ae+K = a+K.

Therefore for any d ∈ Ã, there exists r ∈ A, with d + K = r + K. This implies

Ã/K = (A+K)/K ' A/P .

An easy argument shows that x is a maximal ideal in the Boolean ring B.

Put U = PB + Ãx. Clearly U ⊂ K. For any a ∈ K, choose a1, . . . , ak ∈ A and

orthogonal idempotents e1, . . . , ek ∈ B satisfying the conditions (ii) and (iii) of (1).

In case all e1, . . . , ek ∈ x, then a ∈ Ãx ⊂ U .

Assume, without restriction, e1 6∈ x. Since eie1 = 0 for i 6= 1, we have e2, . . . , ek ∈
K. Also 1− e1 ∈ x. Therefore

a1 = a+ a1(1− e1) ∈ K + Ãx = K

and a1 ∈ P . Consequently, a1e1 ∈ PB and

a = a1e1 +
k∑
i=2

aiei ∈ PB + Ãx.

So in any case a ∈ U , implying K = U .

(3) Put S = A \ P . Obviously, for any a, b ∈ S,

∅ 6= (M(A)a)(M(A)b) ∩ S ⊂ (M(Â)a)(M(Â)b) ∩ S.
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Using this relationship we can show (as in the associative case) that an ideal K ⊂ Ã,

which is maximal with respect to K ∩ S = ∅, is a prime ideal.

Clearly I = K ∩A ⊂ P . As shown above, Ã/K = (A+K)/K ' A/I. Obviously,

P/I is a prime ideal in A/I. Hence there exists a prime ideal J ⊃ K of Ã, for which

J/K = (P +K)/K. This means J = P +K,

J ∩ A = P +K ∩ A = P + I = P,

and J ∩ S = ∅. By the choice of K we conclude K = J . 2

32.6 Semiprime algebras with non-zero socle.

Let A be a semiprime algebra and T := EndM(A)(Â).

(1) For any minimal ideal B ⊂ A, BT ⊂ B.

(2) SocM(A)A = Soc
M(Â)

Â.

(3) If SocM(A)A� A, then T is a product of fields.

Proof. (1) For any t ∈ T , (A)t−1 is an essential M(A)-submodule in A and hence

contains the minimal ideal B. Therefore B and (B)t are minimal ideals in A implying

B = (B)t or B ∩ (B)t = 0. The last equality means 0 = B(B)t = (B2)t and from this

we see that t is zero on the ideal generated by B2, which is in fact B. So BT ⊂ B.

(2) is an immediate consequence of (1).

(3) Assume SocM(A)A�A and SocM(A)A =
⊕

ΛBλ, where all Bλ are minimal ideals

in A. Then

T = HomM(A)(SocM(A)A, Â) ' EndM(A)(SocM(A)A) '
∏
Λ

EndM(A)(Bλ),

where each EndM(A)(Bλ) is a field (by Schur’s Lemma). 2

It is obvious that an associative commutative ring is semiprime if and only if it is

non-singular. More generally we observe:

32.7 Algebras with large centroids.

Let A be an algebra with large centroid C(A).

(1) The following are equivalent:

(a) A is a semiprime algebra;

(b) every essential ideal is rational and A has no absolute zero-divisors;

(c) A is non-A-singular (as bimodule) and A has no absolute zero-divisors.

(2) If A is semiprime, then EndM(A)(Â) is the maximal ring of quotients of the

centroid EndM(A)(A).
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Proof. (1) (a)⇒ (b) This follows from 32.1. (b)⇔ (c) Apply 11.1.

(b)⇒ (a) Let U ⊂ A be an ideal with U2 = 0. Then there exists an ideal K ⊂ A,

such that U ⊕K is essential, hence rational in A, and (U ⊕K)U = 0.

For any f ∈ HomM(A)(A,U),

(U ⊕K)fA = (U ⊕K) · (A)f = 0.

Since there are no absolut zero-divisors, (U ⊕K)f = 0. U ⊕K being rational in A

we conclude f = 0 and HomM(A)(A,U) = 0. The large centroid now implies U = 0,

showing that A is semiprime.

(2) This follows from 11.5. 2

There are quite different conditions which make a semiprime ring to have large

centre. Of course, this is the case for any Azumaya ring or any self-generator alge-

bra. It is long known that associative semiprime PI-rings have large centres and it

was shown in Slater [242] that the same is true for purely alternative prime algebras

A provided 3A 6= 0. In an attempt to subsume this similarities between associa-

tive PI-algebras and special non-associative algebras, L.H. Rowen studied polynomial

identities of non-associative algebras. Among other things he proved that semiprime

Jordan algebras with normal polynomial identity and also centrally admissible alge-

bras have large centres ([235, Theorem 2.5], [236, Theorem 3.3]).

For algebras with finite uniform dimension we get the following two-sided version

of Goldie’s Theorem 11.7:

32.8 Large centres and finite uniform dimension.

Let A be a semiprime algebra with unit, C(A) the centre of A and T := EndM(A)(Â).

The following conditions are equivalent:

(a) A has finite uniform dimension as M(A)-module and

(i) A has large centre, or

(ii) for every ideal V � A, there is a monomorphism A→ V ;

(b) T is the classical quotient ring of C(A) and

(i) for every ideal V � A, V T = Â, or

(ii) Â is a direct sum of simple algebras.

Proof. (a.i)⇒ (a.ii) Apply 11.6.

(a.ii)⇒ (b.i) By 11.5, T is the classical quotient ring of C(A).

Since A has finite uniform dimension, every monomorphism A→ V has essential

image and hence is invertible in T (by 9.18). This implies V T = Â

(b.i)⇒ (b.ii) V T = Â for all V � A implies that Â has no proper essential ideals

and hence is a finite direct sum of simple M(Â)-submodules.
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(b.ii)⇒ (a.i) Obviously Â and A have finite uniform dimension.

For any non-zero ideal U ⊂ A, UT is an ideal - and hence a direct summand - in

Â. This implies UT ∩ T 6= 0.

Consider any non-zero q := u1t1 + · · · + uktk ∈ UT ∩ T . Then there exists a

non-zero-divisor s ∈ C(A) such that tis ∈ C(A) for all i ≤ k and

0 6= qs = u1t1s+ · · ·+ uktks ∈ U ∩ T.

2

Adapting 11.8 we are able to characterize semiprime algebras A which are sub-

generators in M(A)-Mod. In particular, this includes R-algebras which are finitely

generated as R-modules.

32.9 Semiprime rings as subgenerators.

Let A be a semiprime algebra, T = EndM(A)(Â) and suppose M(A) ∈ σ[A]. Then:

(1) M(A) is left non-singular and QS(M(A)) = Qmax(M(A)).

(2) Â is a generator in Qmax(M(A))-Mod.

(3) ÂT is finitely generated and T -projective, and Qmax(M(A)) ' EndT (Â).

(4) If A has finite uniform dimension, then T and Qmax(M(A)) are left semisimple.

As a consequence we observe (see 10.7):

32.10 Corollary. For a semiprime algebra A the following are equivalent:

(a) A is a subgenerator in M(A)-Mod;

(b) Â is finitely generated as module over T = EndM(A)(A).

In this case Â is a (bi)regular Azumaya algebra over T (see 30.14 (7)).

It was noticed before that any R-algebra A, which is finitely generated as an R-

module, is a subgenerator in M(A)-Mod. This question is of great interest in the

theory of PI-algebras (see comments after 35.14).

In general, for a semiprime algebra A, M(Â) need not coincide with Qmax(M(A)).

If A is a subgenerator in M(A)-Mod, we have

M(A) ⊂M(Â) ⊂ EndT (Â) ' Qmax(M(A)).

If, moreover, Â is a direct sum of simple algebras, M(Â) is left semisimple, hence

self-injective, and we conclude

M(Â) = EndT (Â) ' Qmax(M(A)).

Then by 29.1, Â is an Azumaya T -algebra and we have:
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32.11 Central orders in Azumaya algebras.

For a semiprime central R-algebra with unit, the following are equivalent:

(a) A has large centre, finite uniform dimension, and is a subgenerator in M(A)-Mod;

(b) T = EndM(A)(Â) is the classical quotient ring of R and

(i) M(Â) is left semisimple and finitely generated as T -module, or

(ii) Â is an Azumaya algebra over T .

Remarks. The extended centroid and central closure where first introduced in

Martindale [191] for associative prime rings. With an elegant construction Amitsur

expanded these notions to associative semiprime rings in [45]. Further generalizations

to non-associative prime and semiprime rings occured in Erickson-Martindale-Osborn

[124] and Baxter-Martindale [62]. In Rowen [234, Theorem 2] it was implicitely ob-

served that the central closure of an associative semiprime (PI-) algebra A is A-

injective as an M(A)-module. The interpretation and construction of the central

closure of any semiprime ring as self-injective envelope of A as an M(A)-module was

given in [273].

Notice that in the associative case the extended closure is obtained as a subalgebra

of (larger) left rings of quotients (cf. Exercise (9)).

Extended centroids of skew polynomial rings are studied in Rosen-Rosen [231].

For an investigation of the extended centroid of normed and C∗-algebras we refer to

Cabrera-Rodriguez [104] and Ara [50].

32.12 Exercises.

(1) Let A be any semiprime algebra. Prove that A is a cogenerator in σ[A] if and

only if A is a weak product of simple algebras.

(2) Let A be an associative algebra. A left ideal I ⊂ A is called completely

semiprime if for any a ∈ A, a2 ∈ I implies a ∈ I. Recall that the circle composition

of a, b ∈ A is defined by a ◦ b := a+ b− ab. Prove ([48]):

(i) Let I ⊂ A be a completely semiprime left ideal. Then for a ∈ A, b ∈ I,

a− ba ∈ I implies that a ∈ I, and

b ◦ a ∈ I implies that a ◦ b ∈ I.

(ii) Suppose that I ⊂ A is a completely semiprime, maximal left ideal. Then I is

a two-sided ideal and the factor ring A/I is a division ring.

(3) Prove that for an alternative algebra A, the following are equivalent ([156]):

(a) A is a subdirect product of rings without zero-divisors;

(b) A is reduced.
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(4) Prove that for an associative algebra A, the following are equivalent ([47]):

(a) A is a subdirect product of division rings;

(b) every ideal I ⊂ A, when considered as a ring, contains an ideal U ⊂ I, such that

I/U is a strongly regular ring.

(5) Let A be an associative algebra with unit and {eλ}Λ a set of idempotents in

A. Prove ([80, Theorem 4]):

(i) If I ⊂ A is a completely semiprime ideal, then I+
∑

Λ eλA is a completely semiprime

ideal.

(ii) If Λ is finite and I ⊂ A is a semiprime ideal such that (1 − eλ)Aeλ ⊂ I for all

λ ∈ Λ, then I +
∑

Λ eλA is a semiprime ideal.

(6) Let A be an associative algebra with unit. Prove ([262]):

(i) The following are equivalent for a left ideal I ⊂ A:

(a) For any left ideals K,L ⊃ I, KL ⊂ I implies K = I or L = I;

(b) for any left ideals K,L, (I +K)(I + L) ⊂ I implies K ⊂ I or L ⊂ I;

(c) for a, b ∈ A, (a+ I)A(b+ I) ⊂ I implies a ∈ I or b ∈ I.

A proper left ideal I ⊂ A satisfying this conditions is called weakly prime.

(ii) For a left ideal I ⊂ A which is not two-sided, the following are equivalent:

(a) I is weakly prime;

(b) for every left ideal L ⊂ A, IL ⊂ A implies L ⊂ I;

(c) for every b ∈ A, IAb ⊂ I implies b ∈ I.

(iii) Suppose that every proper left ideal in A is weakly prime. Then A is a simple

algebra.

(7) Let A be an associative regular central unital R-algebra. Let T = EndM(A)(Â)

denote the extended centroid. Prove that the following are equivalent ([49, 2.2]):

(a) T = Qmax(R);

(b) any non-zero ideal of A which has no proper essential extension in A contains

a non-zero central element, and for every idempotent e ∈ A, eC(A) � C(eAe) (as

C(A)-module).

(8) Let A, B be associative semiprime K-algebras, K a field, and let T and S

denote their extended centroids. Prove ([195]):

The tensor product A⊗K B is semiprime if and only if T ⊗K S is semiprime.

(9) Martindale ring of quotients.

Let A be an associative semiprime algebra. Denote by F the filter of all ideals of A

with zero left (=right) annihilator. Then

Q0(A) := lim
−→
{HomA(I,AA) | I ∈ F}
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is a ring extension of A, called the Martindale left ring of quotients. Prove ([45, 4]):

(i) Q0(A) and Qmax(A) have the same centre which is isomorphic T := EndM(A)(Â)

and we have canonical inclusions

A ⊂ Â ⊂ Q0(A) ⊂ Qmax(A).

(ii) Q0(A) is injective as a T -modules.

(10) Let A be an associative PI-algebra with central closure Â and extended cen-

troid T . Prove that Â = Qmax(A) if and only if Â is finitely generated as T -module

([70, Lemma 5]).

(11) Semiprime algebras with many uniform ideals.

Let A be an R-algebra with extended centroid T . Prove that the following are equiv-

alent:

(a) Every ideal in A contains a uniform ideal;

(b) T is a product of fields.

(12) Almost classical localization ([73]).

Let A be a central R-algebra which is non-singular as an R-module.

(i) Prove that R is semiprime and lim
−→
{HomR(I, A) | I �R} ' HomR(R, Ã) ' Ã,

where Ã denotes the R-injective hull of A.

(ii) For essential ideals I, J ⊂ R and f ∈ HomR(I, A), g ∈ HomR(J,A), put

f · g : IJ → A, rs 7→ f(r)g(s), r ∈ I, s ∈ J.

Show that this map is properly defined and its (unique) extension to a map R → Ã

defines a product on Ã.

(iii) Prove that with this product Ã is an R-algebra which contains A as a subalgebra

and has the (regular) quotient ring R̂ (injective hull) as centre.

(iv) Assume A is (semi) prime. Show that Ã is (semi) prime.

(iv) Assume A to be an alternative regular algebra without nilpotent elements. Show

that Ã is also alternative regular without nilpotent elements ([73, 145]).

References. Amitsur [45], Baxter-Martindale [62, 63], Beidar [71], Beidar-Martin-

dale-Mikhalev [4], Beidar-Mikhalev [73], Beidar-Wisbauer [76, 75], Cabrera-Rodriguez

[104], Cobalea-Fernandez [108], González [145], Martindale [191], Matczuk [195],

Rosen-Rosen [231], Passman [220], Rowen [234, 235, 236], Slater [242], Wisbauer

[273].
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33 Closure operations in σ[A]

1.A-singular modules for semiprime rings. 2.A-singularity over left-nonsingular rings.

3.Singular closure in σ[A]. 4.Relations with the central closure. 5.M(A)-submodules

of A(Λ). 6.Correspondence of closed submodules of A(Λ).

Recall that a module N ∈ σ[A] is said to be singular in σ[A], or A-singular, if

N ' L/K, for some L ∈ σ[A] and K � L.

We denote by S the pretorsion class of all A-singular modules in σ[A], and for any

X ∈ σ[A] we write S(X) for the largest A-singular submodule of X.

For any semiprime ring A, S(A) = 0 (see 32.1) and S is a torsion class, i.e., it is

closed under extensions in σ[A] (see 10.2).

Over an associative ring A with unit, a left module is singular if and only if the

annihilator of each of its elements is an essential left ideal. This characterization is

based on the fact that A is projective as a left A-module and hence any homomorphism

from A to a singular left A-module has essential kernel.

In general, A is not projective as a bimodule (even if it is associative) and hence

we do not have a corresponding characterization of A-singular modules in σ[A]. How-

ever, any homomorphism from a non-A-singular module to an A-singular module has

essential kernel. So we may expect a similar characterization of A-singularity in case

A is non-A-singular, in particular if A is semiprime. This is what we show now.

33.1 A-singular modules for semiprime rings.

Let A be a semiprime ring. Then for any N ∈ σ[A], the following are equivalent:

(a) N is A-singular;

(b) for every cyclic M(A)-submodule X ⊂ N , there exists an essential ideal I � A

such that IX = 0 (or XI = 0).

If A is associative, (b) is equivalent to:

(c) For every x ∈ N , there exists an essential ideal I �A with Ix = 0 (or xI = 0).

Proof. (a)⇒ (b) Let X ⊂ N be generated by one element. By 10.3, X is contained

in a finitely A-generated, A-singular module X̃. For this we have an epimorphism f :

An → X̃, for some n ∈ IN . Since A is non-A-singular, for each inclusion εi : A→ An,

i = 1, . . . , n, we have Ke εif �A. Then I :=
⋂n
i=1 Ke εif is an essential ideal in A and

IX̃ = I(An)f ⊂ (In)f = 0.

Similarly we get X̃I = 0. From this the assertion follows.

(b) ⇒ (a) Let X ⊂ N be a cyclic M(A)-submodule and let H � A be such that

HX = 0. Take X̃ to be a finitely A-generated essential extension of X. Then we have
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the exact diagram
An

↓ f
0 −→ X −→ X̃

p−→ X̃/X −→ 0 ,

↓
0

and for every inclusion εi : A→ An, i = 1, . . . , n,

Ii := (X)(εif)−1 � A, and I :=
n⋂
i=1

Ii � A.

For this we have

<HI> X̃ =<HI> (An)f ⊂ H(In)f ⊂ HX = 0 ,

where <HI> denotes the ideal generated by HI. This shows that < HI >n⊂ Ke f .

Also, < HI > is an essential ideal in A since for every non-zero ideal L ⊂ A, 0 6=
(I ∩H ∩ L)2 ⊂ IH ∩ L. Hence X̃ and X are A-singular.

(b)⇔ (c) For an associative algebra A, the ideal generated by x ∈ N has the form

(ZZ + A)x(ZZ + A). Hence for any ideal I ⊂ A, Ix = 0 implies

I(ZZ + A)x(ZZ + A) = Ix(ZZ + A) = 0.

2

For an associative left non-singular ring A with unit, we have a nice one sided char-

acterization of the A-singular (bi)modules in σ[A]. Denoting the singular submodule

of any left module X by Sl(X) we obtain:

33.2 A-singularity over left-nonsingular rings.

For an associative semiprime ring A with unit, the following are equivalent:

(a) Sl(A) = 0, i.e., A is left non-singular;

(b) for every module X ∈ σ[A], S(X) = Sl(X).

Proof. (a) ⇒ (b) By Proposition 33.1, the elements of S(X) are annihilated by

essential ideals. Since A is semiprime, any essential ideal I ⊂ A is also essential as

left ideal. So S(X) ⊂ Sl(X).

Denote N := Sl(X). This is obviously an A-bimodule and hence it is contained

in an A-generated essential extension Ñ ∈ σ[A]. Consider the exact sequence of

A-bimodules

0→ N → Ñ → Ñ/N → 0.
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By construction, Ñ/N is A-singular and hence left singular by the above argument.

Considering this sequence in A-Mod, we have Ñ as an extension of the left singular

A-modules N and Ñ/N . Since Sl(A) = 0 we know that the class of singular left

modules is closed under extensions and hence Ñ is left singular.

By construction, there is a bimodule epimorphism f : A(Λ) → Ñ . For every

inclusion ελ : A→ A(Λ), Ke ελf is an ideal, which is essential as a left ideal, since Ñ

is left singular. Then it is certainly essential as an ideal showing that Ñ is A-singular.

(b)⇒ (a) Since A ∈ σ[A], we have Sl(A) = S(A) = 0. 2

We are now going to outline the transfer of the closure operations for modules in

σ[M ] to the category σ[A], where A is any ring with multiplication algebra M(A).

Recall that for modules K ⊂ N in σ[A] we have two types of ’closures’ of K in N :

the maximal essential extension of K in N (which is unique if N is non-A-singular),

and the A-singular closure of K in N defined by [K]N/K := S(N/K).

Using the characterization of A-singular modules given in 33.1 we obtain:

33.3 Singular closure in σ[A].

Let A be a semiprime ring and K ⊂ N in σ[A]. Then

[K]N = {x ∈ N | Ix ⊂ K ( or xI ⊂ K) for some essential ideal I � A}.

