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Abstract

Braided bialgebras were introduced by Larson-Towber by considering a bilinear
form with certain properties. Here we study the braided structures of ω-smash co-
product Hopf algebras BωonH as constructed by Caenepeel, Ion, Militaru and Zhu.
Necessary and sufficient conditions for a class of ω-smash coproduct Hopf algebras to
be braided Hopf algebras are given in terms of properties of their components. As
applications of our results some special cases are discussed and explicit examples are
given.

Mathematics Subject Classification (2000): 16W30
Keywords: Braided Hopf algebra; ω-smash coproduct Hopf algebra.

1 Introduction

As a dual concept of quasitriangular bialgebra, braided bialgebra were introduced by
Larson-Towber in [5] as a tool for providing solutions to the quantum Yang-Baxter equa-
tions. Since then this notion has been studied extensively. Some investigation related to
braided Hopf algebras can be found in [3, 4, 5, 6].

Let B and H be coalgebras over a commutative ring R. Given an R-linear map

ω : B ⊗H → H ⊗B,

the ω-smash coproduct coalgebra BωnH is defined as the R-module B ⊗H with comulti-
plication

∆BωnH = (IB ⊗ ω ⊗ IH) ◦ (∆B ⊗∆H),

and counit εB ⊗ εH , where certain conditions are to be imposed on ω to ensure the
required properties of ∆BωnH and εB ⊗ εH (see [2, Definition 3.1], [1, 2.14]). The usual
smash coproduct B ×H (see [7]) and the twisted smash coproduct B ×r H (see [12]) are
special cases of an ω-smash coproduct coalgebra BωnH. If B and H are bialgebras we
may consider B ⊗H as algebra with componentwise multiplication, and in [2] necessary
and sufficient conditions are given to make BωnH with this multiplication a bialgebra.
Furthermore, if B and H are Hopf algebras the bialgebra BωnH is also a Hopf algebra
which we call the ω-smash coproduct Hopf algebra and denote it by BωonH (also see [2]).
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The aim of this paper is to study braided structures for a class of ω-smash coproduct
Hopf algebras BωonH, where the linear map ω obeys the right normal condition, i.e.,
ω(1B ⊗ h) = h⊗ 1B.

In Section 2, we recall the notions of an ω-smash coproduct Hopf algebra BωonH and
the braided Hopf algebra (H,σ) (from [1], [2] and [5]) and then give some definitions and
basic results needed in the sequel.

In Section 3, we show that if BωonH is an ω-smash coproduct Hopf algebra with ω a
right normal linear map, then (BωonH,σ) is a braided Hopf algebra if and only if σ can
be written as (for a, b ∈ B, h, g ∈ H)

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1)) u(a(2), g(2)) v(h(2), b(2)) τ(h(1), g(1)),

where p : B ⊗ B → R, τ : H ⊗H → R, u : B ⊗H → R, and v : H ⊗ B → R are linear
maps satisfying certain compatibility conditions.

In Section 4, some special cases are considered, and in Section 5, an explicit example
is constructed.

Throughout R will denote a (fixed) commutative ring with unit, and we follow [11] and
[1] for the terminology on coalgebras and Hopf algebras. For a coalgebra C and c ∈ C, we
write ∆(c) =

∑
c(1) ⊗ c(2). The antipode of a Hopf algebra H is denoted by S (or SH).

2 Preliminaries

Let B and H be R-coalgebras and consider a linear map ω : B ⊗ H → H ⊗ B. Then a
comultiplication is defined on the R-module B ⊗H by

∆BωnH = (IB ⊗ ω ⊗ IH) ◦ (∆B ⊗∆H) (2.1)

and an R-linear map is given by

εBωnH =: εB ⊗ εH : BωnH → R. (2.2)

If the triple (B⊗H,∆BωnH , εBωnH) forms a coalgebra, then it is called a smash coproduct
of B and H and we denote it by BωnH. This imposes certain conditions on the map ω
and to describe these we write for b ∈ B and h ∈ H,

ω(b⊗ h) =
∑

ωh⊗ ωb.