Over a semiprime ring A, for any N ∈ σ[A], the A-singular closed submodules

are in one-to-one correspondence with the closed submodules of N/S(N) (by 12.4).

Hence in what follows we will focus on non-A-singular modules.

Applying 12.7 to A, and recalling that the central closure Â is just the A-injective

hull of A we have:

33.4 Relations with the central closure.

Let A be a semiprime ring with central closure Â and T := EndM(A)(Â).

(1) There exists bijections between

(i) the closed ideals in A,

(ii) the ideals which are direct summands in Â,

(iii) the ideals which are direct summands in T .

(2) (i) For any essential ideal I � T , ÂI ⊂ Â is an essential ideal.

(ii) For every Â-generated essential ideal V ⊂ Â, Hom
M(Â)

(Â, V ) � T .

Proof. (1) is immediately clear by 12.7(1).

(2) It is easy to see that the M(A)-submodule ÂI is in fact an ideal in Â. Moreover,

since T is commutative, HomM(A)(Â, V ) is a (two-sided) ideal in T and Tr(Â, V ) (in

M(A)-Mod) is an ideal in Â. With this remark the assertions follow from 12.7(2). 2
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Applying the correspondence theorem for submodules of M (Λ) and M̂ (Λ) to A(Λ)

and Â(Λ) a new phenomenon occurs (similar to 33.4): In Â(Λ) we have M(A)-submod-

ules and M(Â)-submodules. It is a nice aspect of the theory that closed M(A)-

submodules and closed M(Â)-submodules coincide. We are going to prove this fact,

which is similar to the observation (made in 12.11) that for associative rings A with

unit the closed left A-submodules of Q(A)(Λ) are precisely the same as the closed left

Q(A)-submodules.

33.5 M(A)-submodules of A(Λ).

Let A be a semiprime ring with central closure Â and T := EndM(A)(Â). Then:

(1) HomM(A)(Â, Â
(Λ)) = Hom

M(Â)
(Â, Â(Λ)).

(2) Closed M(A)-submodules of Â(Λ) are closed M(Â)-submodules, and conversely.

(3) Closed M(A)-submodules of Â(Λ) are Â-generated M(Â)-submodules.

(4) If A is a finitely generated M(A)-module, then for every T -submodule

X ⊂ Hom
M(Â)

(Â, Â(Λ)),

Hom
M(Â)

(Â, ÂX) = X.

Proof. (1) Recall that T = EndM(A)(Â) = End
M(Â)

(Â). Now the assertion follows

from the fact that every f ∈ HomM(A)(Â, Â
(Λ)) is determined by the fπλ ∈ T , where

πλ : Â(Λ) → Â denote the canonical projections.

(2) Since M(Â) = M(A)T we have to show that every closed M(A)-submodule

U ⊂ Â(Λ) is a T -submodule:

Let t ∈ T and I � A such that It ⊂ A. Then Ut · I = U(It) ⊂ U . Since U is

closed this implies Ut ⊂ U (by 33.3).

Clearly every M(A)-closed submodule is M(Â)-closed.

Suppose that V ⊂ Â(Λ) is a closed M(Â)-submodule. Let u ∈ Â(Λ) be such that

uI ⊂ V for some I � A. Then obviously uIT ⊂ V , where IT is an essential ideal in

Â. Since V is M(Â)-closed this implies u ∈ V showing that V is M(A)-closed.

(3) By 12.8, a closed submodule U ⊂ Â(Λ) is Â-generated as M(A)-module. Now

it is obvious by (1) that Â generates U as M(Â)-module.

(4) Applying (1) this follows from 12.9. 2

We are now prepared to present the following
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33.6 Correspondence of closed submodules of A(Λ).

Let A be a semiprime ring which is finitely generated as M(A)-module. We put

T := End(M(A)(Â) and identify T (Λ) = Hom
M(Â)

(Â, Â(Λ)). Then there are bijections

between

(i) the closed M(A)-submodules of A(Λ),

(ii) the closed M(Â)-submodules of Â(Λ),

(iii) the closed T -submodules of T (Λ).

References. Ferrero [129, 130, 131], Ferrero-Wisbauer [132].
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34 Strongly and properly semiprime algebras

1.Lemma. 2.Associative PSP algebras. 3.Strongly semiprime rings. 4.Properly semi-

prime rings. 5.Pierce stalks and PSP algebras. 6.Fully idempotent rings. 7.Biregular

and PSP rings. 8.Central closure as Azumaya ring. 9.Example. 10.Exercises.

Definition. An algebra A is said to be properly semiprime (PSP) if it is PSP as an

M(A)-module. A is called strongly semiprime (SSP) if it is SSP as an M(A)-module.

A is called strongly prime if it is a strongly prime M(A)-module.

Obviously, every strongly prime algebra is SSP, and every SSP algebra is PSP.

Strongly prime algebras will be studied in the next section.

We need a slight non-degeneracy condition to make PSP algebras to be semiprime.

34.1 Lemma. Let A be an algebra such that no non-zero ideal of A annihilates A.

(1) If A is a PSP algebra then A is semiprime.

(2) If A is a strongly prime algebra then A is prime.

Proof. (1) Assume K ⊂ A is a non-zero finitely generated ideal with K2 = 0.

Consider U = {La | a ∈ K}. By assumption, A/TK(A) ∈ σ[K]. Now UK = 0 implies

U(A/TK(A)) = 0 and KA ⊂ TK(A). So KA ⊂ TK(A) ∩ K = 0, contradicting the

given condition.

(2) Consider non-zero ideals I, J ⊂ A with IJ = 0. Put U = {La | a ∈ I}. By

assumption, A ∈ σ[J ] and hence IA = UA = 0, a contradiction. 2

In general, a strongly prime ring need not be prime. For this consider the cyclic

group ZZp of prime order p with the trivial multiplication ab = 0, for all a, b ∈ ZZp.

This is a strongly prime (simple) ring which is not prime.

For associative A we have the notions of PSP and left PSP algebra. We observe

the following relationship between these properties:

34.2 Associative PSP algebras.

Let A be an associative semiprime algebra with unit.

(1) In σ[A], TU(A) = AnA(U) for any ideal U ⊂ A.

(2) If A is a PSP ring, then A is left PSP.

(3) If A is an SSP ring, then A is left SSP.

(4) If A is a strongly prime ring, then A is left strongly prime.
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Proof. (1) TU(A) is an ideal in A and TU(A) ∩ U = 0, hence TU(A) ⊂ AnA(U).

Consider f ∈ HomM(A)(AnA(U), IA(U)) and put K = (U)f−1. Then

(Kf)2 ⊂ U(Kf) = (UK)f ⊂ (UAnA(U))f = 0.

Since A is semiprime, Kf = 0 and so Imf ∩ U = 0, implying f = 0. Hence

TU(A) ⊃ AnA(U) (compare 14.18).

(2) Consider a, b ∈ A and assume without restriction A = L(A) ⊂M(A). Since A

is PSP, there exist x1, . . . , xk ∈M(A) such that

AnM(A)(x1a, . . . , xka)b ⊂ TM(A)a(A) = AnA(M(A)a) ⊂ AnM(Aa).

In particular,

AnA(x1a, . . . , xka)b ⊂ AnM(Aa).

Now assume xi =
∑mi
j=1 LyijRzij . Then

AnA({yija | 1 ≤ j ≤ mi, 1 ≤ i ≤ k})b ⊂ AnM(Aa).

By 14.18, TAa(A) = AnA(Aa). Hence by 14.6, the above relation implies that A is

left PSP.

(3) and (4) are shown in a similar way. 2

34.3 Strongly semiprime rings.

Let A be a ring which is not annihilated by any non-zero ideal and T = EndM(A)(Â).

Then the following conditions are equivalent:

(a) A is an SSP ring;

(b) A is semiprime and for every essential ideal U ⊂ A, A ∈ σ[U ];

(c) for every ideal I ⊂ A, Â = IT ⊕ TI(Â).

(d) A is semiprime and the central closure Â is a direct sum of simple ideals.

If A is associative, then (a)-(d) are equivalent to:

(e) A is semiprime and for every ideal I ⊂ A, A/AnA(I) ∈ σ[I];

Proof. By 34.1, A being SSP implies that A is semiprime.

(a)⇔ (b) Since A is semiprime, A is a polyform M(A)-module by 32.2. Hence the

assertion follows from 14.10.

(a)⇔ (c) This is also obtained from 14.10.

(a)⇔ (d) The central closure Â is a direct sum of simple ideals if and only if it is

semisimple as an (M(A), T )-bimodule. Now apply 14.4.

(a)⇔ (e) By 34.1, R is a semiprime ring. Hence by 34.2, TU(A) = AnA(U). Now

the equivalence is clear by 14.3. 2
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34.4 Properly semiprime rings.

Let A be a semiprime ring, T = EndM(A)(Â), B the Boolean ring of idempotents

of T and Ã = AB the idempotent closure of A. Then the following are equivalent:

(a) A is a PSP ring;

(b) for every a ∈ A, M(A)aT = Âε(a);

(c) for every finitely generated ideal K ⊂ A, KT = Âε(K);

(d) Ã is a PSP ring.

Under the given conditions, for every a ∈ A, Ta(Â) = Â(id− ε(a)).

Proof. Since semiprime rings are polyform as bimodules, these equivalences essen-

tially are obtained from 14.11.

We only have to show that (d), i.e., Ã is PSP as an M(Ã)-module, is equivalent

to Ã being PSP as an M(A)-module. This follows readily from M(Ã) = M(A)B. 2

34.5 Pierce stalks and PSP algebras.

Let A be a semiprime PSP algebra with extended centroid T . Denote by B the

Boolean ring of idempotents of T , and by X the set of maximal ideals in B. Consider

the idempotent closure Ã = AB of A and the canonical projections ϕx : Ã→ Ãx, for

x ∈ X .

Assume that for any ideal K ⊂ A, K ⊂M(A)(KA). Then:

(1) For every x ∈ X , Ãx = Ã/Ãx is a prime and strongly prime ring.

(2) For every minimal prime ideal P ⊂ A there exists an x ∈ X such that Ãx ' A/P

and P = A ∩ Ãx.

Proof. (1) By 34.4, Ã is a PSP algebra. It follows from 18.16 that Ãx is a strongly

prime M(Ã)-module. Since M(Ãx) = M(Ã)/An
M(Ã)

Ãx, Ãx is a strongly prime

M(Ãx)-module, i.e., Ãx is a strongly prime algebra.

Consider any non-zero ideal I ⊂ Ãx. Since (A)ϕx = Ãx we have I ⊂M(Ãx)(IÃx).

In particular, IÃx 6= 0. By 34.1, this implies that Ãx is a prime ring.

(2) Consider a minimal prime ideal P ⊂ A. By 32.5, there exists a prime ideal

K ⊂ Ã with K ∩ A = P . Moreover,

x := {e ∈ B | eÃ ⊂ K} ∈ X , K = PB + xÃ and Ã/K ' A/P .

From above it follows that Ãx is a prime ideal in Ã. Now by 32.5, Ãx ∩A is a prime

ideal in A. But Ãx ∩ A ⊂ K ∩ A = P and P is a minimal prime ideal. Therefore

Ãx∩A = P and K = PB+ Ãx = Ãx. This shows that Ãx = Ã/K ' A/P is a prime

and strongly prime ring. 2
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In [77, Theorem 3.5] a result similar to 34.5 is stated for associative left PSP

algebras with a weak symmetry condition. Moreover, an example of an associative

semiprime PI-algebra is constructed which is left PSP, coincides with its central closure

but is not biregular.

An algebra A is said to be fully idempotent if, for any ideal I ⊂ A, I = M(A)I2.

Clearly such rings are semiprime. We show a module property of them:

34.6 Fully idempotent rings.

Let A be a fully idempotent ring. Then A is pseudo regular as M(A)-module.

Proof. Put S = EndM(A)(A) and T = EndM(A)(Â). For any subset U ⊂ A, define

Lo(U) = {Lu |u ∈ U}. Consider a ∈ A and I = M(A)a. By assumption,

I = M(A)I2 = M(A)Lo(I)I,

and hence a ∈ M(A)Lo(I)M(A)a. Therefore there exists α ∈ M(A)Lo(I)M(A) with

αa = a. Obviously, α ∈ M(A) and αA ⊂ I ⊂ M(A)aT . So A is a pseudo regular

M(A)-module (see 14.21). 2

The next result reveils the connection between biregular and PSP rings. For

simplicity we only consider rings with units, although our methods apply to the general

case.

34.7 Biregular and PSP rings.

Let A be a semiprime ring with unit, T = EndM(A)(Â), B the Boolean ring of

idempotents of T and Ã = AB the idempotent closure of A. Then the following are

equivalent:

(a) A is biregular;

(b) A is a fully idempotent PSP ring;

(c) for every a ∈ A, M(A)a = Aε(a);

(d) Ã is biregular;

(e) A is PSP and every prime ideal in A is maximal;

Proof. (a)⇒ (b) Assume A is biregular. Then A is fully idempotent.

For any a ∈ A, M(A)a = Ae for some idempotent e ∈ C. e extends to a unique

idempotent ē ∈ T and M(A)aT = AT ē = Âē. As easily checked, ē = ε(a). So A is

PSP by 34.4.

(b) ⇒ (a) By 34.6, fully idempotent rings are pseudo regular M(A)-modules.

Hence the assertion follows from 14.23.
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(b)⇔ (c) Since A is polyform, these assertions follow from 14.23.

(b) ⇒ (d) Since A is polyform, Ã is PSP by 14.11. We show that Ã is fully

idempotent. Any element in Ã can be written as a =
∑k
i=1 aiei, for some ai ∈ A

and pairwise orthogonal ei ∈ B. Put K = M(Ã)a and Ki = M(A)ai. Clearly

K =
∑k
i=1KieiB. Since A is fully idempotent, Ki = M(A)K2

i . Hence

M(Ã)K2 =
k∑
i=1

M(A)K2
i eiB =

k∑
i=1

KieiB = K,

and Ã is fully idempotent. So Ã is biregular by (a)⇔ (b).

(d)⇒ (a) Consider a ∈ A. By assumption, M(Ã)a = Ãε(a). Obviously, M(Ã) =

M(A)B and M(Ã)a = M(A)aB. Put c = ε(a). Clearly ε(c) = c and c ∈ M(A)aB.

By 32.5, there exist a1, . . . , ak ∈M(A)a and pairwise orthogonal e1, . . . , ek ∈ B, such

that

c =
k∑
i=1

aiei and c = ε(c) =
k∑
i=1

ei.

Therefore cei = aiei, cei = ei and (1− ai)ei = 0, for all i = 1, . . . , k. Put

b = (...(((1− a1)(1− a2))(1− a3)...)(1− ak).

Clearly bei = 0 for all i = 1, . . . , k. Hence bc = 0. Since ai ∈M(A)a, b = 1 + d where

d ∈M(A)a. Further since ac = aε(a) = a and d ∈M(A)a, dc = d. So

0 = bc = (1 + d)c = c+ dc = c+ d and ε(a) = c = −d ∈M(A)a.

Hence M(A)a ⊂ Aε(a) ⊂M(A)a and M(A)a = Aε(a).

(a)⇒ (e) We have shown above that A is a PSP ring. Since A is biregular, every

prime ideal is maximal.

(e) ⇒ (a) By 34.4, Ã is a PSP algebra and by 34.5, Ãx is a prime ring, for every

maximal ideal x in the Boolean ring of central idempotents of Ã. According to 32.5,

Ãx ' A/(A ∩ Ãx). Hence A ∩ Ãx is a prime ideal in A and - by hypothesis - it is in

fact maximal. So Ãx is a simple ring. Now it follows from 30.4 that Ã is a biregular

ring. 2

Combining our results 14.13, 14.14 and 26.4 we have:

34.8 Central closure as Azumaya ring.

Let A be a semiprime ring with unit, T = EndM(A)(Â) and Â the central closure

of A. Then the following are equivalent:

(a) Â is an Azumaya ring;

(b) Â is a PSP ring and the module
M(Â)

Â is finitely presented in σ[Â];
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(c) Â is a biregular ring and the module
M(Â)

Â is projective in σ[Â];

(d) the module
M(Â)

Â is a generator in σ[Â];

(e) M(Â) is a dense subring of EndT (Â);

(f) for any m1, . . . ,mn,m ∈ A there exist r1, . . . , rk ∈M(A) such that for

s1, . . . , sn ∈M(A) the relations

n∑
l=1

slrjml = 0 for j = 1, . . . , k,

imply s1m ∈ TUm1(A) for U = AnM(A)(m2, . . . ,mn);

(g) A is a PSP ring and for any m1, . . . ,mn ∈ A there exist r1, . . . , rk ∈M(A) such

that for s1, . . . , sn ∈M(A) the relations

n∑
l=1

slrjml = 0 for j = 1, . . . , k,

imply s1m1 ∈ TUm1(A) for U = AnM(A)(m2, . . . ,mn).

34.9 Example. There exists a biregular (PI-) algebra A with unit, whose central

closure is not biregular. So A is PSP as an M(A)-module but Â is not PSP.

Proof. Let F be field of non-zero characteristic p, K = F (X) the field of the rational

functions and G = F (Xp) a subfield of K. Consider the embedding

α : K →Mp(G) := EndG(K), a 7→ La.

Denote by Q = Mp(G)IN and I = Mp(G)(IN). We have an embedding

ψ : K →Mp(G)IN ⊂ Q, k 7→ {α(k)}IN .

Clearly I is an ideal in Q. Put A = I + ψ(K). Obviously, A is a biregular ring

with unit, whose maximal right ring of quotients is Q, and the centre T of Q is the

extended centroid of A.

Hence R = AT is the central closure of A. I is an ideal in R and R/I is a

commutative ring. Let y ∈ Q denote an element all whose coefficients are equal to X

and put z = ψ(X). Then yp = zp. Therefore y− z+ I is a non-zero nilpotent element

in the commutative ring R/I. Hence R cannot be biregular. 2

Remark. Similar to Goldie’s theorem for associative rings, the following was

proved by Zelmanov (with different techniques, see [281, Theorem 1]): Let A be

a (semi-) prime Jordan algebra satisfying the annihilator chain condition and not

containing an infinite direct sum of inner ideals. Then A is an order in a (semi-)

simple Jordan algebra with dcc for inner ideals.
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34.10 Exercises.

(1) Call an algebra A a left PSP algebra if A is PSP a an L(A)-module, and call

A left strongly prime if it is strongly prime as an L(A)-module. Prove ([76, 9.2]):

(i) Assume A is left PSP and no non-zero left ideal of A annihilates the right nucleus

Nr(A). Then A is a semiprime ring.

(ii) Assume A is left strongly prime and no ideal of A annihilates A. Then A is a

prime ring.

(2) Let A be an associative algebra with unit.

(i) Prove that the following assertions are equivalent ([77, 4.4]):

(a) A is regular and biregular;

(b) A is regular and left PSP;

(c) A is left PSP and all prime factor algebras are regular;

(d) the idempotent closure Ã is regular and biregular.

(ii) Assume that A is reduced. Prove that A is regular if and only if every prime

factor algebra is regular ([77, 4.5]).

(3) Let A be an associative algebra with unit. A is called u-regular (unit-regular)

if, for every r ∈ A, there exists an invertible s ∈ A with r = rsr.

Prove ([77, 4.6, 4.7]):

(i) Let A be biregular and X the set of maximal ideals of the Boolean ring of

central idempotents of A. Assume that Ax is u-regular, for all x ∈ X . Then A is a

u-regular algebra.

(ii) The following assertions are equivalent:

(a) A is u-regular and biregular;

(b) A is u-regular and left PSP;

(c) A is a left PSP ring whose prime factor rings are u-regular;

(d) the idempotent closure Ã is u-regular and biregular.

(4) Let A be an associative algebra with unit.

A is said to be of bounded index (of nilpotency) if there exists n ∈ IN such that

an = 0 for each nilpotent a ∈ A. The least such n ∈ IN is called the index of A.

Prove ([151, 53]):

(i) If A is semiprime and n ∈ IN , the following are equivalent:

(a) A is of bounded index n;

(b) for every subset X ⊂ A, AnA(Xn) = AnA(Xn+1);

(c) for every x ∈ A, AnA(xn) = AnA(xn+1);

(d) for each x ∈ A and each ideal I ⊂ A, AnA(xnI) = AnA(xn+1I).

(ii) Suppose A has index n ∈ IN , and denote by N the sum of all nilpotent ideals

of A. Then for any nil subring X ⊂ A, Xn ⊂ N .
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(5) Let A be an associative semiprime algebra of index n ∈ IN . Prove ([151, 53]):

(i) Every nil subring of A is nilpotent.

(ii) A has no non-zero nilpotent left (or right) ideal.

(iii) A is left (and right) non-singular.

(iv) If A is prime then A is left strongly prime.

(v) If A is left strongly semiprime, then A has acc on left (and right) annihilators.

(6) Let A be an associative semiprime algebra of index n ∈ IN .

(i) Prove that the following are equivalent ([74, Theorem 4]):

(a) Every left ideal in A is idempotent;

(b) every right ideal in A is idempotent;

(c) for each a ∈ A, there exists an idempotent e ∈M(A)a such that ae = a;

(d) for any ideal L ⊂ A and any a1, . . . , am ∈ A and b1, . . . , bn ∈ A, there exists an

idempotent e ∈ L such that aie = eai and bje = bj = ebj, for all i ≤ m, j ≤ n.

(ii) Suppose that for every minimal prime ideal P ⊂ A, A/P is a regular ring.

Show that for each a ∈ A there exists x ∈ A such that anxan = an ([74, Lemma 7]).

(7) Let A be an associative central R-algebra with unit which is an algebraic

extension of R (each element satisfies a non-zero polynomial with coefficient in R).

Prove ([56]):

If A is semiprime and has acc on left (or right) annihilators, then A has large

centre and the central closure Â is a left semisimple algebra.

References. Armendariz-Hajarnavis [56], Beidar-Wisbauer [75, 76, 77], Hannah

[151], Wisbauer [273], Zelmanov [281].
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35 Prime and strongly prime rings

1.Lemma. 2.Extended centroid of prime algebras. 3.Tensor products with central clo-

sures. 4.Multiplication ideal of central closures. 5.Prime algebras with non-zero socle.

6.Strongly prime algebras. 7.Characterization of strongly prime rings. 8.More char-

acterizations of left strongly prime rings. 9.Proposition. 10.Prime algebra with large

centroids. 11.Prime algebras with large centres. 12.Strongly prime subgenerators.

13.Alternative subgenerators. 14.Central orders in central simple algebras. 15.Sub-

generator with large centroid. 16.Corollary. 17.Centroid of strongly affine algebras.

18.Strongly affine ideals and multiplication algebra. 19.The strongly affine dimension

of strongly affine algebras. 20.Exercises.

Applying the constructions in 32.1 and 32.2 we obtain:

35.1 Lemma. Assume A is a prime algebra. Then:

(1) The centroid of A is a prime ring and the extended centroid EndM(A)(Â) is a

field.

(2) The central closure Â of A is a prime algebra.

Proof. (1) A prime ring A is a uniform M(A)-module and the assertion follows from

11.1 and 32.1(2).

(2) For any ideals U, V ⊂ Â, U ∩A and V ∩A are ideals in A, and UV = 0 implies

(U ∩ A)(V ∩ A) = 0. Hence U = 0 or V = 0, i.e., Â is prime. 2

In general, the extended centroid of a prime algebra need not be an algebraic

extension of the centroid (see Exercise 35.20(4)). However, under certain conditions

it may coincide with the quotient field of the centroid (see 35.10).

If A is a prime algebra, every ideal generated by b ∈ A is essential, and hence any

h ∈ EndM(A)(Â) is uniquely determined by its restriction to M(A)b, i.e., by the image

of b. Since (A)h ∩ A 6= 0, we may choose b ∈ A such that a := (b)h ∈ A. Hence we

can identify the elements of the extended centroid with certain pairs (a, b) ∈ A× A.

35.2 Extended centroid of prime algebras.

For any prime algebra A, consider the set

C ′ := {(a, b) ∈ A× (A \ 0) | a = 0 or AnM(A)(a) = AnM(A)(b)},

with an equivalence relation

(a, b) ∼ (a′, b′) if there exist µ, ν ∈M(A) such that µb = νb′ 6= 0 and µa = νa′.
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On the set of equivalence classes C := C ′/ ∼ we define operations

[a, b] + [c, d] := [βa+ δc, βb], with βb = δd 6= 0, β, δ ∈M(A);

[a, b] · [c, d] :=

{
[γc, αb], with αa = γd 6= 0, if a 6= 0, α, γ ∈M(A),

[0, b], if a = 0.

It is routine work to check that with this operations C is a ring, in fact a field as

becomes evident from the observation

Property (1). C is isomorphic to the extended centroid T := EndM(A)(Â).

Proof. For h ∈ T and non-zero b, b′ ∈ A, ((b)h, b) and ((b′)h, b′) are equivalent

elements in C ′. Hence we have a map

ϕ : T → C, h 7→ [(b)h, b].

On the other hand, every (a, b) ∈ C ′ defines an M(A)-homomorphism

h′ : M(A)b→M(A)a, µb 7→ µa,

which extends uniquely to h : Â → Â. Obviously, any pair of elements equivalent to

(a, b) yield the same h : Â→ Â.

So ϕ is a bijection and it is easy to verify that it is a ring isomorphism. 2

Property (2). If A is an associative prime algebra, then

(i) C ′ = {(a, b) ∈ A× A | axb = bxa, for all x ∈ A};
(ii) the equivalence relation ∼ on C ′ is given by

(a, b) ∼ (a′, b′) if axb′ = bxa′ , for all x ∈ A;

(iii) the operations on C are given by

[a, b] + [c, d] = [axd+ bxc, bxd],

[a, b] · [c, d] = [axc, bxd], with bxd 6= 0, x ∈ A.

Proof. (i) For (a, b) ∈ C ′ and a 6= 0,

Lax −Rxa ∈ AnM(A)(a) = AnM(A)(b), i.e., axb = bxa, for all x ∈ A.

Let (a, b) ∈ A× A with axb = bxa, for all x ∈ A. For µ =
∑
LxiRyi ∈ AnM(A)(b),

(µa)xb =
∑

(xiayi)xb =
∑

(xibyi)xa = 0, for all x ∈ A,

and hence µa = 0 (by primeness of A). Applying the same argument for a 6= 0 we

have AnM(A)(a) = AnM(A)(b).
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(ii) Let (a, b), (a′, b′) ∈ C ′ be such that axb′ = b′xa, for all x ∈ A. Choose x ∈ A
such that bxb′ 6= 0 and put µ = Rxb′ , ν = Lbx. Then µb = bxb′ = νb′, and

µa = Rxb′a = axb′ = b′xa = Lbxa
′ = νa′.

This shows (a, b) ∼ (a′, b′).

(iii) In the definition of the operations on C put

β = Rxd, δ = Lbx, α = Rxd and γ = Lax, for suitable x ∈ A. 2

There are nice properties concerning tensor products with central closures which

we are going to display now.

35.3 Tensor products with central closures.

Let A be a prime algebra, T = EndM(A)(Â) and B any T -algebra.

(1) If B has no absolute zero-divisors, then any non-zero ideal I ⊂ Â⊗T B contains

a non-zero element a⊗ b, where a ∈ Â and b ∈ B.

(2) If B is (semi-) prime then Â⊗T B is (semi-) prime.

(3) If B is prime then Â⊗T B̂ is self-injective as bimodule with centroid EndM(B)(B̂).

Proof. (1) Any non-zero x ∈ I is of the form
∑k
i=1 ai ⊗ bi, and we may assume

a1 6∈
∑k
i=2 aiT . By 32.3, we can choose µ ∈M(A) such that µa1 6= 0 and µai = 0, for

i = 2, . . . , k. Moreover, pick c ∈ B with cb1 6= 0. Then

I 3 (µ⊗ Lc)(
k∑
i=1

ai ⊗ bi) = µa1 ⊗ cb1 6= 0.

(2) Consider non-zero ideals I, J ⊂ Â ⊗T B with IJ = 0. Applying (1), choose

non-zero a⊗ b ∈ I and c⊗ d ∈ J . Then

(M(Â)a)(M(Â)c)⊗(M(B)b)(M(B)d) ⊂M(Â⊗B)(a⊗b)·M(Â⊗B)(c⊗d) ⊂ IJ = 0.

Since (M(Â)a)(M(Â)c) 6= 0 we conclude (M(B)b)(M(B)d) = 0, a contradiction to B

being prime.

The same argument applies for B semiprime.

(3) Let I ⊂ Â ⊗T B̂ be any ideal and f : I → Â ⊗T B̂ a non-zero M(Â ⊗T B̂)-

homomorphism. Im f ⊂ Â ⊗T B̂ is a non-zero ideal and hence contains a non-zero

element a⊗ b, a ∈ Â, b ∈ B̂. The set

U := {u ∈ I | (u)f ∈M(Â⊗T B̂)(a⊗ b)},

is an ideal in Â ⊗T B̂ and there is a non-zero element x ⊗ y, x ∈ Â, y ∈ B̂ (by (1)).

Without restriction assume U = M(Â⊗T B̂)(x⊗ y). We have
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(x⊗ y)f = µa⊗ νb, for some µ ∈M(Â) and ν ∈M(B̂).

Since Â⊗T B̂ is prime (by (2)), f is a monomorphism. So it is obvious that x and µa

have the same annihilator in M(Â), and y and νb have the same annihilator in M(B̂).

Hence (by 35.2) there are elements g ∈ T and h ∈ EndM(B)(B̂) with (x)g = µa and

(y)h = νb. Tensoring the two maps we have

(x⊗ y)g ⊗ h = µa⊗ νb = (x⊗ y)f.

So f |U can be extended to an isomorphism of Â ⊗T B, which also extends f . This

means that Â⊗T B̂ is self-injective as a bimodule.

The construction shows that every endomorphism of Â⊗T B̂ is of the form

g ⊗ h ∈ T ⊗T EndM(B)(B̂) ' EndM(B)(B̂). 2

In particular we obtain for associative algebras:

35.4 Multiplication ideal of central closures.

Let A be an associative prime algebra and T = EndM(A)(Â). Then the canonical

map (2.5)

Â⊗T Âo →M∗(Â), a⊗ b 7→ LaRb,

is an isomorphism.

Proof. Since the map is always surjective it remains to show that its kernel is zero.

If this is not the case it contains a non-zero element a ⊗ b (by 35.3). This means

aAb = 0, a contradiction to A being prime. 2

As an application of 32.6 we notice:

35.5 Prime algebras with non-zero socle.

Let A be a prime algebra with T = EndM(A)(Â) and B = SocM(A)A 6= 0. Then:

(1) B is equal to Soc
M(Â)

Â.

(2) T = EndM(A)(B).

(3) The image of the canonical map M(A)→ EndT (B) is dense.

(4) If A is associative, then B is a simple ring.

(5) If Â is simple, then B = A = Â.

(6) If B contains a central element then B = A (hence A is simple).
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Proof. (1) and (2) follow from 32.6.

(3) Apply the Density Theorem (5.4) to the simple M(A)-module B.

(4) Let I be an ideal in the ring B. Then BIB is an ideal in A and hence

I ⊃ BIB = B.

(4),(5) and (6) are consequences of (1). 2

We are now going to explore which conditions on A make Â a simple algebra

without any additional properties. Recall that an algebra A is said to be strongly

prime if A is strongly prime as an M(A)-module.

35.6 Strongly prime algebras.

For any algebra A, the following conditions are equivalent:

(a) A is a strongly prime algebra;

(b) Â is generated (as an M(A)-module) by any non-zero ideal of A;

(c) A is a prime ring and A is contained in any ideal of the central closure Â;

(d) A is a prime ring and the central closure Â is a simple ring;

(e) for a ∈ A, 0 6= b ∈ A there are µ1, . . . , µk ∈M(A) such that

k⋂
i=1

AnM(A)(µi(b)) ⊂ AnM(A)(a).

If A has a unit these conditions are equivalent to:

(f) For 0 6= b ∈ A there are µ1, . . . , µk ∈M(A) such that

k⋂
i=1

AnM(A)(µi(b)) ⊂ AnM(A)(1).

Proof. Using the fact that the central closure Â is a simple ring if and only if Â

has no fully invariant M(A)-submodules, the equivalence of the first five conditions

is obtained by 13.3.

(e)⇒ (f) is trivial.

(f)⇒ (a) The condition implies that A is subgenerated by the ideal M(A)b. This

assures (a). 2

Recall that for any X ∈ σ[A], we write S(X) for the largest A-singular submodule

of X. Since a semiprime ring A is non-A-singular (see 32.1) we obtain from 13.5 the

following
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35.7 Characterization of strongly prime rings.

For a semiprime ring A, the following properties are equivalent:

(a) A is a strongly prime ring (in σ[A]);

(b) any module in σ[A] is A-singular or a subgenerator in σ[A];

(c) every non-A-singular module in σ[A] is an absolute subgenerator in σ[A];

(d) for every non-zero N ∈ σ[A],

S(N) =
⋂
{K ⊂ N | N/K is an absolute subgenerator in σ[A]};

(e) there exists an absolute subgenerator in σ[A].

An associative ring A is an object of σ[A] and of A-Mod. Accordingly A can be

strongly prime in each of these categories. Left strongly prime rings A (i.e., A strongly

prime in A-Mod) were characterized in 13.6. Combining this with 35.7 we arrive at a

description of left strongly prime associative rings by properties of two-sided modules.

35.8 More characterizations of left strongly prime rings.

For an associative semiprime ring A with unit, the following are equivalent:

(a) A is a left strongly prime ring;

(b) any module N ∈ σ[A] is A-singular (in σ[A]) or is a subgenerator in A-Mod;

(c) every non-A-singular module in σ[A] is an absolute subgenerator in A-Mod;

(d) for every non-zero N ∈ σ[A],

S(N) =
⋂ {K ⊂ N | K is a sub-bimodule and

N/K is an absolute subgenerator in A-Mod};

(e) there exists a module in σ[A] which is an absolute subgenerator in A-Mod.

Proof. (a) ⇒ (b) Let A be left strongly prime. Then A is left non-singular and, by

33.2, modules which are not A-singular in σ[A] are not singular as left A-modules.

Hence, by 13.6, they are subgenerators in A-Mod.

(b)⇒ (c) By the same argument this follows from 13.6.

(c)⇒ (d) By 35.7, S(N) is the intersection of those K ⊂ N , for which N/K is an

absolute subgenerator in σ[A]. Then N/K is non-A-singular and hence an absolute

subgenerator in A-Mod.

(d)⇒ (e)⇒ (a) are obvious since S(A) = 0. 2
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We observe that any algebra A, which has no absolute zero-divisors, satifies con-

dition (∗) of 13.1 as an M(A)-module:

For any ideal U ⊂ A and 0 6= u ∈ U , the left multiplication Lu : A → U, a 7→ ua,

has the property

0 6= Lu ∈M(A) and Lu(A/U) = 0.

Since prime algebras have no absolute zero-divisors we obtain from 13.1:

35.9 Proposition. For any ring A, the following properties are equivalent:

(a) M(A)A is a prime module;

(b) M(A) is a prime ring.

M(A)A being a prime module evidently implies that A is a prime ring. The converse

conclusion only holds in special cases.

Recall that a module is compressible if it can be embedded in every non-zero

submodule.

35.10 Prime algebra with large centroids.

For any algebra A, C(A) = EndM(A)(A) and T = EndM(A)(Â), the following are

equivalent:

(a) A is (finitely) cogenerated (as an M(A)-module) by any of its non-zero ideals;

(b) A is a compressible M(A)-module;

(c) A has large centroid and one of the following holds:

(i) A is a prime algebra;

(ii) M(A) is a prime algebra;

(iii) A is a strongly prime algebra;

(iv) Â has no fully invariant M(A)-submodules;

(v) every non-zero ideal is rational in A (as an M(A)-module).

Under these conditions, Â is a simple algebra and T is the quotient field of C(A).

Proof. (a)⇒ (b) Assume A is cogenerated by any non-zero ideal. Then A is a prime

M(A)-module, A is a prime algebra and C(A) is a commutative prime ring. For

an ideal I of A, any non-zero α ∈ HomM(A)(A, I) ⊂ c(A) is a monomorphism, i.e.,

A ' Aα ⊂ I.

(c.i)⇒ (c.iii) T being a field, for any non-zero ideal I of A,

I · T ⊃ A · HomM(A)(A, I) · T = A · T = Â.

This shows that A is a strongly prime M(A)-module.
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From this it is easy to see that any condition in (c) characterizes A as a strongly

prime algebra (see 13.3, 13.1).

(c)⇒ (b)⇒ (a) are obvious (since T is a field).

The assertion about T follows from 11.5. 2

A prime algebra has no absolute zero-divisors and so large centre implies large

centroid. Hence we have as a special case of 35.10:

35.11 Prime algebras with large centres.

Let A be any prime algebra with centre Z(A) and assume the central closure Â has

a unit. Then the following are equivalent:

(a) A has large centre;

(b) T is isomorphic to the quotient field of Z(A).

In this case, Â is simple, A is strongly prime and M(A) is a prime algebra.

If A has a unit, (a) and (b) are equivalent to:

(c) A is a compressible M(A)-module;

(d) for any 0 6= b ∈ A, there exists µ ∈M(A) such that

AnM(A)(µ(b)) = AnM(A)(1).

Proof. (a) ⇒ (b) Assume A has large centre. Then for every non-zero h ∈ T there

exist non-zero a, b ∈ Z(A) such that (b)h = a. The elements of T are uniquely

determined by suitable pairs in Z(A)×Z(A) (see 35.2). All central elements have the

same annihilator in M(A), and in Z(A)×Z(A), (a, b) ∼ (a′, b′) if and only if ab′ = b′a.

This shows that T is just the quotient field of Z(A).

(b) ⇒ (a) Denote by e the unit of the central closure Â. For every ideal U ⊂ A,

UT = Â and hence we have

e = u1t1 + · · ·uktk, for ui ∈ U, ti ∈ T.

Since T is the quotient field of Z(A), there exists a non-zero d ∈ Z(A) such that

tid ∈ Z(A), for i = 1, . . . , k. By this,

d = ed = u1t1d+ · · ·uktkd ∈ U ∩ Z(A).

Every non-zero ideal of Â contains a non-zero central element which is invertible

in Â. Hence Â is a simple algebra.

Now assume A has a unit.

(a)⇔ (c) follows from 35.10.
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(c)⇔ (d) For any monomorphism α : A → M(A) · b and (1)α = µb, µ ∈ M(A),

we have AnM(A)(1) = AnM(A)(µb).

On the other hand, this condition implies µb ∈ Z(A) and assures the existence of

the monomorphism wanted. 2

For A a strongly prime subgenerator in M(A)-Mod we have:

35.12 Strongly prime subgenerators.

Let A be an algebra and T = EndM(A)(Â). The following are equivalent:

(a) A is a strongly prime M(A)-module and M(A) ∈ σ[A];

(b) M(A) is subgenerated by every non-zero ideal of A;

(c) M(A) is finitely cogenerated by every non-zero ideal of A;

(d) A is a prime algebra and Â is a finite dimensional, simple T -algebra.

Proof. (a)⇔ (b) Every non-zero ideal subgenerates A and A subgenerates M(A).

(b)⇔ (c) This follows from the projectivity of M(A).

(a)⇔ (d) By 35.6, Â simple is equivalent to A being strongly prime (as M(A)-

module). By 13.1, M(A) ∈ σ[A] is equivalent to Â being finite dimensional over T .

2

Using the structure theory of certain classes of algebras we obtain, for example:

35.13 Alternative subgenerators.

For an associative or alternative algebra A with unit satisfying M(A) ∈ σ[A], the

following properties are equivalent:

(a) A is a prime algebra;

(b) A is a strongly prime algebra;

(c) M(A) is a prime algebra.

In this case, Â is a finite dimensional algebra over T = EndM(A)(Â).

Proof. If A is a prime ring and M(A) ∈ σ[A], Â is a finite dimensional prime

associative or alternative algebra, hence it is simple. By 35.6, A is a strongly prime

M(A)-module.

The other implications are evident. 2

The above theorem can be extended to appropriate wider classes of rings. It is

well-known, for example, that associative prime PI-rings satisfy the conditions of the

theorem. They also have large centroids (as in 35.10, 35.11). In fact we have:
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35.14 Central orders in central simple algebras.