Then we get for comultiplication and counit

∆BωnH(b⊗ h) =
∑

(b(1) ⊗ ωh(1))⊗ (ωb(2) ⊗ h(2)), (2.1′)

εBωnH(b⊗ h) = εB(b)εH(h). (2.2′)

Proposition 2.1 With the notation above, BωnH is a smash coproduct if and only if the
following conditions hold for b ∈ B and h ∈ H:

(1) (IH ⊗ εB) ω(b⊗ h) = εB(b)h; (left conormal condition)

(2) (εH ⊗ IB) ω(b⊗ h) = εH(h)b; (right conormal condition)
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(3)
∑

(ωh)(1) ⊗ (ωh)(2) ⊗ ωb =
∑

ωh(1) ⊗ ω̄h(2) ⊗ ω̄(ωb);

(4)
∑

ωh⊗ (ωb)(1) ⊗ (ωb)(2) =
∑

ω̄(ωh)⊗ ω̄b(1) ⊗ ωb(2).

Proof. See [2, Section 3] or [1, 2.14]. tu

Let B, H be bialgebras and ω : B ⊗ H → H ⊗ B a linear map such that BωnH
is a coalgebra. The canonical multiplication on B ⊗ H makes BωnH an algebra and it
becomes a bialgebra provided it satsifies the compatibility conditions, that is, if ∆BωnH

is a multiplicative map (e.g., [1, 13.1]). In this case we call BωnH an ω-smash coproduct
bialgebra and denote it by BωonH.

Proposition 2.2 Let B, H be bialgebras and ω : B ⊗ H → H ⊗ B a linear map. Then
BωonH is an ω-smash coproduct bialgebra if and only if the conditions (1)-(4) in (2.1)
hold and ω is an algebra map.

Futhermore, if B and H are Hopf algebras with antipodes SB and SH , then BωonH is
a Hopf algebra with an antipode which is, for b ∈ B and h ∈ H, given by

SBωonH(b⊗ h) =
∑

SB(ωb)⊗ SH(ωh).

Proof. See [2, Corollary 4.8] for the first part. To show that SBωonH is an antipode of
BωonH we compute, for all b ∈ B, h ∈ H,

(SBωonH ∗ I)(b⊗ h) =
∑

SBωonH(b(1) ⊗ω h(1))(ωb(2) ⊗ h(2))
=

∑
[SB(ω̄b(1))⊗ SH(ω̄(ωh(1)))](ωb(2) ⊗ h(2))

=
∑

SB(ω̄b(1))ωb(2) ⊗ SH(ω̄(ωh(1)))h(2)
2.1(4)
=

∑
SB((ωb)(1))(ωb)(2) ⊗ SH(ωh(1))h(2)

2.1(1)
=

∑
εB(b)⊗ SH(h(1))h(2)

= εB(b)εH(h).

Similarly, we can verify that (I ∗ SBωonH)(b ⊗ h) = εB(b)εH(h). This completes the
proof. tu

Definition 2.3 Let B and H be bialgebras, a linear map ω : B ⊗H → H ⊗ B is called
right normal, if ω satifies the right normal condition, for all h ∈ H,

ω(1B ⊗ h) = h⊗ 1B. (∗)

Example 2.4 (1) Let B and H be Hopf algebras, ω = τB,H : B ⊗H → H ⊗ B be the
switch map. Then BωonH = B ⊗H is the usual tensor product of Hopf algebras B
and H.

(2) Let B,H be Hopf algebras and B a left H-comodule bialgebra with left comodule
structure map ρ : B → H ⊗ B, ρ(b) =

∑
b(1) ⊗ b<2> such that

∑
hb(1) ⊗ b<2> =∑

b(1)h⊗ b<2>, for all b ∈ B and h ∈ H. Let

ω : B ⊗H → H ⊗B, b⊗ h 7→
∑

b(1)h⊗ b<2>.

Then BωonH = B ×H is the usual smash coproduct Hopf algebra from Molnar [7].
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(3) Let B and H be Hopf algebras, B an H-bicomodule coalgebra with left comodule
structure map ρl : B → H ⊗B, ρl(b) =

∑
b(1) ⊗ b<2> and right comodule structure

map ρr : B → B ⊗ H, ρr(b) =
∑

b<1> ⊗ b(2) such that four additional conditions
hold. Define

ω : B ⊗H → H ⊗B, b⊗ h 7→
∑

b(1)hSH(b<2>(2))⊗ b<2><1>.

Then BωonH = B ×r H is the twisted smash coproduct Hopf algebra of B and H
(see [12, Theorem 2.4] for detail).

(4) Let B and H be Hopf algebras, R =
∑

R(1) ⊗ R(2) ∈ B ⊗H an invertible element
such that

(i)
∑

εB(R(1))R(2) = 1H ,
∑

R(1)εH(R(2)) = 1B;
(ii)

∑
∆B(R(1))⊗R(2) =

∑
R(1) ⊗ r(1) ⊗R(2)r(2);

(iii)
∑

R(1) ⊗∆H(R(2)) =
∑

R(1)r(1) ⊗ r(2) ⊗R(2).

Consider the map

ω : B ⊗H → H ⊗B, b⊗ h 7→
∑

R(2)hU (2) ⊗R(1)bU (1),

where R−1 = U =
∑

U (1) ⊗ U (2). Then BωonH is an ω-smash coproduct Hopf
algebra.

Notice that the linear maps ω in (2.4)(1)-(3) are right normal (Definition 2.3) and the
linear map ω in (2.4)(4) is not right normal unless H is commutative. In fact, in the latter
case, for all h ∈ H,

ω(1B ⊗ h) =
∑

R(2)hU (2) ⊗R(1)U (1) =
∑

R(2)U (2)h⊗R(1)U (1) = h⊗ 1B.

In what follows we will only consider the ω-smash coproduct Hopf algebras BωonH
for which the linear maps ω are right normal. The next lemma gives some properties of
BωonH for this case.

Lemma 2.5 Let BωonH be an ω-smash coproduct Hopf algebra with a right normal linear
map ω. Then for all b ∈ B and h ∈ H,

(1)
∑

ω1Hh⊗ ωb =
∑

ωh⊗ ωb =
∑

hω1H ⊗ ωb;

(2)
∑

ω̄1H
ω1H ⊗ ω̄b(1) ⊗ ωb(2) =

∑
ω1H ⊗ (ωb)(1) ⊗ (ωb)(2)

=
∑

ω1H
ω̄1H ⊗ ω̄b(1) ⊗ ωb(2).

Proof. Since ω is an algebra map, for all a, b ∈ B and h, g ∈ H,

ω(ab⊗ hg) = ω(a⊗ h)ω(b⊗ g), that is∑
ω(hg)⊗ ω(ab) =

∑
ωhω̄g ⊗ ωaω̄b.

Putting h = 1H , and b = 1B in the equation above and using the right normal condition
(∗), we obtain

∑
ω1Hg ⊗ ωa =

∑
ωg ⊗ ωa. In a similar manner we can get

∑
ωh ⊗ ωb =∑

hω1H ⊗ ωb. Thus (1) follows. Putting h = 1H in (2.1)(4), we get∑
ω1H ⊗ (ωb)(1) ⊗ (ωb)(2) =

∑
ω̄(ω1H)⊗ ω̄b(1) ⊗ ωb(2).
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Referring to (1) we now obtain (2). tu
Next we recall the definition of a braided Hopf algebra from [5] and give some new

definitions.

Definition 2.6 A braided Hopf algebra is a pair (H,σ), where H is a Hopf algebra over
R and σ : H ⊗H → R is a linear map satisfying, for all x, y, z ∈ H,

(br1) σ(xy, z) =
∑

σ(x, z(1))σ(y, z(2));
(br2) σ(1H , x) = ε(x);
(br3) σ(x, yz) =

∑
σ(x(1), z)σ(x(2), y);

(br4) σ(x, 1H) = ε(x);
(br5)

∑
σ(x(1), y(1))x(2)y(2) =

∑
y(1)x(1)σ(x(2), y(2)).

As a consequence, we notice that σ is convolution invertible with σ−1(x, y) = σ(SH(x), y).

Definition 2.7 Let B, H be Hopf algebras and u : B ⊗H → R a linear map. (B,H, u)
is called a dual compatible u-Hopf algebra pair if, for all a, b ∈ B and h, g ∈ H,

(dc1) u(ab, h) =
∑

u(a, h(1))u(b, h(2));
(dc2) u(1B, h) = εH(h);
(dc3) u(b, hg) =

∑
u(b(1), h)u(b(2), g);

(dc4) u(b, 1H) = εB(b).