Let A be prime R-algebra with centre Z(A) and assume Â has a unit. Put T =

EndM(A)(Â). Then the following are equivalent:

(a) A has large centre and is a subgenerator in M(A)-Mod;

(b) T is the quotient field of Z(A) and Â is a finite dimensional, central simple

T -algebra.

If A is associative, (a), (b) are equivalent to:

(c) A is a PI-algebra.

Proof. (a)⇔ (b) is a special case of 32.11 and 35.12.

(b)⇔ (c) This is essentially Posner’s Theorem (e.g., [36, Theorem 1.7.9]). 2

The equivalence of (a) and (c) also holds for some non-associative algebras. For

example, for a prime alternative algebra A which is not associative, the central closure

Â is a Cayley-Dickson algebra which has dimension 8 over its centre, and [X, Y ]4 is a

central polynomial for A ([36, C.33]).

It is shown in [235, Theorem 1.5] that for every (non-associative) prime algebra

satisfying a normal polynomial identity, the central closure has finite dimension over

its centroid. As mentioned before (remarks after 32.7), prime Jordan algebras with

such identities have large centres.

In 35.11 and 35.14 we needed a unit in Â to describe orders in central simple

algebras. This is not essential as we will see in our next result.

35.15 Subgenerator with large centroid.

Let A be a prime algebra with large centroid C(A), T := EndM(A)(A), and assume

M(A) ∈ σ[A]. Then:

(1) Â is a central simple T -algebra of finite dimension, say n ∈ IN , and

M∗(Â) = M(Â) = EndT (Â) ' T (n,n).

(2) T is the quotient field of C(A) and of the centre of M∗(A).

(3) M∗(A) and M(A) are central orders in M(Â).

Proof. Â is a generator in M(Â)-Mod and Qmax(M(A) ' M(Â) = EndT (Â) (see

32.9). By 35.10, T is the quotient field of C(A) which is isomorphic to the centre of

M(A) (2.10).

The C(A)-algebra M∗(A) is an ideal in M(A) and hence M∗(Â) = M∗(A)T is an

ideal in the simple algebra M(Â), i.e., M∗(Â) = M∗(A)T = M(Â).

By 35.14 (applied to M(A)), M∗(A) has non-trivial centre which is an ideal in

C(A) and hence has the same quotient field T . 2
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Based on the facts used in the proof above we can state:

35.16 Corollary. For an algebra A, the following are equivalent:

(a) A is prime with large centre and M(A) ∈ σ[A];

(b) A is strongly prime, M(A) ∈ σ[A] and T is the quotient field of C(A);

(c) for the quotient field S of C(A), AS (⊂ Â) is a central simple, finite dimensional

S-algebra

Proof. (a)⇒ (b) is shown in 35.15. (b)⇒ (c) is obvious.

(c)⇒ (b) The simple algebraAS is self-injective and essential asM(AS)-submodule

in Â, hence AS = Â. By 32.10, M(A) ∈ σ[A].

(b) ⇒ (a) Under the given conditions, Â is simple and finite dimensioanl over its

centroid. It remains to show that A has large centroid.

As observed in the proof of 35.15, M∗(A) is a prime (associative) PI-algebra.

Now, for every non-zero ideal I ⊂ A, AnM∗(A)(A/I) is a non-zero ideal in M∗(A) and

hence contains a non-zero central element γ (e.g., [36, 1.6.27]), yielding a non-zero

M(A)-homomorphism

A→ I, a 7→ γa.

2

Recall that A is an affine R-algebra if it is finitely generated as R-algebra. An

affine algebra A is said to be strongly affine if it has large centroid and M(A) ∈ σ[A].

Without loss of generality we will assume that any strongly affine prime R-algebra

is faithful as R-module which implies that R is a domain.

It follows from Posner’s theorem that an associative prime algebra is strongly affine

if and only if it is an affine PI-algebra.

35.17 Centroid of strongly affine algebras.

Let A be a strongly affine prime R-algebra, K the quotient field of R and T :=

EndM(A)(Â). Then:

(1) T is a finitely generated field extension of K.

(2) If A is simple, T is an algebraic extension of K and R.

Proof. (1) If A is a strongly affine prime R-algebra, then AK ⊂ Â is a strongly affine

prime K-algebra and we may assume AK = A.

Let B be a T -basis for Â, and a1, . . . , an a generating set for the K-algebra A.

Denote by S the subfield of T generated over K by the coefficients of all ai and the

structural constants of the T -algebra Â with respect to the basis B. Then

Ã :=
∑

b∈B
Sb
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is an S-subalgebra of Â containing all ai, so A ⊂ Ã. For b ∈ B, there exists a non-zero

α ∈ c(A) such that bα ∈ A ⊂ Ã. Since B is a basis for Ã, this implies α ∈ S. Now,

for any γ ∈ c(A) we have (b)αγ ∈ A, hence αγ ∈ S and γ ∈ S. Thus, C(A) ⊂ S and

S = T , i.e., T is a finitely generated field extension of K.

(2) Since A is simple we have Â = A and C(A) = T . Now we denote by S not

the subfield, but the K-subalgebra of T generated by the same elements as above. We

again have A ⊂ ∑b∈BSb and hence∑
b∈BSb =

∑
b∈BTb, implying S = T .

Hence the field T is a finitely generated algebra over K. It is well-known from field

theory that this implies that T is algebraic over K (hence over R). 2

Definition. An ideal P in an algebra A is called a strongly affine ideal if A/P is

a strongly affine algebra.

In associative, alternative or Jordan strongly affine rings, any prime ideal is strongly

affine. This need not be the case for arbitrary strongly affine algebras (as is shown by

an example in [221]).

35.18 Strongly affine ideals and multiplication algebra.

Let P be a strongly affine prime ideal in an algebra A. Then:

(1) U := AnM∗(A)(A/P ) is a prime ideal in M∗(A).

(2) For an ideal Q ⊂ A properly containig P , AnM∗(A)(A/P ) ⊂ AnM∗(A)(A/Q) and

this is a proper inclusion.

Proof. (1) AnM∗(A)(A/P ) is the kernel of the algebra morphism M∗(A)→M∗(A/P ),

induced by the projection A→ A/P (see 2.3). By 35.15, M∗(A/P ) is a prime algebra

which means that AnM∗(A)(A/P ) is a prime ideal.

(2) AnM∗(A)(A/P ) ⊂ AnM∗(A)(A/Q) is obvious.

Since P is prime we have AQ 6⊂ P and hence the above inclusion is proper. 2

The above result can be used to get information about the length of chains of

strongly affine prime ideals in any strongly affine prime algebra.

Definition. By the strongly affine Krull dimension of a strongly affine prime R-

algebra A, denoted by sa.dimA, we mean the length of a maximal chain of strongly

affine prime ideals in A.

For an associative strongly affine (PI) algebra B, every prime ideal is strongly

affine and sa.dimB = K.dimB is the Krull dimension of B, i.e., the length of a

maximal chain of prime ideals in B.

For any commutative domains R ⊂ S, we denote by tr.deg RS the transcendence

degree of S over R (see [36, 1.10]). Recall that for the quotient fields R ⊃ R and

S ⊃ S, tr.deg RS = tr.deg RS.
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Combining 35.15 and 35.17 with an inequality given in [36, p. 84], we have

a.dimA ≤ K.dimM∗(A) ≤ tr.deg Rcentre(M
∗(A)) = tr.deg RT <∞.

It is shown in [221, Theorem 1.1] that these are in fact equalities:

35.19 The strongly affine dimension of strongly affine algebras.

For any strongly affine prime R-algebra A,

a.dimA = K.dimM∗(A) = tr.deg RT.

Proof. Let K denote the quotient field of R. We have to show that for any t <

tr.deg RT , there exists a chain of strongly affine prime ideals 0 ⊂ P1 ⊂ · · · ⊂ Pt ⊂ A.

We will proceed by induction on t. For t = 0 there is nothing prove.

Assume t ≥ 1.

In the algebra Z := centre(M∗(A)) we choose c1, . . . , ct algebraically independent

over K, and put S := K[c1, . . . , ct−1] \ 0. Consider the set

M := {I ⊂ A | I ideal and sA 6⊂ I for every s ∈ S}.

Then 0 ∈ M, M is inductively ordered (because A is finitely generated), and, by

Zorn’s Lemma, it contains a maximal element P . We will show that P is a non-zero

strongly affine prime ideal in A.

Suppose P = 0. Then for any non-zero ideal I ⊂ A, there exists an s ∈ S such

that sA ⊂ I. This implies that the algebra AS−1 is a simple KS−1-algebra. In this

case, by 35.17, T is an algebraic extension of KS−1, a contradiction, so P 6= 0.

Now consider ideals I, J ⊂ A, both containing P , and suppose IJ ⊂ P . Then

there exist s1, s2 ∈ S for which s1A ⊂ I and s2A ⊂ J , so that s1s2A
2 ⊂ IJ ⊂ P . This

implies

s1s2M
∗(A)A ⊂ P , s1s2ZA ⊂ P , and finally s1s2SA ⊂ P ,

contradicting the choice of P . Thus P is a prime ideal in A.

Denote by the canonical maps A → A/P and M∗(A) → M∗(A/P ), and put

A := A/P . It is easy to see that for any non-zero ideal I ⊂ A, there exists an s ∈ S
such that sA ⊂ I. Hence A has large centroid and its central closure is a simple

algebra whose dimension over its centroid is smaller than dimT Â, hence is finite. So

A is a strongly affine prime algebra.

Since the elements c1, . . . , ct−1 are algebraically independent over K, we have

tr.deg KZ(M∗(A)) ≥ t − 1. Hence by the induction hypothesis, there exists a chain

of strongly affine prime ideals 0 ⊂ P 1 ⊂ · · · ⊂ P t−1 ⊂ A from which we can pass to

the chain

0 ⊂ P ⊂ P1 ⊂ · · · ⊂ Pt−1 ⊂ A.

2
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Remarks. If A is an affine K-algebra and dimKÂ = n, then we can choose a

maximal chain of strongly affine prime ideals 0 ⊂ P1 ⊂ · · · ⊂ Pt ⊂ A of length

t = tr.deg KT such that for each i = 1, . . . , t, the central closure of A/Pi has dimension

n over its centroid (see [221, Remark]).

For the construction of free (alternative, Jordan) algebras we refer to [221]. Central

orders in non-associative quaternion algebras are studied in [184].

Of course, algebras with certain identities may allow a more precise structure

theory. For example, prime (non-commutative) Jordan algebras are described in [108,

128]. The central closure of an alternative non-associative prime algebra is a Cayley-

Dickson algebra (e.g., [41, Chap. 9]). Similarly it is shown in [134] that the central

closure of any prime Malcev algebra which is not a Lie algebra is a 7-dimensional

central simple algebra over the extended centroid.

35.20 Exercises.

(1) Let A and B be associative prime K-algebras, K a field. Let T and S denote

their extended centroids and Â, B̂ the central closures. Prove ([213]):

(i) If γ(a⊗b) = 0 for a ∈ Â, b ∈ B̂ and γ ∈ T ⊗K S, then either γ = 0 or a⊗b = 0.

(ii) The following are equivalent:

(a) T ⊗K S is a field;

(b) each non-zero ideal of A⊗B contains a non-zero element a⊗ b, a ∈ A, b ∈ B.

(iii) If A and B are simple K-algebras such that T ⊗K S is a field, then A ⊗K B

is a simple K-algebra.

(2) Let K be a field and P the ideal in the polynomial ring K[X, Y ], generated by

XY −Y X−X. Prove that K[X, Y ]/P is a central, prime, self-injective (as bimodule)

K-algebra which is not simple ([115, 9.7.2]).

(3) An ring A is said to be fully prime if every ideal in A is prime. Prove for an

associative ring A:

(i) A is fully prime if and only if the ideals of A are idempotent and are linearly

ordered by inclusion.

(ii) Let A be a fully prime ring. Then

– Z(A) is a field or Z(A) = 0;

– for each n ∈ IN , the matrix ring A(n,n) is fully prime;

– if A satifies a polynomial identity, then A is a finite dimensional central simple

algebra.

(4) (i) Consider the subsets of IN × IN × ZZ ([114, § 7]),

E := {(t, n, g) ∈ ZZ3 | 0 ≤ n ≤ t },
F := {(t, n, g) ∈ ZZ3 | 0 ≤ n ≤ t, n(n+ 1) ≤ 2g ≤ n(2t− n+ 1)}.
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Define a product on E by

(t, n, g) · (t′, n′, g′) := (t+ t′, n+ n′, g + g′ + tn′).

Prove:

(α) With this product E is a monoid with submonoid F .

(β) The lexicographic order on E, also denoted by ≤, is compatible with this

product; in fact, for any e, e′, e′′ ∈ E,

e′ ≤ e′′ ⇔ e · e′ ≤ e · e′′ ⇔ e′ · e ≤ e′′ · e .

(ii) Let K be any field. Denote by A := K[F ] and B := K[E] the monoid algebras

of F and E respectively. Obviously both algebras are integral domains (check the

’leading’ coefficients) and we may assume A ⊂ B. Prove:

(α) (t, n, g) ∈ E commutes with the elements (1, 0, 0), (1, 1, 1) ∈ A if and only if

t = n = 0.

Conclude Z(A) ' K and Z(B) ' K[ZZ] (i.e., Z(B) is not algebraic over Z(A)).

(β) For monomials (t, n, g) ∈ B,

(t, n, g) = (t, n,
n(n+ 1)

2
) · (0, 0, g − n(n+ 1)

2
) ∈ A · Z(B).

Conclude that B is A-generated as an M(A)-module.

(γ) For any (t′, n′, g′) ∈ B there exists t ∈ IN - only dependent on t′ - such that

(t, 1, 1) · (t′, n′, g′) · (t, 1, t) ∈ A,

where (t, 1, 1), (t, 1, t) ∈ A.

Conclude that A�B as an M(A)-module.

(δ) B is contained in the central closure of A and the extended centroid of A is

not algebraic over the centre of A.

References. Blair-Tsutsui [84], Delale [114, 115], Erickson-Martindale-Osborne

[124], Ferrero [129], Ferrero-Wisbauer [132], Lee-Waterhouse [184], Martindale [191],

Nicholson-Watters [213], Polikarpov-Shestakov [221], Wisbauer [273, 274].
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36 Localization at semiprime ideals

1.TI-dense ideals. 2.Quotient modules with respect to an ideal. 3.Quotient ring with

respect to semiprime ideals.

We know from general torsion theory that for an arbitrary R-algebra A, any in-

jective module in σ[A] determines a hereditary torsion class. Here we will sketch the

torsion theory derived from the injective hull of a factor module A/I, where I is a

semiprime ideal of A. It will turn out that the quotient module of A with respect to

such a torsion class has an algebra structure. Basic for this construction is the fact

that in this setting the square of a dense ideal in A is again dense.

Let I ⊂ A be an ideal in the algebra A. Consider the torsion class defined by the

A-injective hull Â/I of A/I,

TI := {X ∈ σ[A] |HomM(A)(X, Â/I) = 0}.

In general, A need not be TI-torsionfree, i.e., TI(A) 6= 0. By construction, A/I is

TI-torsionfree and hence TI(A) ⊂ I.

Recall that I ⊂ A is a (semi) prime ideal if A/I is a (semi) prime algebra.

36.1 TI-dense ideals. Let I, U ⊂ A be ideals.

(1) The following assertions are equivalent:

(a) U is TI-dense in A, i.e., HomM(A)(A/U, Â/I) = 0;

(b) for any x ∈ A \ I and y ∈ A, there exists µ ∈M(A) such that µx 6∈ I and

µy ∈ U .

(2) If I is semiprime then the following are equivalent:

(a) U is TI-dense in A;

(b) U + I is TI-dense in A;

(c) (U + I)/I � A/I;

(d) for any ideal V ⊂ A, UV ⊂ I implies V ⊂ I.

Moreover, if U is TI-dense, then the ideal generated by U2 is TI-dense in A.

(3) If I is prime then the following are equivalent:

(a) U is TI-dense in A;

(b) U 6⊂ I.

In case U, V are TI-dense ideals, the ideal generated by UV is TI-dense in A.
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Proof. (1) (a)⇒ (b) Consider a non-zero f : A/U → Â/I. Since (A/U)f ∩ A/I 6= 0

we can find x ∈ A \ I und y ∈ A \ U satisfying (y + U)f = x + I. Then for any

µ ∈M(A), µy ∈ U implies µx ∈ I.

(b) ⇒ (a) Suppose (b) does not hold. Then there exist x ∈ A \ I and y ∈ A

such that for µ ∈ M(A), µy ∈ U implies µx ∈ I. From this we get a non-zero

homomorphism

f : M(A)y + U / U →M(A)x+ I / I ⊂ A/I, µy + U 7→ µx+ I,

implying that A/U 6∈ TI .

(2) (a)⇒ (b) is obvious.

(b) ⇔ (c) From A/(U + I) ' (A/I)/(U + I/I) we conclude that (U + I) is TI-
dense in A if and only if (U + I)/I is dense in A/I with respect to the torsion theory

determined by the injective hull of A/I in σ[A/I]. By 32.1, this is equivalent to

(U + I)/I � A/I.

(c)⇒ (d) Assume UV = 0 for some ideal V ⊂ A. Then

(U + I/I)(V + I/I) = (UV + I)/I = 0.

However, an essential ideal in the semiprime ring A/I cannot be annihilated by a

non-zero ideal. Hence (UV + I)/I = 0 and UV ⊂ I.

(d)⇒ (c) Assume (U + I/I) ∩ V/I = 0 for some I ⊂ V ⊂ A. Then

(U + I/I)(V/I) = (UV + I)/I = 0

and UV ⊂ I. By our assumption, this implies V ⊂ I.

(c) ⇒ (a) Assume U ⊂ A is not TI-dense. Then there exist U ⊂ V ⊂ A and

a non-zero f : V/U → A/I. Now (U + I)V/U is in the kernel of f and therefore

(U + I/I)(V/U)f = 0. Since A/I is semiprime this implies f = 0.

To prove the remaining assertion, let U ⊂ A be a TI-dense ideal. Assume the

ideal generated by U2 (we also denote it by U2) is not TI-dense. Then there exists

a non-zero M(A)-morphism f : W/U2 → A/I, with U2 ⊂ W ⊂ U . Obviously,

(U + I)(W/U2)f = 0 and hence

{(U + I)/I ∩ (W/U2)f}2 = 0 in A/I.

Since A/I is semiprime, the expression within the brackets has to be zero. Moreover, U

being TI-dense in A implies that (U + I)/I is TI-dense in A/I, whis is TI-torsionfree

by definition. Hence by 9.6, (U + I)/I � A/I and we conclude (W/U2)f = 0, a

contradiction.
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(3) If U ⊂ A is not TI-dense there is a non-zero g ∈ HomM(A)(W/U,A/I) with

U ⊂ W ⊂ A. Now (U + I/I)(W/U)g = 0 implies U + I/I = 0, i.e., U ⊂ I.

If U ⊂ I, A/U → A/I is non-zero and hence U is not TI-dense in A.

From this characterization it is clear that the product of TI-dense ideals generates

a TI-dense ideal in A. 2

According to our definition after 9.14, for any N ∈ σ[A], we have the quotient

module with respect to TI ,

QTI (N) := ETI (N/TI(N).

For our purpose we need a slight variation of this notion.

36.2 Quotient modules with respect to an ideal.

Let I ⊂ A be any ideal. With the above notation put

(1) QI(N) := Tr (A,ETI (N/TI(N)),

and call this the quotient module of N with respect to I.

For any A-generated module N , N/TI(N) ⊂ QI(N) is a TI-dense submodule.

For any A-generated module L, HomM(A)(L,QI(N)) = HomM(A)(L,ETI (N/TI(N))

and hence we obtain from 9.17,

(2) HomM(A)(L,QI(N)) = HomM(A)(QI(L), QI(N)).

In particular, for L = A we have

(3) QI(N) = AHomM(A)(A,QI(N)) = AHomM(A)(QI(A), QI(N)),

and for L = A = N we have

(4) QI(A) = AHomM(A)(A,QI(A)) = AEndM(A)(QI(A)).

The relations given above are true for any ideal I ⊂ A. Again we have special

properties for semiprime ideals I. The preceding results enable us to prove:

36.3 Quotient ring with respect to semiprime ideals.

Let I ⊂ A be a semiprime ideal. Then:

(1) T := EndM(A)(QI(A)) is a commutative ring.

(2) QI(A) = AT has a ring structure defined by (linear extension of)

(as) · (bt) := (ab)st, for a, b ∈ A, s, t ∈ T.

QI(A) is called the quotient ring with respect to I.
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(3) The canonical map A→ QI(A) is a ring homomorphism with kernel TI(A).

(4) T is the centroid of QI(A).

(5) For any A-generated N ∈ σ[A], QI(N) is a QI(A)-generated QI(A)-bimodule.

Proof. (1) Consider any f, g ∈ T and put Ā = A/TI(A). Then U := Āf−1∩Āg−1∩Ā
is a TI-dense ideal in Ā. Moreover, for any a, b ∈ U ,

(ab)fg = (a(bf))g = (ag)(bf) = (ab)gf.

This implies U2(fg − gf) = 0 and fg − gf annihilates the TI-dense ideal generated

by U2 (see 36.1). Hence fg = gf .

(2) QI(A) = AT was pointed out in 36.2. The proof for the correctness of the

definition is the same as in 32.2(1).

(3) and (4) are clear by the construction.

(5) By 36.2, QI(N) = AHomM(A)(QI(A), QI(N)). Since HomM(A)(QI(A), QI(N))

is a (left) T -module we have

QI(N) = QI(A)HomM(QI(A))(QI(A), QI(N)).

2

If A is a semiprime algebra we may apply the above construction to I = 0. Then

essential ideals are T0-dense and hence ET0(A) = Â is A-generated and Â = Q0(A) is

the central closure of A as considered in 32.2.

References. Beachy [65], Beachy-Blair [66], Delale [115], Lambek [183], Wisbauer

[278].
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Group actions on algebras

In this chapter we will apply the module theory developed in the previous parts to

study the action of a group G on any algebra A. For this we will construct the skew

group algebra A′G and consider A as a module over the skew group algebras L(A)′G

and M(A)′G.

37 Skew group algebras

1.Group action on A. 2.Group action on M∗(A). 3.Group action on A⊗RAo. 4.Skew

group algebra. 5.Module structures of A and A′G. 6.G-multiplication algebra. 7.Aug-

mentation map. 8.Finiteness conditions. 9.G-invariant and fixed subsets. 10.Trace

map.

As before R will denote an associative commutative ring with unit and A will be

an R-algebra. M(A) (resp. M∗(A)) denotes the multiplication algebra (ideal) of A,

and L(A) (resp. L∗(A)) stands for the left multiplication algebra (ideal) of A. Recall

that we write module homomorphisms on the side opposite to the scalars.

Let G be a (multiplicative) group with unit e. If G is finite the order of G is

denoted by |G|.

37.1 Group action on A.

We say that G acts on A if there is a group homomorphism

i : G→ AutR(A),

where AutR(A) is the group of all R-algebra automorphisms of A.

We let G act from the left and write the action of g ∈ G on a ∈ A as

ga := i(g)(a).

In case Ke i = {e} the action is called faithful and if i(g) = idA for every g ∈ G, the

action is called trivial.

Throughout this section G will be a group acting on the R-algebra A.

304
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37.2 Group action on M∗(A).

As noticed in 2.3, every R-algebra automorphism h : A→ A induces an R-algebra

automorphism

hm : M∗(A)→M∗(A), La 7→ Lha, Ra 7→ Rha,

and hence the action of any group G on A yields an action of G on M∗(A),

im : G→ AutR(M∗(A)), g 7→ i(g)m.

By definition, for every ρ ∈M∗(A), a ∈ A and g ∈ G,

(gρ)(ga) = g(ρa).

We will often make use of these facts without further reference.

From this it is obvious that an action of G on A also induces an action of G on

the left multiplication ideal L∗(A).

37.3 Group action on A⊗R Ao.
Every R-algebra automorphism h : A→ A induces an R-algebra automorphism

he := h⊗ h : A⊗R Ao → A⊗R Ao,

and an action i : G→ AutR(A) yields an action

ie : G→ AutR(A⊗R Ao), g 7→ i(g)e.

If A is an associative algebra with unit, A is a left module over A ⊗R Ao and by

definition, for every a⊗ b ∈ A⊗R Ao, c ∈ A and g ∈ G,

g(a⊗ b)(gc) = g(acb).

Moreover, the action of G on A also induces an action on the (extended) centroid.

This will be outlined in 41.1 and 42.3.

37.4 Skew group algebra.

The skew group algebra A′G is defined as the direct sum A(G), in which every

element can be written uniquely as

x =
∑
g∈G

agg with only finitely many nonzero ag ∈ A,

with multiplication given by

(ag) · (bh) = a(gb)gh, for a, b ∈ A and g, h ∈ G.
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Putting r(ag) = (ra)g, for r ∈ R, A′G becomes an R-algebra which has A as a

subalgebra by the embedding

A→ A′G, a 7→ a · e.

In case A has a unit 1, then 1 · e is the unit of A′G and

G→ A′G, g 7→ 1 · g,

is a semigroup monomorphism (since g1 = 1 for any g ∈ G) and we may consider G

as a subset of the right nucleus of A′G.

As easily seen, if A is associative, then A′G is also an associative algebra. Other

identities (e.g., alternativity) need not transfer from A to A′G.

If the action of G on A is trivial, A′G is the group algebra A[G], with the multi-

plication

(ag) · (bh) = ab gh, for a, b ∈ A and g, h ∈ G.

Remark. By the (M(A)-) isomorphism A(G) ' A⊗R R[G], we may identify A′G

and A⊗R R[G] with the multiplication

(a⊗ g) · (b⊗ h) = a(gb)⊗ gh, for a, b ∈ A and g, h ∈ G.

On the other hand, A⊗R R[G] with componentwise multiplication,

(a⊗ g) · (b⊗ h) = ab⊗ gh, for a, b ∈ A and g, h ∈ G,

yields the group algebra A[G].

It is clear that A and A′G both are R[G]-modules.

37.5 Module structures of A and A′G.

By the fact that the action of G on A induces an action on M∗(A) we may form

the skew group algebra M∗(A)′G. The M∗(A)-module structure of A transfers to the

direct sum A(G) and this yields an M∗(A)′G-module structure on A′G and A by

M∗(A)′G× A′G → A′G, (ρg, bh) 7→ ρ(gb)gh,

M∗(A)′G× A → A, (ρg, b) 7→ ρ(gb),

where the operations are linearly extended to finite sums.

The same mappings also yield an L∗(A)′G-modules structure on A′G and A.

In particular, if A is an associative algebra with unit, we can identify L∗(A) with

A, and A is a left A′G-module with

A′G× A→ A, (ag, c) 7→ a(gc).

Moreover, G acts on A⊗R Ao (see 37.3) and we have the module action

(A⊗R Ao)′G× A→ A, ((a⊗ b)g, c) 7→ a(gc)b.
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37.6 G-multiplication algebra.

The R-subalgebra of End(RA) generated by all left and right multiplications and

i(G) is called the G-multiplication algebra MG(A) of A, i.e.,

MG(A) =< {La, Ra | a ∈ A} ∪ {i(G)} > ⊂ End(RA).

This is an associative R-algebra with unit and there is an algebra morphism

M∗(A)′G→MG(A), µg 7→ µ i(g),

whose kernel is just the annihilator of A in M∗(A)′G. This map is surjective in case

M∗(A) = M(A).

37.7 Augmentation map.

The (left) augmentation map

α : A′G→ A,
∑
g∈G

agg 7→
∑
g∈G

ag,

is an M∗(A)′G- and L∗(A)′G-epimorphism and Ke α is a left ideal in A′G.

Let A have a unit. For a family {gλ}Λ of elements in G, the following are equiva-

lent:

(a) The group G is generated by {gλ}Λ;

(b) Ke α =
∑
λ∈Λ

A′G · (gλ − e).

Proof. Denote L :=
∑
λ∈Λ

A′G · (gλ − e). Clearly L ⊂ Ke α.

(a)⇒ (b) Suppose
∑
g∈G

agg ∈ Ke α, i.e.,
∑
g∈G

ag = 0. Then

∑
g∈G

agg =
∑
g∈G

ag(g − e).

Consider the set Go := {h ∈ G | h− e ∈ L} ⊂ G. For any h ∈ Go and λ ∈ Λ,

hgλ − e = (h− e) + h(gλ − e) ∈ L,
hg−1

λ − e = (h− e)− hg−1
λ (gλ − e) ∈ L.

Because e ∈ Go, this implies G = GoG = Go and L = Ke α.

(b)⇒ (a) For any subgroup H ⊂ G, define

IH := {
∑
g∈G

agg |
∑
h∈H

agh = 0, for every g ∈ G} ⊂ A′G.
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Clearly for any h ∈ H, h − e ∈ IH . Moreover, IH is a left ideal in A′G. Obviously

it is closed under addition and left multiplication by elements from A. It remains to

show that it is closed under left multiplication by elements of G.

Let
∑
g∈G

agg ∈ IH and σ ∈ G. Then

σ · (
∑
g∈G

agg) =
∑
g∈G

(σag)σg =
∑
g∈G

(σaσ−1g)g,

and for each g ∈ G, ∑
h∈H

σaσ−1gh = σ(
∑
h∈H

aσ−1gh) = 0.

This proves that IH is a left ideal in A′G.

Let Γ ⊂ G be a set of representatives for the left cosets G/H. Then
∑
g∈G

agg ∈ IH
implies ∑

g∈G
ag =

∑
γ∈Γ

(
∑
h∈H

aγh) = 0,

and hence IH ⊂ IG = Ke α.

Now let H denote the subgroup generated by {gλ}Λ. Since all gλ−e ∈ IH , we have

by (b), IH = Ke α = L. For x ∈ G \H, x− e ∈ Ke α but x− e 6∈ IH , a contradiction.

Thus G = H is generated by {gλ}Λ. 2

37.8 Finiteness conditions.

Let G act on an R-algebra A with unit.

(1) If the augmentation map α : A′G → A splits as R[G]-morphism, then G is a

finite group.

(2) Ke α is finitely generated as an M(A)′G- (or L(A)′G-) module if and only if

the group G is finitely generated.

Proof. (1) Let β : A→ A′G be an R[G]-morphism with βα = idA. Then

(1)β =
n∑
i=1

aigi, for 0 6= ai ∈ A, gi ∈ G.

For every h ∈ G,

(1)β = (h1)β = h · (
n∑
i=1

aigi) =
n∑
i=1

(hai)hgi.

Comparing coefficients we obtain hai = ahgi , for i = 1, . . . , n. Without restriction,

we may assume g1 = e and then ha1 = ah. For h ∈ G \ {g1, . . . , gn} this implies
ha1 = ah = 0 and hence a1 = 0, a contradiction. So G has to be a finite group.

(2) follows immediately from 37.7. 2
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37.9 G-invariant and fixed subsets.

A subset K ⊂ A is called G-invariant if for every g ∈ G,

gK := {ga | a ∈ K} ⊂ K.

The G-invariant elements of a subset K ⊂ A are called the fixed points of K,

KG := {a ∈ K | ga = a for all g ∈ G}.

In particular, the fixed points of A,

AG := {a ∈ A | ga = a for all g ∈ G},

form an R-subalgebra called the fixed ring (algebra) of A.

37.10 Trace map.

If G is a finite group acting on A, then there is an R-linear map, called the trace

map,

trG : A→ AG, a 7→
∑
g∈G

ga.

For any G-invariant subgroup I ⊂ A, it induces a map trG : I → IG.

If a ∈ AG, then trG(a) = |G| · a and hence

|G| · AG ⊂ trG(A) and |G| · IG ⊂ trG(I).

For associative algebras A, trG is a left and right AG-morphism.

References. Alfaro-Ara-del Rio [44], Garćıa-del Rı́o [142].
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38 Associative skew group algebras

1.Properties of A′GA. 2.Proposition. 3.The trace of A in A′G. 4.Maschke’s theorem

for skew group algebras. 5.Theorem.

In this section G will be any group, A will always be an associative R-algebra with

unit and i : G→ AutR(A) a group action.

In this situation A is a left A′G-module (see 37.5) and we want to investigate this

module structure. We begin with some elementary facts which are easily verified.

38.1 Properties of A′GA.

(1) The A′G-submodules of A are the G-invariant left ideals of A.

(2) A is a cyclic A′G-module (since α : A′G→ A is surjective).

(3) A is a finitely presented A′G-module if and only if the group G is finitely gen-

erated.

(4) (i) If A′GA is a faithful module then the action of G is faithful.

(ii) If the action of G is trivial, then A′GA is faithful if and only if G = {e}.

(5) The Jacobson radical Jac(A) is G-invariant.

Proof. (3) A is a finitely presented A′G-module if and only if the kernel of the

augmentation map A′G→ A is finitely generated as an A′G-module. So the assertion

follows from 37.8.

The other statements are easily verified. 2

Let A′GM be any left A′G-module. The set of all G-invariant elements of M is

denoted by

MG := {m ∈M | gm = m, for every g ∈ G}.

For M = A we obtain the fixed ring AG.

Every A′G-module is an A-module (by the inclusion A → A′G) and MG is an

AG-submodule of M , since for any a ∈ AG, m ∈MG and g ∈ G,

g(am) = g(ae)m = (gae)m = (ga)gm = am.

In 23.3 the importance of the centre of M(A)-modules was pointed out. Replacing

M(A) by A′G, the same arguments show the significance of the fixed elements of

A′G-modules. In particular, we have that EndA′G(A) is a subring of A.
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38.2 Proposition. Let M be an A′G-module.

(1) The (evaluation) map

ΦM : HomA′G(A,M)→MG, f 7→ (1)f,

is an isomorphism of left AG-modules.

(2) ΦA : EndA′G(A)→ AG is an algebra isomorphism.

(3) M is A-generated as an A′G-module if and only if

M = AHomA′G(A,M) = AMG.

(4) An A′G-submodule I ⊂ A is A-generated if and only if I = AIG.

(5) An A′G-submodule I ⊂ A is fully invariant if and only if I · AG = I.

In particular, every G-invariant two-sided ideal in A is a fully invariant A′G-

submodule of A.

Applying the above observations to the left A′G-module A′G for a finite group G

we obtain:

38.3 The trace of A in A′G.

Let G be a finite group acting on A.

(1) There is an AG-isomorphism

ΦA′G : HomA′G(A,A′G)→ (
∑
g∈G

g) · A, f 7→ (1)f.

(2) Moreover, we may identify

(
∑
g∈G

g) · A = (
∑
g∈G

g)A′G = {
∑
g∈G

(ga)g | a ∈ A}.

(3) For the trace of A in A′G, we have

TrA′G(A,A′G) = A · (
∑
g∈G

g) · A = A′G(
∑
g∈G

g)A′G.

Proof. (1) Consider f ∈ HomA′G(A,A′G) and (1)f =
∑
g∈G

agg. Then for any h ∈ G,

(1)f = h · (1)f =
∑
g∈G

(hag)hg.

Hence hae = ah and

(1)f =
∑
g∈G

(gae)g = (
∑
g∈G

g) · ae ∈ (
∑
g∈G

g) · A.
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It is easy to check that each element (
∑
g∈G

g)·b, b ∈ A, determines an A′G-morphism

A→ A′G, a 7→ a · (
∑
g∈G

g) · b.

(2) For each bh ∈ A′G,

(
∑
g∈G

g) · bh =
∑
g∈G

(gb)gh =
∑
g∈G

(gh
−1

b)g = (
∑
g∈G

g) · (h−1

b) ∈ (
∑
g∈G

g) · A.

This proves the first equality in (2).

Similar arguments yield the second equality.

(3) The first equality follows directly from 38.2. For the second equality apply (2)

and A′G(
∑
g∈G

g) = A · ( ∑
g∈G

g). 2

The following classical result concerning finite groups is of great importance.

38.4 Maschke’s Theorem for skew group algebras.

Let A′G be a skew group algebra with G a finite group such that |G|−1 ∈ A.

(1) Let W,U ∈ A′G-Mod, and let W = U ⊕ V be a direct sum of A-modules. Then

U is a direct summand in W as an A′G-module.

(2) Any exact sequence 0→ K → L→M → 0 in A′G-Mod, which splits in A-Mod,

is also splitting in A′G-Mod.

(3) If A is left semisimple then A′G is left semisimple.

Proof. ([28, 0.1]) (1) Consider W,U ∈ A′G-Mod such that W = U ⊕ V is a direct

sum of A-left modules, and πU the projection of W onto U in A-Mod. Defining

p : W → U , w 7→ |G|−1 · ∑
g∈G

g−1(g · w)πU ,

one can easily verify that p is an A′G-homomorphism. Now we show that W =

Ke p⊕ U . For any u ∈ U and g ∈ G, we have (g · u)πU = g · u and therefore

(u)p = |G|−1
∑
g∈G

g−1(g · u)πU = |G|−1
∑
g∈G

g−1gu = |G|−1
∑
g∈G

u = u,

which means that p2 = p ∈ EndA′G(W ). Hence W = Im p ⊕ Ke p = U ⊕ Ke p as

A′G-modules.

(2) and (3) are easy consequences of (1). 2

If the group G is finite we say that a left A′G-module M is without (additive)

|G|-torsion if |G| ·m = 0 implies m = 0 for every m ∈M .

This condition allows a generalized form of Maschke’s Theorem.
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38.5 Theorem. Let G be a finite group. Let U ⊂M be A′G-modules without additive

|G|-torsion. Then U � AM if and only if U � A′GM .

Proof. ([31, p. 31]) U � AM obviously implies U � A′GM . Suppose A′GU �A′GM .

Case 1: First assume that M = U ⊕ V is a direct sum of A-modules. We claim

that V = 0. For every g ∈ G, we have M = g · U ⊕ g · V = U ⊕ gV in A-Mod.

From the last decomposition we obtain the projection πg : M → U in A-Mod. Then

π : M → U , m 7→ ∑
g∈G

(m)πg becomes an A′G-homomorphism, because for every h ∈ G

and m ∈ M , we get from m = u + g · v that hm = hu + hgv, with hu ∈ U . Then

(hm)πhg = hu = h(m)πg. It follows that

(hm)π =
∑
g∈G

(hm)πg =
∑
g∈G

(hm)πhg =
∑
g∈G

h(m)πg = h · (m)π.

Of course (u)π = |G| · u, for every u ∈ U . Since U was assumed to be |G|-torsionfree

we obtain Ke π ∩ U = 0. This implies Ke π = 0 because of A′GU � A′GM .

For an arbitrary v ∈ V , we have (v)π ∈ U and |G| ·v− (v)π ∈ Ke π = 0. Therefore

|G| · v = (v)π ∈ U ∩ V = 0 and consequently v = 0.

Case 2: Choose an A-submodule V of M which is maximal with respect to the

condition U∩V = 0. Then as A-modules we have U⊕V �M . Let W :=
⋂
g∈G

g ·(U⊕V ).

Since G is finite, W is an essential A-submodule of M and, in addition, W is also an

A′G-submodule of M . Now U ⊂ W ⊂ U ⊕ V and hence

W = (U ⊕ V ) ∩W = U ⊕ (V ∩W ).

From case 1 we get W = U an V ∩W = 0. Then V must be zero (since W � AM).

So U = U ⊕ V � AM . 2

References: Auslander-Reiten-Smalø [59], Garćıa-del Ŕıo [142], Montgomery

[28], Passman [31].
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39 Generator and projectivity properties of A′GA

1.Generator properties. 2.Algebras with large fixed rings. 3.Theorem. 4.Corollary.

5.A′GA as a self-generator. 6.AG noetherian or artinian. 7.A as a flat module over

AG. 8.A′GA as a generator in σ[A′GA]. 9.Density theorem. 10.A′GA as a generator

in A′G-Mod. 11.Projectivity properties. 12.A′GA intrinsically projective. 13.Lemma.

14.Purity and intrinsical projectivity. 15.A′GA noetherian or artinian. 16.A′GA self-

projective. 17. A′GA projective in A′G-Mod. 18.Corollary. 19.The radical of A′GA.