Clearly, u is convolution invertible with u−1(b, h) = u(SB(b), h), that is, u is invertible
in Hom(B ⊗H,R) which means, for all b ∈ B, h ∈ H,

(u ∗ u−1)(b⊗ h) =
∑

u(b(1), h(1))u
−1(b(2), h(2)) = εB(b)εH(h) = (u−1 ∗ u)(b⊗ h).

Definition 2.8 Let B, H be Hopf algebras with linear map v : H ⊗ B → R. Then
(H,B, v) is called a skew dual compatible v−Hopf algebra pair if, for all a, b ∈ B and
h, g ∈ H,

(sdc1) v(hg, b) =
∑

v(h, b(2))v(g, b(1));
(sdc2) v(1H , b) = εB(b);
(sdc3) v(h, ab) =

∑
v(h(1), b)v(h(2), a);

(sdc4) v(h, 1B) = εH(h).

Clearly, v is convolution invertible with v−1(h, b) = v(S−1
H (h), b) provided the antipode

SH of H is bijective.

Definition 2.9 Let B, H be Hopf algebras, ω : B⊗H → H⊗B a linear map satisfying the
conditions in Proposition 2.1, (B,H, u) a dual compatible u−Hopf algebra pair, (H,B, v)
a skew dual compatible v−Hopf algebra pair. Given a linear map p : B⊗B → R, the pair
(B, p) is called a (u, v)−weakly braided Hopf algebra if, for all a, b, c ∈ B,

(wbr1) p(ab, c) =
∑

p(a(1), c(1))u(a(2),
ω1H)p(b, ωc(2));

(wbr2) p(1B, b) = ε(b);
(wbr3) p(a, bc) =

∑
p(a(1), c(1))v(ω1H , c(2))p(ωa(2), b);

(wbr4) p(b, 1B) = ε(b);
(wbr5)

∑
b(1)a(1)p(a(2), b(2)) =

∑
p(a(1), b(1)) u(a(2),

ω̄1H) v(ω1H , b(3)) ωa(3)
ω̄b(2).
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For the linear map p : B ⊗B → R, we have the following

Proposition 2.10 If, with the above notation, (B, p) is a (u, v)-weakly braided Hopf al-
gebra, then for all a, b ∈ B,∑

p(a(1), b(1))u(a(2),
ω1H)p(SB(a(3)),

ωb(2)) = εB(a)εB(b).

Proof. This follows from the equalities, for all a, b ∈ B,∑
p(a(1), b(1))u(a(2),

ω1H)p(SB(a(3)), ωb(2))
wbr1=

∑
p(a(1)SB(a(2)), b)

wbr2= εB(a)εB(b).

Notice that (u, v)-weakly braided Hopf algebras generalize braided Hopf algebras as
seen from the following examples.

Example 2.11 Let (B, σ) be a braided Hopf algebra, H any Hopf algebra with a linear
map ω : B ⊗H → H ⊗B satisfying the conditions in Proposition 2.1. Take u = εB ⊗ εH

and v = εH ⊗εB. Then it is easy to see that (B,H, u) is a dual compatible u-Hopf algebra
pair, (H,B, v) is a skew dual compatible v-Hopf algebra pair and (B, σ) is a (u, v)-weakly
braided Hopf algebra.

Example 2.12 Let H = B be a Hopf algebra and ω = τB the switch map. Then a braided
Hopf algebra (B, σ) is just a (u, v)-weakly braided Hopf algebra, where u = v = εB ⊗ εB

are linear maps as in the Definitions 2.7 and 2.8.

3 The braided structure of BωonH

In this section B and H will be Hopf algebras with linear map ω : B⊗H → H ⊗B which
is right normal and such that BωonH is an ω-smash coproduct Hopf algebra.

Let (BωonH,σ) be a braided Hopf algebra, where σ : (BωonH) ⊗ (BωonH) → R is a
linear form. For all a, b ∈ B and h, g ∈ H, define

p : B ⊗B → R, p(a, b) = σ(a⊗ 1H , b⊗ 1H);
τ : H ⊗H → R, τ(h, g) = σ(1B ⊗ h, 1B ⊗ g);
u : B ⊗H → R, u(b, h) = σ(b⊗ 1H , 1B ⊗ h);
v : H ⊗B → R, v(h, b) = σ(1B ⊗ h, b⊗ 1H).

The following properties are easily derived.

Proposition 3.1 With the above notation, if σ satisfies the conditions (br2) and (br4),
then, for all b ∈ B and h ∈ H,

(1) p(1B, b) = ε(b) = p(b, 1B);

(2) τ(1H , h) = ε(h) = τ(h, 1H);

(3) u(1B, h) = ε(h), u(b, 1H) = ε(b);

(4) v(1H , b) = ε(b), v(h, 1B) = ε(h).

6



Proof. The proof follows by direct calculations. tu

Proposition 3.2 Let (BωonH,σ) be a braided Hopf algebra with σ a bilinear form on
BωonH. Then for all a, b ∈ B and h, g ∈ H,

(1)
∑

σ(1B ⊗ h, b(1) ⊗ ω1H) ωb(2) =
∑

b(1)σ(1B ⊗ h, b(2) ⊗ 1H);
(2)

∑
σ(b(1) ⊗ ω1H , 1B ⊗ h) ωb(2) =

∑
b(1)σ(b(2) ⊗ 1H , 1B ⊗ h);

(3) σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1)) u(a(2), g(2)) v(h(2), b(2)) τ(h(1), g(1)).

Proof. By (br5), we have∑
σ(a(1) ⊗ ωh(1), b(1) ⊗ wg(1))(ωa(2)

wb(2) ⊗ h(2)g(2))

=
∑

(b(1)a(1) ⊗ wg(1)
ωh(1))σ(ωa(2) ⊗ h(2),

wb(2) ⊗ g(2)).
(3.1)

Put a = 1B, g = 1H in (3.1) and apply (IB ⊗ εH) to both sides of (3.1), then (1) follows.
(2) is seen by putting b = 1B, h = 1H and then applying (1B ⊗ εH) to both sides of (3.1).

For (3) we need some more computations. By (br1) and (br3), for all a, b, a′, b′ ∈ B
and h, g, h′, g′ ∈ H, we have

σ(aa′ ⊗ hh′, bb′ ⊗ gg′) = σ((a⊗ h)(a′ ⊗ h′), (b⊗ g)(b′ ⊗ g′))
br1=

∑
σ(a⊗ h, (b⊗ g)(1)(b

′ ⊗ g′)(1)) σ(a′ ⊗ h′, (b⊗ g)(2)(b
′ ⊗ g′)(2))

br3=
∑

σ((a⊗ h)(1), (b
′ ⊗ g′)(1)) σ((a⊗ h)(2), (b⊗ g)(1)) ·

σ((a′ ⊗ h′)(1), (b
′ ⊗ g′)(2)) σ((a′ ⊗ h′)(2), (b⊗ g)(2))

(3.2) =
∑

σ(a(1) ⊗ ωh(1), b
′
(1) ⊗

ω̄g′(1)) σ(ωa(2) ⊗ h(2), b(1) ⊗ wg(1)) ·

σ(a′(1) ⊗
w̄h′(1),

ω̄b′(2) ⊗ g′(2)) σ(w̄a′(2) ⊗ h′(2),
wb(2) ⊗ g(2)).

Putting a = b′ = 1B, g = h′ = 1H in (3.2), we get

σ(a′ ⊗ h, b⊗ g′) =
∑

σ(1B ⊗ ωh(1), 1B ⊗ ω̄g′(1)) σ(ω1B ⊗ h(2), b(1) ⊗ w1H) ·

σ(a′(1) ⊗
w̄1H , ω̄1B ⊗ g′(2)) σ(w̄a′(2) ⊗ 1H , wb(2) ⊗ 1H)

(∗)
=

∑
σ(1B ⊗ h(1), 1B ⊗ g′(1)) σ(1B ⊗ h(2), b(1) ⊗ w1H) ·

σ(a′(1) ⊗
w̄1H , 1B ⊗ g′(2)) σ(w̄a′(2) ⊗ 1H , wb(2) ⊗ 1H)

3.2(1,2)
=

∑
σ(1B ⊗ h(1), 1B ⊗ g′(1)) σ(1B ⊗ h(2), b(2) ⊗ 1H) ·

σ(a′(2) ⊗ 1H , 1B ⊗ g′(2)) σ(a′(1) ⊗ 1H , b(1) ⊗ 1H)

=
∑

p(a′(1), b(1))u(a′(2), g
′
(2))v(h(2), b(2))τ(h(1), g

′
(1)).