20.A as a right A′G-module. 21.A′G-projectivity of A. 22.AA′G self-projective. 23.Ex-

ercises.

We make the same assumptions as in the preceding section. G is be any group, A

an associative R-algebra with unit and i : G→ AutR(A) a group action.

Here we consider various generator and projectivity conditions of A as an A′G-

module. Similar to the situation in § 24 we begin with

39.1 Generator properties.

(Gl.1) For every nonzero G-invariant left ideal I ⊂ A, IG 6= 0.

(Gl.2) Every G-invariant left ideal of A is A′GA-generated (A′GA is a self-generator.)

(Gl.3) For every A′G-morphism f : Ak → An, k, n ∈ IN , Ke f is A-generated.

(Gl.4) A′GA is a generator in σ[A′GA].

(Gl.5) A′GA is a generator in A′G-Mod.

Obviously, (Gl.5)⇒ (Gl.4)⇒ (Gl.3) and (Gl.4)⇒ (Gl.2)⇒ (Gl.1) always hold.

Property (Gl.1) is the question for non-zero fixed elements in non-zero left ideals.

The situation for bimodules suggests the following

Definition. We say an algebra A has a large fixed ring if IG 6= 0, for every

G-invariant left ideal 0 6= I ⊂ A.

Adapting the arguments in the proof of 24.2 we obtain:

39.2 Algebras with large fixed rings.

Assume A is an algebra with unit and large fixed ring. Then:

(1) For any G-invariant left ideal U ⊂ A, AUG � U as an A′G-submodule.

(2) A is a simple A′G-module if and only if AG is a skew field.

(3) A is a semisimple A′G-module if and only if AG is a left semisimple ring.

For semiprime algebras A without G-torsion we recall results by Bergman and

Isaac (from 1973) concerning algebras with large fixed algebras (see [28]):
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39.3 Theorem. Let G be finite and A without additive |G|-torsion (without unit).

(1) If trG(A) is nilpotent then A is nilpotent.

(2) If A is a semiprime ring then AG is also semiprime.

(3) If I is a G-invariant left ideal in A then either I is nilpotent or trG(I) 6= 0.

Since for any G-invariant subgroup I ⊂ A, trG(I) ⊂ IG we obtain the

39.4 Corollary. Let G be a finite group and A a semiprime algebra without additive

|G|-torsion. Then A has a large fixed ring.

To characterize rings satisfying condition (Gl.2), we consider the following two

mappings:

Let LG(A) denote the set of G-invariant left ideals in A, and L(AG) the left ideals

in the fixed ring AG. Then we have

δA : L(AG)→ LG(A), I 7→ A · I and

HomA′G(A,−) : LG(A)→ L(AG), U 7→ HomA′G(A,U) ' UG(= U ∩ AG).

Both mappings are order preserving and we obtain the following characterization of

(Gl.2) in view of 38.2.

39.5 A′GA as a self-generator.

The following assertions are equivalent:

(a) A is a self-generator as a left A′G-module;

(b) for every G-invariant left ideal U ⊂ A, U = A · HomA′G(A,U) (= A · UG);

(c) the map HomA′G(A,−) : LG(A)→ L(AG) is injective;

(d) the map δA : L(AG)→ LG(A) is surjective.

If the conditions above hold, chain conditions transfer from left ideals in AG to

submodules of A′GA:

39.6 AG noetherian or artinian.

Let A′GA be a self-generator. Then

(1) If AG is a left noetherian ring, then A′GA is a noetherian module.

(2) If AG is a left artinian ring, then A′GA is an artinian module.

Proof. Let U1 ⊂ U2 ⊂ . . . be an ascending chain of G-invariant left ideals in A.

Then HomA′G(A,U1) ⊂ HomA′G(A,U2) ⊂ . . . is an ascending chain of left ideals in

AG, which becomes stationary if AG is left noetherian. Since Uk = A ·HomA′G(A,Uk),

for every k ∈ IN (by 39.5), the chain U1 ⊂ U2 ⊂ . . . becomes eventually stationary.

The same argument applies for descending chains. 2
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By [40, 15.9], group actions satisfying (Gl.3) have the following characterization:

39.7 A as a flat module over AG.

The following are equivalent:

(a) For every A′G-morphism f : Ak → An, k, n ∈ IN , Ke f is A-generated;

(b) for every A′G-morphism f : Ak → A, k ∈ IN , Ke f is A-generated;

(c) A is flat as a right AG-module.

As a direct consequence from the equivalences above we note that (Gl.3) holds

whenever AG is a regular ring.

For a more explicit study of the property described in 39.7 we refer to [142]. For

algebras A which are projective over AG see [171].

Combining 5.2 with the observations in 38.2 yields the following characterizations

of condition (Gl.4):

39.8 A′GA as a generator in σ[A′GA].

The following assertions are equivalent:

(a) A′GA is a generator in σ[A′GA];

(b) for every A′GA-submodule U ⊂ Ak, k ∈ IN , U = A · HomA′G(A,U) = A · UG;

(c) the fix point functor (−)G := HomA′G(A,−) : σ[A′GA]→ AG-Mod is faithful;

(d) for every module X ∈ σ[A′GA], X = A ·XG.

For algebras characterized above we have in particular the

39.9 Density theorem.

Let A′GA be a generator in σ[A′GA]. Then

(1) A′G acts dense in End(AAG), i.e., for any a1, . . . , ak ∈ A and f ∈ End(AAG),

there exists an x ∈ A′G with f(ai) = x · ai, for i = 1, . . . , k;

(2) σ[A′GA] = σ[End(A
AG

)
A].

Condition (Gl.5) obviously implies that A is a faithful A′G-module and hence the

action of G on A has to be faithful. The characterization of generators in full module

categories yields part of our next proposition.

39.10 A′GA as a generator in A′G-Mod.

The following conditions are equivalent for a finite group G:

(a) A′GA is a generator in A′G-Mod;

(b) A is a finitely generated, projective right AG-module, and A′G ' EndAG(AAG);



39. Generator and projectivity properties of A′GA 317

(c) TrA′G(A,A′G) = AHomA′G(A,A′G) = A′G;

(d) A′G = A · ( ∑
g∈G

g) · A;

(e) there exist x1 . . . , xn, y1, . . . , yn ∈ A, such that

n∑
i=1

xi(
∑
g∈G

g)yi = 1 · e ∈ A′G.

Proof. (a)⇔ (b)⇔ (c) is an application of 5.5.

(c)⇔ (d)⇔ (e) follow from 38.3. 2

Remark. Condition (e) of 39.10 (in different notation) was used to define Galois

extensions of rings by Y. Miyashita in [202] in an attempt to generalize the results

from Chase-Harrison-Rosenberg [105] from commutative to non-commutative rings.

For a commutative algebra A, the conditions of 39.10 are equivalent to A′GA being a

projective generator in A′G-Mod.

Now we turn to the investigation of projectivity conditions on A as an A′G-module.

We will focus on the following three

39.11 Projectivity properties.

(P l.1) A′GA is intrinsically projective (see 5.7).

(P l.2) A′GA is self-projective.

(P l.3) A′GA is projective in A′G-Mod.

Since A′GA is always a cyclic module (A with unit), (P l.2) is equivalent to A′GA

being projective in σ[A′GA]. It is clear that (P l.3)⇒ (P l.2)⇒ (P l.1). We will give more

characterizations of these properties.

Let us begin with a special case of 5.7.

39.12 A′GA intrinsically projective.

The following assertions are equivalent:

(a) A′GA is intrinsically projective;

(b) for every left ideal I ⊂ AG, I = HomA′G(A,A · I);

(c) the map δA : L(AG)→ LG(A) is injective;

(d) for every left ideal I ⊂ AG, I = (A · I) ∩ AG.

A′GA being intrinsically projective is closely related to the condition that AG is a

pure submodule of AAG . This is based on the following more general observation.
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39.13 Lemma. Let S ⊂ A be a subring of A with the same unit, and assume SS to

be a pure submodule of AS. Then, for every left ideal I ⊂ S, I = (A · I) ∩ S.

Proof. Let 0 → S → A → N → 0 be a pure exact sequence in Mod-S. Then for

every left S-module X,

0→ S ⊗S X → A⊗S X → N ⊗S X → 0

is exact (see [40, 34.5]). For any left ideal I ⊂ S, put X := S/I. Now the assertion

follows from [40, 34.9]. 2

Taking S = AG, the equality I = (A · I) ∩ AG, for every left ideal I ⊂ AG, is a

characterization for A′GA to be intrinsically projective and we obtain as a corollary of

39.12 and 39.13 (see also [40, 36.6]):

39.14 Purity and intrinsical projectivity.

(1) If AG is a pure submodule of AAG, then A′GA is intrinsically projective.

(2) If AAG is a flat AG-module, the following statements are equivalent:

(a) A′GA is intrinsically projective;

(b) AG is a pure submodule of AAG.

Projectivity conditions allow to transfer properties of the module to the endomor-

phism ring. The implications here are converse to 39.6.

39.15 A′GA noetherian or artinian.

Let A′GA be intrinsically projective.

(1) If A′GA is a noetherian module, then AG is a left noetherian ring.

(2) If A′GA is an artinian module, then AG is a left artinian ring.

The next proposition is a characterization of condition (P l.2). Notice that here

A′GA is finitely generated (since A has a unit).

39.16 A′GA self-projective.

The following statements are equivalent:

(a) A′GA is self-projective (projective in σ[A′GA]);

(b) HomA′G(A,−) : σ[A′GA]→ AG-Mod is exact;

(c) for every G-invariant left ideal I ⊂ A, the sequence

0→ IG → AG → (A/I)G → 0

is exact in AG-Mod;
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(d) for every G-invariant left ideal I ⊂ A and every a ∈ A with a + I ∈ (A/I)G,

there exists b ∈ AG such that a− b ∈ I;

(e) for every a ∈ A, (a+
∑

g,h∈G
A(ga− ha)) ∩ AG 6= ∅.

Proof. (a)⇔ (b) is clear from module theory (5.1).

(b)⇔ (c) follows from the (functorial) isomorphism of 38.2.

(a) ⇒ (d) Let a + I ∈ (A/I)G for an arbitrary G-invariant left ideal I ⊂ A.

Consider the A′G-homomorphism

f : A→ A/I, x 7→ x(a+ I).

With the projection p : A→ A/I, we have the diagram (in σ[A′GA])

A

↓ f
A

p→ A/I → 0 ,

which can be extended commutatively by an α ∈ EndA′G(A) if A′GA is self-projective.

Then b := (1)α ∈ AG satisfies a− b ∈ I.

(d)⇒ (a) Reverse the arguments in (a)⇒ (d).

(d) ⇔ (e) Notice that a + I ∈ (A/I)G if and only if a − ga ∈ I, for every g ∈ G,

and hence
∑

g,h∈G
A(ga− ha) ⊂ I. So (e)⇒ (d) is obvious.

The converse conclusion follows by the fact that
∑

g,h∈G
A(ga − ha) is a G-invariant

left ideal. 2

In particular, statement (d) gives a useful criterion to check self-projectivity of

A′GA. This was observed independently in [265] and [141]. Garćıa and del Ŕıo call

this property G-lifting. An example of a ring A and a group G, such that A′GA is

intrinsically projective but not self-projective, will be given in 43.1.

Now we look at algebras satisfying (P l.3). This implies in particular, that the

augmentation map α : A′G → A splits as A′G-morphism and hence, by 37.8, G has

to be a finite group. Hence without loss of generality we restrict the next proposition

to this case.

39.17 A′GA projective in A′G-Mod.

For a finite group G acting on A, the following are equivalent:

(a) A′GA is projective in A′G-Mod;

(b) the augmentation α : A′G→ A splits in A′G-Mod;
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(c) there exists a ∈ A such that
∑
g∈G

ga = 1;

(d) the trace map trG : A→ AG is surjective.

Proof. (a)⇔ (b) and (c)⇔ (d) are obvious.

(b) ⇒ (c) Let β : A → A′G be an A′G-morphisms with βα = idA. We conclude

from 38.3 that (1)β =
∑
g∈G

(ga)g, for some a ∈ A, and hence

1 = (1)βα =
∑
g∈G

ga.

(c)⇒ (b) Let a ∈ A such that
∑
g∈G

ga = 1. Then we see (from 38.3) that

β : A→ A′G, x 7→ x ·
∑
g∈G

(ga)g,

defines an A′G-morphism satisfying (1)βα = 1, i.e., βα = idA. 2

As a special case we observe:

39.18 Corollary. Let G be a finite group and assume |G|−1 ∈ A. Then A′GA is

projective in A′G-Mod.

Proof. If |G|−1 ∈ A then
∑
g∈G

(|G|−1)g = 1 and A′GA is projective by 39.17. 2

Under projectivity conditions the radical of a module and the radical of the endo-

morphism ring are related. In our situation this yields:

39.19 The radical of A′GA.

(1) If A′GA is self-projective then

Jac(AG) = HomA′G(A,Rad(A′GA)) = Rad(A′GA) ∩ AG.

(2) If A′GA is self-projective and Rad(A′GA) is generated by A′GA, then

Rad(A′GA) = A · Jac(AG).

(3) If A′GA is a projective A′G-module, then

Jac(AG) = Jac(A) ∩ AG.
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Proof. (1) The first equality is a special case of [40, 22.2]; the second one follows

from 38.2.

(2) By (1), Jac(AG) = HomA′G(A,Rad(A′GA)). Then by assumption,

A · Jac(AG) = A · HomA′G(A,Rad(A′GA)) = Rad(A′GA).

(3) In view of (1) it remains to show that Rad(A′GA) = Jac(A).

Since A′GA is projective, Rad(A′GA) = Jac(A′G)A. Under the given conditions it

follows from [30, Theorem 16.3] that Jac(A′G)A = (Jac(A)A′G)A = Jac(A). 2

In particular, |G|−1 ∈ A implies projectivity of A′GA (by 39.18) and hence Jac(AG) =

Jac(A) ∩ AG. This was first observed by S. Montgomery (see [28, 1.14]).

39.20 A as a right A′G-module.

Recall that A is an associative ring with unit. An action of G on A induces an

action on Ao, and the map

ϕ : A′G→ (Ao)′G, ag 7→ (g
−1

a)g−1,

is an anti-isomorphism of algebras. Thus we may identify the algebras (A′G)o and

(Ao)′G. Doing this the left (Ao)′G-structure on Ao corresponds to the right A′G-

structure on A given by ([59, p. 7])

A× A′G→ A, (b, ag) 7→ g−1

(ba).

It was observed in [59, Proposition 1.7] that A′G-projectivity is a left-right sym-

metric property of A. With arguments similar to the proof of 39.17 we obtain:

39.21 A′G-projectivity of A.

For G acting on A the following are equivalent:

(a) A is a projective left A′G-module;

(b) the right augmentation map A′G→ A,
∑
g∈G

agg 7→
∑
g∈G

g−1
(ag) splits in Mod-A′G;

(c) A is a projective right A′G-module.

It is easily verified that for any right A′G-module N , HomA′G(A,N) ' NG as

right AG-modules (compare 38.2) and right self-projectivity over A′G has similar

characterizations as left self-projectivity in 39.16 (see [142, Proposition 10]).

39.22 AA′G self-projective.

The following statements are equivalent:

(a) AA′G is self-projective (as right A′G-module);
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(b) HomA′G(A,−) : σ[AA′G]→ Mod-AG is exact;

(c) for every G-invariant right ideal I ⊂ A and every a ∈ A with a + I ∈ (A/I)G,

there exists b ∈ AG such that a− b ∈ I;

By 39.21, A is projective in A′G-Mod if and only if A is projective in Mod-A′G.

Notice that a similar symmetry does not hold for self-projectivity of A as A′G-module.

This is shown by Example 43.2.

39.23 Exercises.

Let G be a group acting on the associative algebra A with unit.

(1) Prove that A is a self-projective A′G-module if and only if ([142, Proposition

10])

for every a ∈ A, (a+ AG) ∩ ∑
g,h∈G

A(ga− ha) 6= ∅.

(2) Let A be a projective left A′G-module. Prove ([59, Corollary 1.12]):

For any left A′G-module M , MG = (
∑
g∈G

g) ·M .

(3) Assume that A′G is a regular ring. Prove ([44, Theorem 2.4]):

(i) For every subgroup H ⊂ G, A′H is regular.

(ii) G is locally finite.

(iii) For every finite subgroup H ⊂ G, 1 ∈ trH(A) and RH is regular.

(4) A is called a Frobenius extension of AG if A is a finitely generated projective

AG-module and A ' HomAG(A,AG) as an (A,AG)-bimodule.

Assume G is finite and A′G is a biregular ring. Prove that A is a Frobenius

extension of AG ([142, Proposition 17]).

For the next problems recall that A may also be considered as right A′G-module

(see 39.20) and hence A⊗AG A is an (A′G,A′G)-bimodule.

(5) Let A be a generator in A′G-Mod and assume G to be finite.

Prove ([59, Proposition 1.6]):

(i) The map A⊗AG A→ A′G, x⊗ y 7→ x · ( ∑
g∈G

g) · y is an (A′G,A′G)-isomorphism.

(ii) The multiplication map A⊗AG A→ A is a split (A,A)-epimorphism.

(6) Let A be (self-) injective as a right A-module. Prove ([123, Theorem 2.2]):

(i) If A′GA is self-projective, then AA′G is self-injective.

(ii) If G is finite and AA′G is self-injective, then A′GA is self-projective.

References. Alfaro-Ara-del Rio [44], Auslander-Reiten-Smalø [59], Garćıa-del

Ŕıo [141, 142], Cohen [109], Fisher-Osterburg [137], Jøndrup [171], Kharchenko [22],

Montgomery [28], Miyashita [202], Park [219], Passman [30, 31], Wilke [265].
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40 A′GA as an ideal module and progenerator

1.A′GA as an AG-ideal module. 2.A′GA as a self-progenerator. 3.AG-ideal modules and

self-progenerators. 4.Corollary. 5.Corollary. 6.A′GA as a generator in A′G-Mod and

projectivity. 7.Outer automorphisms and simple rings. 8.Outer automorphisms and

projectivity. 9.Example. 10.Group actions on factor algebras. 11.Progenerators and

factor rings. 12.Proposition. 13.Action of subgroups. 14.Remark. 15.A as a module

over the group ring. 16.Exercises.

Again we will assume throughout this section that G is any group, A is an asso-

ciative R-algebra with unit and i : G→ AutR(A) a group action.

Now we combine the projectivity and generating properties studied in the previous

section. In particular we consider the following conditions on the A′G-module A:

(PG.1) A′GA is an intrinsically projective self-generator.

(PG.2) A′GA is a self-projective self-generator.

(PG.3) A′GA is a projective generator in A′G-Mod.

Condition (PG.1) defines ideal modules. Since A′GA is cyclic, (PG.2) makes A a

self-progenerator. If (PG.3) is satisfied then G is finite and the pair (A,G) is called

pregalois (in [59]) or A is called a G-Galois extension (in [109]).

Obviously, (PG.3)⇒ (PG.2)⇒ (PG.1).

Ideal modules were described in 5.9. Applying this to our situation we obtain:

40.1 A′GA as an AG-ideal module.

The following statements are equivalent for G acting on A:

(a) A′GA is an AG-ideal module (HomA′G(A,−) yields a bijection between G-in-

variant left ideals in A and left ideals in AG);

(b) A′GA is intrinsically projective and a self-generator;

(c) every G-invariant left ideal in A can be written as A · I, for some left ideal

I ⊂ AG, and AAG is faithfully flat.

Examples of the algebras just described will be given later on.

In case A′GA satisfies (PG.2), it is a finitely generated projective generator in

σ[A′GA] (self-progenerator) and we have the following characterizations:

40.2 A′GA as a self-progenerator.

The following statements are equivalent:

(a) A′GA is a self-progenerator;
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(b) HomA′G(A,−) : σ[A′GA]→ AG-Mod is an equivalence of categories

(with inverse A⊗AG −);

(c) for every G-invariant left ideal I ⊂ A,

I = A · IG and (A/I)G ' AG/IG.

Similar to the close relationship between ideal algebras and Azumaya rings we

have connections between A being an ideal algebras or a progenerator over A′G.

40.3 AG-ideal modules and self-progenerators.

The following assertions are equivalent for A′GA.

(a) A′GA is a self-progenerator;

(b) A′GA is an AG-ideal module and self-projective;

(c) A′GA is intrinsically projective and a generator in σ[A′GA];

(d) A′GA is a generator in σ[A′GA] and AG is a pure submodule of AAG.

Proof. The equivalence of (a)-(c) follows from 5.10, and 39.14 implies (d)⇔ (c). 2

For generators this yields nice characterizations for self-projectivity.

40.4 Corollary. Let A′GA be a generator in σ[A′GA]. Then the following statements

are equivalent:

(a) A′GA is self-projective;

(b) A′GA is intrinsically projective;

(c) AG is a pure submodule of AAG.

As in 26.9 we have special cases when AG-ideal modules are self-progenerators.

40.5 Corollary. Let A′GA be an AG-ideal module.

(1) If AAG is projective then AG is a direct summand in AAG.

Moreover, A is a generator in Mod-AG and A′GA is a self-progenerator.

(2) If the fixed ring AG is right perfect then A′GA is a self-progenerator.

Next we collect facts which make a generator A in A′G-Mod projective.

40.6 A′GA as a generator in A′G-Mod and projectivity.

Let A′GA be a generator in A′G-Mod. Then the following are equivalent:

(a) A′GA is projective in A′G-Mod;

(b) A′GA is self-projective;



40. A′GA as an ideal module and progenerator 325

(c) A′GA is intrinsically projective;

(d) AG is a pure submodule of AAG;

(e) AG is a direct summand in AAG;

(f) AAG is a generator in Mod-AG.

Proof. (a)⇒ (b)⇒ (c) and (e)⇒ (f) are obvious. (c)⇒ (d) is shown in 40.4.

(d)⇒ (e) Since A′GA is a generator in A′G-Mod, AAG is projective and by (d),

A′GA is an AG-ideal module. By 40.5, AG is a direct summand in AAG .

(f)⇒ (a) If AAG is a generator in Mod-AG then A is projective as left module over

the ring End(AAG) ' A′G. 2

If A is commutative and A′GA is a (projective) generator in A′G-Mod, A is called

a Galois extension of AG. Such extensions were first investigated by Auslander and

Goldman [58, Appendix], and later on by Chase, Harrison and Rosenberg [105]. In

Miyashita[202] some of these results were extended to non-commutative rings.

An automorphism g of A is called inner if there exists an invertible u ∈ A, such

that

gx = u−1xu, for all x ∈ A.

A group G of automorphisms of A is called inner if every g ∈ G is inner, and G is

outer if idA is the only inner automorphism in G. We recall the following facts about

outer automorphism groups (see [28, Theorem 2.3, 2.4]):

40.7 Outer automorphisms and simple rings.

Let G be an outer automorphism group of a simple ring A with unit. Then:

(1) A′G is a simple ring.

(2) A is a generator in A′G-Mod.

Combined with 40.6 this yields an extended version of [28, Theorem 2.5]:

40.8 Outer automorphisms and projectivity.

Let A be a simple ring and G a finite group of outer automorphisms of A. Then

the following statements are equivalent:

(a) A′GA is intrinsically projective;

(b) A′GA is self-projective;

(c) A′GA is projective in A′G-Mod;

(d) A′GA is a projective generator in A′G-Mod;
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(e) AAG is a generator in Mod-AG;

(f) AG is a simple ring;

(g) there exists some a ∈ A with trG(a) = 1.

It is not surprising that a self-progenerator A′GA need not be a generator in

A′G-Mod.

40.9 Example. Let K be a field and G be an infinite subgroup of Aut(K). Obviously,

K′GK is a simple module and hence a self-progenerator. However, K′GK is neither

projective in K ′G-Mod (because |G| = ∞, see 39.18) nor a generator in K ′G-Mod

(KKG is not finitely generated, see 39.10).

40.10 Group action on factor algebras.

Let G act on A and consider a two-sided G-invariant ideal I ⊂ A. Then the group

G acts on A/I by the group homomorphism τ : G→ AutR(A/I) with

τ(g) : A/I → A/I, a+ I 7→ ga+ I .

Self-progenerator and self-projective transfer to factor algebras.

40.11 Progenerators and factor rings.

Let G act on A and let I ⊂ A be a two-sided G-invariant ideal. Denote B := A/I.

(1) If A′GA is self-projective then B′GB is self-projective.

(2) If A′GA is a self-generator then B′GB is a self-generator.

(3) If A′GA is projective in A′G-Mod then B′GB is projective in B′G-Mod.

(4) If A′GA is a generator in A′G-Mod then B′GB is a generator in B′G-Mod.

Proof. (1) As a two-sided G-invariant ideal, I is a fully invariant submodule of A′GA.

Hence A′GB is self-projective ([40, 18.2]) and clearly B′GB is also self-projective.

(2) Every B′G-submodule of B is of the form X/I for a suitable G-invariant left

ideal with I ⊂ X ⊂ A. Then X/I is an A′G-submodule of B and, by assumption,

there exists an A′G-epimorphism f : A(Λ) → X/I. Since I ⊂A′G A is fully invariant,

we conclude I(Λ) ⊂ Ke f , and we have

A(Λ) f−→ X/I −→ 0

↘ ↗ α

A(Λ)/I(Λ)

in σ[A′GA],

with some A′G-homomorphism α, which is in fact a B′G-epimorphism.

Since A(Λ)/I(Λ) ' B(Λ) this means that B′GB is a self-generator.

(3) and (4) are easily derived from the criterions 39.17 and 39.10. They are also

proved in [59, Proposition 3.2]. 2



40. A′GA as an ideal module and progenerator 327

The following fact is shown in [59, Theorem 3.3].

40.12 Proposition. Let G act on A and denote B := A/Jac(A). Then:

(1) If B′GB is projective in B′G-Mod, then A′GA is projective in A′G-Mod.

(2) If B′GB is a generator in B′G-Mod, then A′GA is a generator in A′G-Mod.

We will show by Example 43.3 that the assertions in 40.12 are no longer true for

projectivity replaced by self-projectivity.

It was observed in [59] that the progenerator property of A in A′G-Mod is inherited

by subgroups and factor groups.

40.13 Action of subgroups.

Let G act on the algebra A and consider any subgroup H ⊂ G.

(1) If A is a projective A′G-module, then A is also a projective A′H-module.

(2) If A is a generator in A′G-Mod, then A is a generator in A′H-Mod.

Proof. For H ⊂ G write G as a disjoint union G =
·⋃

γ∈Γ
Hγ, Γ ⊂ G. Then we have

an (M(A)′H-) isomorphism

ϕ : (A′H)(Γ) → A′G, (
∑
h∈H

a
(γ)
h h)γ∈Γ 7→

∑
γ∈Γ

∑
h∈H

a
(γ)
h hγ.

In particular, A′G is a projective (free) A′H-module.

(1) If A is a projective A′G-module, then A is a direct summand of A′GA
′G and

hence it is a projective A′H-module.

(2) The map ϕ shows that A′H is generated by A′G as an A′H-module. If A

generates A′G (as A′G-module) it also generates A′H (as A′H-module). 2

40.14 Remark. Let A be a progenerator in A′G-Mod and N ⊂ G any normal

subgroup. It is shown in [59, Theorem 2.8] that under this conditions AN ′G/NA
N is a

projective generator in (AN)′(G/N)-Mod.

We will show in example 43.2 that a similar result does not hold for self-progenerators,

and that the assertions of 40.13 do not transfer to self-progenerators.

We close this section by considering the case that G acts trivially on A, i.e., we

consider A as a module over the (ordinary) group ring A[G].

40.15 A as a module over the group ring.

Let G be a group acting trivially on A and consider A as an A[G]-module.

(1) A[G]A is a self-progenerator.
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(2) A[G]A is a generator in A[G]-Mod if and only if G = {e} (and A[G] = A).

(3) A[G]A is projective in A[G]-Mod if and only if G is finite and |G|−1 ∈ A.

Proof. (1) By assumption, every left ideal I ⊂ A is G-invariant and IG = I. So

A[G]A is a self-progenerator by 40.2.

(2) If G consists of at least two elements the trivial action is not faithful and

therefore A is not a faithful A[G]-module.

(3) By 37.8, G has to be finite. So for every a ∈ A, we obtain

trG(a) =
∑
g∈G

ga = |G| · a.

Hence there exists a ∈ A, such that trG(a) = 1 if and only if |G|−1 ∈ A (39.18). 2

40.16 Exercises.

(1) Let G be a finitely generated group acting on an associative R-algebra A with

unit. By 40.10, G acts on Ax, for every x ∈ X . Prove:

(i) The following are equivalent:

(a) A is self-projective as an A′G-module;

(b) Ax is self-projective as an A′xG-module, for each x ∈ X .

(ii) The following are equivalent:

(a) A is self-generator as an A′G-module;

(b) Ax is self-generator as an A′xG-module, for each x ∈ X .

(iii) The following are equivalent:

(a) A is a progenerator in A′G-Mod;

(b) Ax is a progenerator in A′xG-Mod, for each x ∈ X .

(2) Let A be an associative prime Azumaya R-algebra of rank n2 (dimension of the

central closure over its centre). Prove that the factor group AutR(A)/Inn(A) is abelian

of torsion n, where Inn(A) denotes the inner automorphisms of A ([107, Theorem 2]).

References. Auslander-Reiten-Smalø [59], Kharchenko [22], Cohen [109], Wilke

[265].
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41 A as an M(A)′G-module

1.Group action on the centroid. 2.G-centre and G-centroid. 3.Properties of M(A)′GA.

4.The G-centre of M(A)′G-modules. 5.Proposition. 6.M(A)′GA self-projective. 7.Al-

gebras with large fixed centre. 8.M(A)′GA as a Z(A)G-ideal module. 9.M(A)′GA as a

self-progenerator. 10.M(A)′GA as a generator in M(A)′G-Mod. 11.Action of subgroups.

In the next sections we will consider not necessarily associative algebras A. To

study A as an M(A)′G-module we will combine our investigations on A as an M(A)-

module and on groups acting on A.

41.1 Group action on the centroid.

For γ ∈ EndM(A)(A) and any R-automorphism h : A → A, there is an M(A)-

homomorphism
hγ : A

h−1

→ A
γ→ A

h→ A,

and this induces an algebra automorphism

hc : C(A)→ C(A), γ 7→ hγ.

Hence the action i : G→ AutR(A) yields an action of G on C(A),

iC : G→ AutR(C(A)), g 7→ i(g)C .

Since the centre Z(A) of A is invariant under automorphisms, the action of G on

A also yields an action

iZ : G→ AutR(Z(A)), g 7→ i(g)|Z(A).

For an algebra A with unit 1, we have the commutative diagram

C(A)
hc→ C(A) γ → hγ

↓ ↓ ↓ ↓

Z(A)
h|Z(A)→ Z(A) (1)γ → (1)γh .

41.2 G-centre and G-centroid.

Under the actions considered above, the G-invariant elements Z(A)G are called

the G-centre of A, and C(A)G is called the G-centroid of A. We consider G as a

subset of AutR(A) (⊂ EndR(A)).

(1) C(A)G ' EndMG(A)(A) = {γ ∈ C(A) | g ◦ γ = γ ◦ g for each g ∈ G}.

(2) There exists an R-algebra morphism

ν : Z(A)G → C(A)G, a 7→ La.
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(3) If A is a faithful Z(A)G-module then ν is injective.

(4) Z(A)G is a right C(A)G-module.

(5) If A has a unit then ν is an isomorphism.

Proof. The arguments are similar to those of 2.8. 2

Although our techniques apply to algebras without units, the existence of a unit

does simplify the presentation of some results. Hence we assume A to have a unit in

the rest of this section.

41.3 Properties of M(A)′GA.

Let G be a group acting on a ring A with unit.

(1) A is a cyclic M(A)′G-module and the M(A)′G-submodules of A are the

G-invariant ideals of A.

(2) If M(A)′GA is a faithful module, then the action of G on A is faithful.

The role of the centre of M(A)-modules is now taken by

41.4 The G-centre of M(A)′G-modules.

Let G be a group acting on a ring A with unit, and let X be any left M(A)′G-

module. The G-centre of X is defined as

ZG
A (X) := {x ∈ ZA(X) | g · x = x, for every g ∈ G}.

For X = A we obtain ZG
A (A) = Z(A)G and ZG

A (X) is a Z(A)G-submodule of X, since

g(ax) = (gae)x = (ga)gx = ax, for any x ∈ ZG
A (X), a ∈ AG, g ∈ G.

Similar to the observations in 23.3 and 38.2 we obtain:

41.5 Proposition. Let G act on an R-algebra A with unit and let X ∈M(A)′G-Mod.

(1) The (evaluation) map

ΦX : HomM(A)′G(A,X)→ ZG
A (X), f 7→ (1)f,

is an isomorphism of left Z(A)G-modules.

(2) ΦA : EndM(A)′G(A)→ Z(A)G is an algebra isomorphism.

(3) X is A-generated as an M(A)′G-module if and only if

X = AHomM(A)′G(A,X) = AZG
A (X).
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(4) Any G-invariant ideal I ⊂ A is A-generated as M(A)′G-module if and only if

I = A(I ∩ Z(A)G).

(5) Any G-invariant ideal I ⊂ A is a fully invariant M(A)′G-submodule.

It is more or less obvious how to transfer the observations about generating and

projectivity conditions from the sections 24, 39, and 40 to A as an M(A)′G-module.

For example, self-projectivity has the following characterization.

41.6 M(A)′GA self-projective.

The following statements are equivalent for a ring A with unit.

(a) M(A)′GA is self-projective (projective in σ[M(A)′GA]);

(b) HomM(A)′G(A,−) : σ[M(A)′GA]→ Z(A)G-Mod is exact;

(c) for every G-invariant ideal I ⊂ A, the sequence

0→ ZG
A (I)→ Z(A)G → ZG

A (A/I)→ 0

is exact in Z(A)G-Mod;

(d) for every G-invariant ideal I ⊂ A and every a ∈ A with a+ I ∈ Z(A/I)G, there

exists b ∈ Z(A)G such that a− b ∈ I;

(e) for every a ∈ A, (a+ Ia) ∩ Z(A)G 6= ∅,
where Ia denotes the ideal in A generated by the subset

{(ga)x− x(ha), ((ga)x)y − (ha)(xy), (yx)(ga)− y(x(ha)) |x, y,∈ A, g, h ∈ G}.

In case A is associative, Ia =
∑

g,h∈G
A((ga)x− x(ha))A.

Proof. The proof follows the same lines as 25.7 and 39.16.

(e) is based on the fact that for any a ∈ A with a + I ∈ Z(A/I)G, the ideal

described is contained in I. 2

Definition. We say an algebra A has a large fixed centre if for every non-zero

G-invariant ideal I ⊂ A, I ∩ Z(A)G 6= 0.

The arguments from 24.2 yield in this situation:

41.7 Algebras with large fixed centre.

Assume A is an algebra with unit and large fixed centre. Then:

(1) For any G-invariant ideal U ⊂ A, A(U ∩ Z(A)G) is an essential M(A)′G-

submodule of U .

(2) A is a simple M(A)′G-module if and only if Z(A)G is a field.
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(3) A is a semisimple M(A)′G-module if and only if Z(A)G is a semisimple ring.

For example, an algebra A has a large fixed centre if A has a large centre and

Z(A) has a large fixed ring. In particular, any semiprime associative PI-algebra has

a large fixed centre provided G is finite and A has no additive |G|-torsion (see 39.3).

Combining projectivity and generating properties we consider the following con-

ditions on the M(A)′G-module A.

– A is an intrinsically projective self-generator M(A)′G-module.

– A is a self-projective self-generator M(A)′G-module.

– A is a projective generator in M(A)′G-Mod.

From the description of ideal modules in 5.9 we have:

41.8 M(A)′GA as a Z(A)G-ideal module.

The following statements are equivalent for G acting on an algebra A with unit.

(a) M(A)′GA is a Z(A)G-ideal module (there is a bijection between G-invariant ideals

in A and ideals in Z(A)G);

(b) M(A)′GA is intrinsically projective and a self-generator;

(c) every G-invariant ideal in A can be written as A · I, for some ideal I ⊂ Z(A)G,

and A is faithfully flat as a Z(A)G-module.

Next we characterize A as a projective generator in σ[M(A)′GA].

41.9 M(A)′GA as a self-progenerator.

The following are equivalent for a group G acting on an algebra A with unit:

(a) M(A)′GA is a self-progenerator;

(b) HomM(A)′G(A,−) : σ[M(A)′GA]→ Z(A)G-Mod is an equivalence of categories

(with inverse A⊗Z(A)G −);

(c) for every G-invariant ideal I ⊂ A,

I = A · ZG
A (I) and Z(A/I)G ' Z(A)G/ZG

A (I).

Finally we describe A as a progenerator in M(A)′G-Mod. Since EndM(A)′G(A) is

commutative we know that A being a generator in M(A)′G-Mod already implies that

A is projective in M(A)′G-Mod (see 5.5). Moreover, we know from 37.8 that G has

to be a finite group in this case.
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41.10 M(A)′GA as a generator in M(A)′G-Mod.

For a finite group G acting on an algebra A with unit, the following are equivalent:

(a) A is a generator in M(A)′G-Mod;

(b) A is a projective generator in M(A)′G-Mod;

(c) A is a finitely generated, projective right Z(A)G-module, and

M(A)′G ' EndZ(A)G(A);

(d) TrM(A)′G(A,M(A)′G) = AHomM(A)′G(A,M(A)′G) = M(A)′G;

(e) HomM(A)′G(A,−) : M(A)′G-Mod→ Z(A)G-Mod is an equivalence of categories

(with inverse A⊗Z(A)G −);

Remark. For an associative and commutative algebra A, the situation above yields

Galois extensions in the sense of Chase-Harrison-Rosenberg ([105, Theorem 1.3]).

Similar to 40.13 we observe for subgroups:

41.11 Action of subgroups.

Let G be a group acting on an algebra A with unit, and let H ⊂ G be a subgroup.

(1) If A is a projective M(A)′G-module, then A is also a projective M(A)′H-module.

(2) If A is a generator in M(A)′G-Mod, then A is a generator in M(A)′H-Mod.

Proof. (1) In the proof of 40.13, the map ϕ : (A′H)(Γ) → A′G is in fact an M(A)′H-

isomorphism.

By assumption, M(A)′GA is a direct summand of M(A)′G. Moreover, by 40.13,

M(A)′G is a direct sum of copies of M(A)′H. Hence A′H is a projective M(A)′H-

module.

(2) Let A be a generator in M(A)′G-Mod. As a direct summand, M(A)′H is

generated by M(A)′G as an M(A)′H-module and so it is A-generated. 2
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42 The central closure of G-semiprime rings

1.Extended centroid of a G-semiprime algebra. 2.Central G-closure of G-semiprime

algebras. 3.Group action on the central closure. 4.Fixed elements of the extended

centroid. 5.Remarks. 6.X-outer automorphisms and strongly prime rings.

In this section A will denote a non-associative algebra with unit, and G any group

acting on A.

A is said to be G-semiprime if it does not contain any non-zero nilpotent G-

invariant ideals, and A is called G-prime if for any G-invariant ideals I, J ∈ A, IJ = 0

implies I = 0 or J = 0. Obviously, if A is (semi)prime then it is G-(semi)prime.

The module theory used to construct extended centroid and central closure for a

semiprime algebra allows similar constructions for G-semiprime algebras. Recalling

that G-invariant ideals are just the MG(A)-submodules of A we obtain from 32.1:

42.1 Extended centroid of a G-semiprime algebra.

Let A be any G-semiprime algebra. Let QG(A) denote the self-injective hull of A

as MG(A)-module and TG := EndMG(A)(QG(A)). Then:

(1) A is a polyform MG(A)-module.

(2) C(A)G ⊂ TG and TG is a commutative, regular and self-injective ring.

(3) QG(A) is the quotient module of A for the Lambek torsion theory in σ[MG(A)A]

and

TG ' lim
−→
{HomMG(A)(U,A) |U � MG(A)A} ' HomMG(A)(A,QG(A)).

(4) TG is semisimple if and only if A has finite uniform dimension as an MG(A)-

module.

TG is called the extended G-centroid of A.

Proof. Transfer the proof of 32.1. 2

Based on the above observations we can also construct the

42.2 Central G-closure of G-semiprime algebras.

Let A be any G-semiprime algebra and TG := EndMG(A)(QG(A)). Then:

(1) QG(A) = AHomMG(A)(A,QG(A)) = ATG, and a ring structure is defined on

QG(A) by (linear extension of)

(as) · (bt) := (ab)st, for a, b ∈ A, s, t ∈ TG.

(2) A is a subring of QG(A).
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(3) QG(A) is a G-semiprime ring with centroid TG (hence a TG-algebra).

(4) QG(A) is self-injective as an M(QG(A))-module.

(5) If A is a G-prime ring then QG(A) is also a G-prime ring.

We call QG(A) the central G-closure of A.

Proof. Apply the proof of 32.2. 2

Of course, most of the results about the central closure of semiprime algebras find

their interpretation for G-semiprime algebras (e.g., 32.3, 32.4, 32.5, 32.6, 32.7).

Since any semiprime algebra is G-semiprime, it has a central closure as well as a

central G-closure. To compare these two constructions it is helpful to observe that

automorphisms of semiprime algebras can be extended to their central closure:

42.3 Group action on the central closure.

Let γ ∈ EndM(A)(Â) and denote I := Aγ−1. For any R-automorphism h : A→ A,
hI is an essential ideal in A and there is an M(A)-homomorphism

hI
h−1

−→ I
γ−→ A

h−→ A,

which can be uniquely extended to an M(A)-homomorphism hγ : Â → Â. Hence h

yields an algebra automorphism

hc : EndM(A)(Â)→ EndM(A)(Â), γ 7→ hγ,

and an action i : G→ Aut(A) yields an action on the extended centroid,

iC : G→ AutR(EndM(A)(Â)), g 7→ i(g)C .

Recalling that Â = AEndM(A)(Â), an automorphism h : A → A now yields an

automorphism of the central closure,

h̃ : AEndM(A)(Â)→ AEndM(A)(Â), aα 7→ (ha)(hα),

and we have the group action

iC : G→ AutR(Â), g 7→ ĩ(g).

In particular, we may consider Â as an M(A)′G-module. However, Â need not be

A-generated as an M(A)′G-module.

By the action defined above, the fixed elements of EndM(A)(Â) are precisely those

M(A)-endomorphisms which commute with the elements of G. Hence we have:
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42.4 Fixed elements of the extended centroid.

Let G be a group acting on a semiprime algebra A. Then

[EndM(A)(Â)]G = EndM(A)′G(Â) = {γ ∈ EndM(A)(Â) | g ◦ γ = γ ◦ g for each g ∈ G}.

42.5 Remarks. Let A be an associative semiprime algebra with Martindale left ring

of quotientsQo(A). It was shown (by Kharchenko) that any automorphism of A can be

uniquely extended to an automorphism of Qo(A) (which contains the central closure

Â, see [28, p. 42]). Following Kharchenko, define for any automorphism g : A→ A,

Φg = {x ∈ Qo(A) |x(ga) = ax, for all a ∈ A}.

g is said to be X-inner if Φg 6= 0.

An automorphism group G of A is called X-outer if the identity is the only X-inner

element of G. Clearly, in this case G is an outer automorphism group for Â.

The results on outer automorphisms of simple rings in 40.7 yield:

42.6 X-outer automorphisms and strongly prime rings.

Let G be an X-outer automorphism group of a strongly prime ring A with unit.

Then:

(1) Â′G is a simple ring.

(2) Â is a generator in Â′G-Mod.

Proof. Since A is strongly prime, Â is a simple ring (see 35.6). By the above remarks,

G is outer on Â and the assertions follow from 40.7. 2

References. Goursaud-Pascaud-Valette [146], Kharchenko [22], Montgomery

[28].
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43 Examples for group actions

In this section we collect several explicit examples for the situations considered in the

previous sections.

43.1 Example. A ring A and a group G such that A′GA is intrinsically projective

but not self-projective.

The ring extension ZZ ⊂ ZZ[i]. Consider the ring ZZ[i] of the Gaussian inte-

gers and the group G := {id, ϕ}, with ϕ the canonical complex conjugation. Then

obviously ZZ[i]G = ZZ. Clearly ZZ is a direct summand and hence a pure submodule

of ZZ[i]. So ZZ[i]′GZZ is intrinsically projective by 39.14(1).

To see that ZZ[i]′GZZ is not self-projective, consider theG-invariant ideal I := ZZ[i]·2.

For x = i, we have x− gx ∈ I, for every g ∈ G, hence x+ I ∈ (ZZ[i]/I)G.

However, for every y ∈ ZZ, we have x− y = −y+ i 6∈ I. Therefore ZZ[i]′GZZ[i] is not

self-projective. 2

Next we show that self-projectivity over A′G is not a left-right symmetric property

(see remarks after 39.22) and that the statements of 40.13 need not hold for self-pro-

generators.

43.2 Example. An abelian group G acting on a ring A, such that A′GA is a self-

progenerator but AA′G is not self-projective.

Moreover, we have a (normal) subgroup H ⊂ G, such that neither A′HA nor

AH ′G/HA
H are self-progenerators.

Let k be a field of characteristic p 6= 0 and A = k(3,3) be the ring of all 3×3-matrices

over k. Let G be the subgroup of Aut(A) generated by the two inner automorphisms

of A acting by conjugation with the matrices

U =

 1 1 0

0 1 0

0 0 1

 , V =

 1 0 1

0 1 0

0 0 1

 .
Then the order of G is p2 (and infinite if char k=0). For an arbitrary matrix

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,
we obtain

UXU−1 =

x11 + x21 x12 − x11 − x21 + x22 x13 + x23

x21 x22 − x21 x23

x31 x32 − x31 x33

 (I)
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and

V XV −1 =

x11 + x31 x12 + x32 x13 − x11 − x31 + x33

x21 x22 x23 − x21

x31 x32 x33 − x31

 (II)

If X ∈ AG then UXU−1 = V XV −1 = X and hence the fixed ring is

AG = {

 a b c

0 a 0

0 0 a

 | a, b, c ∈ k}.
(i) A′GA is a self-progenerator.

To show this we have to determine the G-invariant left ideals of A. Let I 6= 0 be

a G-invariant left ideal of A. If there exists an element X ∈ I such that xi1 6= 0 for

at least one index i ∈ {1, 2, 3}, then

Xi :=

xi1 xi2 xi3
0 0 0

0 0 0

 ∈ I.
Since I is G-invariant,

UXiU
−1 =

xi1 xi2 − xi1 xi3
0 0 0

0 0 0

 ∈ I, V XiV
−1 =

xi1 xi2 xi3 − xi1
0 0 0

0 0 0

 ∈ I.
Hence

Xi − UXiU
−1 =

 0 xi1 0

0 0 0

0 0 0

 ∈ I, Xi − V XiV
−1 =

 0 0 xi1
0 0 0

0 0 0

 ∈ I.
By multiplication with suitable matrices in A from the left, it is easy to see that 1 0 0

0 1 0

0 0 1

 ∈ I, i.e., I = A. So for I 6= R we have I =

 0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

.

If there is a matrix X ∈ I of rank two, we obtain

I = I1 :=

 0 k k

0 k k

0 k k

 ,
and if rank(X) ≤ 1 for every X ∈ I, we can find a, b ∈ k such that

I = Ia,b := {

 0 xa xb

0 ya yb

0 za zb

 |x, y, z ∈ k}.
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Now we know what the G-invariant left ideals in A look like and we can prove that

A′GA is a self-progenerator. For self-projectivity of A′GA we have to show, for every

G-invariant left ideal I ⊂ A:

If X − gX ∈ I, for every g ∈ G, there exists Y ∈ AG such that X − Y ∈ I.

This condition is obviously true for the trivial left ideals of A. If X − gX ∈ I1,

then x21 = x31 = 0 and we can choose

Y =

x11 0 0

0 x11 0

0 0 x11

 ∈ AG.
Now let a, b ∈ k and a 6= 0 or b 6= 0. For an element X ∈ A with X − gX ∈ Ia,b, for

every g ∈ G, we derive from X − UXU−1 ∈ Ia,b and (I),

x21 = x31 = 0, x22 − x11 = xa and x23 = xb, for some x ∈ k.

Similarly, by (II) and X − V XV −1 ∈ Ia,b, we obtain

x21 = x31 = 0, x32 = ya and x33 − x11 = yb, for some y ∈ k.

Choosing

Y =

x11 x12 x13

0 x11 0

0 0 x11

 ∈ AG, we have X − Y =

 0 0 0

0 xa xb

0 ya yb

 ∈ Ia,b.
Hence A′GA is self-projective and it is easy to see that A ·IG = I, for every G-invariant

left ideal I ⊂ A. So A′GA is a self-generator.

(ii) AA′G is not self-projective.

To prove this consider the G-invariant right ideal (see (I), (II))

J :=

 k k k

0 0 0

0 0 0

 ⊂ A.

For X =

 1 1 1

0 1 1

0 0 0

, UXU−1 =

 1 1 2

0 1 1

0 0 0

, V XV −1 =

 1 1 0

0 1 1

0 0 0

,

which implies X − gX ∈ J , for each g ∈ G. However, for every Y ∈ AG,

X − Y =

 1 1 0

0 1 1

0 0 0

−
 a b c

0 a 0

0 0 a

 =

 1− a 1− b −c
0 1− a 1

0 0 −a

 6∈ J.
This proves that AA′G is not self-projective.
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(iii) A′HA is not self-projective.

Let H denote the subgroup of G generated by X 7→ UXU−1. Then

AH = {

 a b c

0 a 0

0 d e

 | a, b, c, d, e ∈ k}.
We show that A′HA is not self-projective. Of course, I1 is also an H-invariant left ideal.

For a matrix X ∈ A with X − hX ∈ I1, for every h ∈ H, we have only one condition,

namely x21 = 0. In particular, x31 may be non-zero. Then X − Y has a non-zero

first entry in the third row and hence X − Y 6∈ I1. So A′HA is not self-projective (see

39.16).

(iv) AH ′G/HA
H is not self-projective.

Because of UV = V U , G is an abelian group and hence H is a normal subgroup

of G. We denote the elements of G/H by g with g ∈ G. There is no difficulty to see

that (AH)G/H = AG. For the G/H-invariant left ideal

I :=

 0 k 0

0 0 0

0 0 0

 ⊂ AH and X :=

 0 0 0

0 0 0

0 1 0

, V XV −1 =

 0 1 0

0 0 0

0 1 0

,

and therefore X − gX ∈ I, for every g ∈ G/H. However, for every

Y =

 y11 y12 y13

0 y11 0

0 0 y11

 ∈ AG, we have X − Y =

−y11 1− y12 −y13

0 −y11 0

0 0 −y11

 6∈ I,

which means that AH ′G/HA
H is not self-projective. 2

Now we show that 40.11 need not hold for self-progenerators.

43.3 Example. A group G acting on A, such that A/Jac(A)′GA/Jac(A) is a self-

progenerator but A′GA is not.

Consider the ring A of all 2× 2 matrices over the ring ZZ4, and the automorphism

group G = {idA, ϕ} given by

ϕ(

(
a b

c d

)
) :=

(
1 0

0 −1

)(
a b

c d

)(
1 0

0 −1

)
=

(
a −b
−c d

)
.

A′GA is not self-projective:

For the G-invariant left ideal I = {
(

2a 0

2b 0

)
| a, b ∈ ZZ4} and X =

(
0 0

1 0

)
∈ A,

X − ϕX =

(
0 0

1 0

)
−
(

0 0

−1 0

)
=

(
0 0

2 0

)
∈ I.
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Hence X + I = gX + I, for every g ∈ G, i.e., X + I ∈ (A/I)G.

It is easily verified that AG = {
(
a 2b

2c d

)
| a, b, c, d ∈ ZZ4}, and it is impossible to

find Y ∈ AG with Y −X ∈ I. So A′GA is not self-projective.

It is straightforward to show

Jac(A) = {
(

2a 2b

2c 2d

)
| a, b, c, d ∈ ZZ4},

and the induced action of G on A/Jac(A) is trivial. Hence A/Jac(A)′GA/Jac(A) is a

self-progenerator (by 40.15). 2

The next two examples show that projectivity of A′GA in A′G-Mod does not depend

on the invertibility of |G| in A.

43.4 Examples. A finite group G acting on an algebra A, |G|−1 6∈ A, and A′GA a

projective generator in A′G-Mod.

(1) ([59]) Let A be the ring of 2× 2-matrices over the field ZZ2, and let G be the

automorphism group G = {id, ϕ} with

ϕ

((
a b

c d

))
:=

(
1 0

1 1

)(
a b

c d

)(
1 0

1 1

)
=

(
a+ b b

a+ b+ c+ d b+ d

)
.

A′GA is projective in A′G-Mod, since

∑
g∈G

g

(
1 1

0 0

)
=

(
1 1

0 0

)
+ ϕ

((
1 1

0 0

))
=

(
1 0

0 1

)
,

and A′GA is a generator in A′G-Mod, since for

x1 = y1 =

(
1 1

0 0

)
and x2 = y2 =

(
0 1

0 1

)

we have

x1(
∑
g∈G

g)y1 + x2(
∑
g∈G

g)y2 = 1 · id.

(2) Let A := ZZ2[x, y | xy + yx = 1] be the first Weyl algebra over ZZ2 and

G = {id, ϕ} with ϕ(x) := y and ϕ(y) := x. A′GA is a projective generator in A′G-Mod,

since ∑
g∈G

g(xy) = xy + ϕ(xy) = xy + yx = 1, and

xy(id + ϕ)1 + 1(id + ϕ)yx = 1 · id.

2
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For more examples for A being a progenerator in A′G-Mod see [59].

The following example (suggested by S. Montgomery) was used in [109] to show

that A′GA need not be a faithful A′G-module, even if G acts faithfully on A. In fact

it shows the following:

43.5 Example. A finite group G acting faithfully on an algebra A, with |G|−1 ∈ A
(hence A is projective in A′G-Mod) and A′GA is a self-progenerator but not a generator

in A′G-Mod.

Let A := Q(3,3), the ring of 3 × 3-matrices over the rationals Q. Consider the

elements in A,

x :=


1 0 0

0 1 0

0 0 −1

 , y :=


1 0 0

0 −1 0

0 0 1

 , xy =


1 0 0

0 −1 0

0 0 −1

 = yx.

Denote by ϕx, ϕy and ϕxy the inner automorphisms of A, defined by conjugation with

x, y and xy, respectively. These yield a group G of order 4,

G = {idA, ϕx, ϕy, ϕxy}.

The order of G is invertible in A and A is left semisimple. Hence (by 38.4) A′G is

also left semisimple. In particular, A′GA is a semisimple module and hence a self-

progenerator. However, A′GA is not a generator in A′G-Mod since A′GA is not a

faithful A′G-module: From x+ y − xy − 1 = 0 we have for each a ∈ A,

(xϕx + yϕy − xyϕxy − id) · a = x2ax+ y2ay − (xy)2axy − a = a(x+ y − xy − 1) = 0.

Therefore 0 6= xϕx + yϕy − xy(ϕxy)− id ∈ AnA′G(A). 2

43.6 Example. A finite group G acting on a commutative algebra A with |G|−1 6∈ A,

A′GA is semisimple (hence a self-progenerator) but neither projective nor a generator

in A′G-Mod.

Consider the ring A := (ZZ2)3 with componentwise addition and multiplication,

and the group G = {id, ϕ} with the automorphism

ϕ : A→ A, (a1, a2, a3) 7→ (a3, a2, a1).

For any (a1, a2, a3) ∈ A,∑
g∈G

g(a1, a2, a3) = (a1, a2, a3) + ϕ((a1, a2, a3)) = (a1 + a3, 0, a1 + a3) 6= (1, 1, 1),
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Hence A′GA is not projective in A′G-Mod. Moreover, A′GA is not a generator in

A′G-Mod since it is not a faithful A′G-module: For all (a1, a2, a3) ∈ A,

((0, 1, 0)ϕ− (0, 1, 0)id) · (a1, a2, a3) = (0, a2, 0)− (0, a2, 0) = (0, 0, 0),

i.e., 0 6= (0, 1, 0)ϕ− (0, 1, 0)id ∈ AnA′G(A).

A′GA is a semisimple module since we have a decompostion

A′GA = A′G · (1, 0, 0)⊕ A′G · (0, 1, 0),

where A′G · (1, 0, 0) = {(a1, 0, a3) ∈ A} and A′G · (0, 1, 0) = {(0, a2, 0) ∈ A} are simple

A′G-modules.

Notice that A can also be considered as 3× 3-diagonal matrices over ZZ2 and the

automorphism ϕ can be described by conjugation with the matrix
0 0 1

0 1 0

1 0 0

 6∈ A.
2

The preceding example can be modified such that A′GA is no longer semisimple

but still is a self-progenerator.

43.7 Example. A finite group G acting on a commutative algebra A, with |G|−1 6∈ A,

A′GA is a self-progenerator but neither semisimple, nor projective nor a generator in

A′G-Mod.

Let A := (ZZ4)3 be endowed with componentwise addition and multiplication, and

let G = {id, ϕ} be the same group as in 43.6. It is obvious from 43.6 that A′GA is not

faithful and hence is not a generator in A′G-Mod. Moreover, A′GA is not projective

in A′G-Mod since for each (a1, a2, a3) ∈ A,∑
g∈G

g(a1, a2, a3) = (a1, a2, a3) + ϕ((a1, a2, a3)) = (a1 + a3, 2a2, a1 + a3) 6= (1, 1, 1).

To show that A′GA is a self-progenerator we have to find all G-invariant ideals in

A. Obviously they are of the form I = (C,D,C) with suitable ideals C,D ⊂ ZZ4, i.e.,

C,D ∈ {{0}, 2ZZ4, ZZ4}. In fact, the G-invariant ideals in A are

I0 := (0, 0, 0) I3 := (2ZZ4, 0, 2ZZ4) I6 := (2ZZ4, ZZ4, 2ZZ4)

I1 := (0, 2ZZ4, 0) I4 := (ZZ4, 0, ZZ4) I7 := (ZZ4, 2ZZ4, ZZ4)

I2 := (0, ZZ4, 0) I5 := (2ZZ4, 2ZZ4, 2ZZ4) I8 := A .

It is easy to see that I1 and I3 are small submodules of A and hence A′GA is not

semisimple.
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To show that A′GA is self-projective we have to check (by 39.16) that for any G-

invariant ideal I = (C,D,C) and x ∈ A with x + I ∈ (A/I)G, there exists y ∈ AG
with x− y ∈ I.

Let x = (x1, x2, x3) ∈ A. Then x+ I ∈ (A/I)G if and only if

(x1, x2, x3)− ϕ(x1, x2, x3) = (x1 − x3, 0, x3 − x1) ∈ I.

In particular, x1 − x3 ∈ C. Obviously, AG = {(a1, a2, a3) ∈ A | a1 = a3}.
Putting y := (x3, x2, x3) ∈ AG we have

x− y = (x1 − x3, 0, 0) ∈ (C,D,C) = I.

Hence A′GA is self-projective. A′GA is a self-generator if

I = A · HomA′G(A, I) = A · IG for all G-invariant ideals I ⊂ A.

The inclusion A · IG ⊂ I is trivial. Let (x1, x2, x3) ∈ I = (C,D,C) mit C = ZZ4 · c
and D = ZZ4 · d, for suitable c, d ∈ ZZ4. There exist r1, r2, r3 ∈ ZZ4 with

(x1, x2, x3) = (r1c, r2d, r3c) = (r1, r2, r3) · (c, d, c) ∈ A · IG.

This finishes our proof. 2

References: Auslander-Reiten-Smalø [59], Garćıa-del Ŕıo [141, 142], Montgomery

[28], Wilke [265].
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[141] Garćıa, J.J., del Ŕıo, A., Actions of groups in fully bounded noetherian rings,

to appear

[142] ——, On flatness and projectivity of a ring as module over a fixed subring,

Math. Scand., to appear



Bibliography 353

[143] Goel, V.K, Jain, S.K., π-injective modules and rings whose cyclics are π-

injective, Comm. Algebra 6, 59-73 (1978)

[144] Goldman, O., Rings and modules of quotients, J. Algebra 13, 10-47 (1969)
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