This completes the proof. tu

Proposition 3.3 Let (BωonH,σ) be a braided Hopf algebra. Then σ can be decomposed
to

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1)) u(a(2), g(2)) v(h(2), b(2)) τ(h(1), g(1))

such that p, τ, u, v satisfy for all a, b ∈ B, h, g ∈ H,
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(1)
∑

b(1)u(b(2), h) =
∑

u(b(1), h(2))τ(ω1H , h(1))ωb(2);
(2)

∑
b(1)v(h, b(2)) =

∑
v(h(2), b(1))τ(h(1),

ω1H)ωb(2);
(3)

∑
u(b, h(1))h(2) =

∑
h(1)

ω1Hu(ωb, h(2));
(4)

∑
v(h(1), b)h(2) =

∑
v(h(2),

ωb)ω1Hh(1);
(5) p(a, b)1H =

∑
w1H

ω1Hp(ωa, wb);
(6)

∑
p(a, b(1))v(h, b(2)) =

∑
p(a(1), b(1))u(a(2),

ω1H)v(h, ωb(2));
(7)

∑
p(a(1), b)u(a(2), h) =

∑
p(a(1), b(1))v(ω1H , b(2))u(ωa(2), h);

(8)
∑

u(a, h(2))τ(g, h(1)) =
∑

u(a, h(1))τ(g, h(2));
(9)

∑
v(h(2), a)τ(h(1), g) =

∑
v(h(1), a)τ(h(2), g).

Proof. Since σ satisfies (br5) and has the decomposition

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1)) u(a(2), g(2)) v(h(2), b(2)) τ(h(1), g(1)),

the equation (3.1) takes the form∑
p(a(1), b(1)) u(a(2), (ω̄g(1))(2)) v((ωh(1))(2), b(2))·

τ((ωh(1))(1), (ω̄g(1))(1)) · (ωa(3)
ω̄b(3) ⊗ h(2)g(2))

=
∑

(b(1)a(1) ⊗ ω̄g(1)
ωh(1)) · p((ωa(2))(1), (ω̄b(2))(1))·

u((ωa(2))(2), g(3)) v(h(3), (ω̄b(2))(2)) τ(h(2), g(2)).

(3.3)

Putting b = 1B, h = 1H in (3.3) and applying (IB ⊗ εH) to both sides of (3.1) we get (1),
and applying (εB ⊗ IH) we get (3). Put a = 1B, g = 1H in (3.3); then applying (IB ⊗ εH)
and (εB ⊗ IH) to both sides of (3.3) yields (2) and (4), respectively. Put h = g = 1H in
(3.3); then applying (IB ⊗ εH) to both sides yields (5).

By (br1) we have

σ((a⊗ h)(b⊗ g), c⊗ l) =
∑

σ(a⊗ h, c(1) ⊗ ωl(1))σ(b⊗ g, ωc(2) ⊗ l(2)).

Using the decomposition of σ, the above equation takes the following form.∑
p(a(1)b(1), c(1)) u(a(2)b(2), l(2)) v(h(2)g(2), c(2)) τ(h(1)g(1), l(1))

=
∑

p(a(1), c(1))u(a(2), (ωl(1))(2)) v(h(2), c(2)) τ(h(1), (ωl(1))(1))·

p(b(1), (ωc(3))(1)) u(b(2), l(3)) v(g(2), (ωc(3))(2)) τ(g(1), l(2)).

(3.4)

Putting h = l = 1H , b = 1B in (3.4) yields (6), and putting b = c = 1B, h = 1H in (3.4)
yields (8). By (br3) we have

σ(a⊗ h, (b⊗ g)(c⊗ l)) =
∑

σ(a(1) ⊗ ωh(1), c⊗ l)σ(ωa(2) ⊗ h(2), b⊗ g).

Using the decomposition of σ, the above equation takes the form∑
p(a(1), b(1)c(1)) u(a(2), g(2)l(2)) v(h(2), b(2)c(2)) τ(h(1), g(1)l(1))

=
∑

p(a(1), c(1)) u(a(2), l(2)) v((ωh(1))(2), c(2)) τ((ωh(1))(1), l(1))·

p((ωa(3))(1), b(1)) u((ωa(3))(2), g(2)) v(h(3), b(2)) τ(h(2), g(1)).

(3.5)

Putting h = l = 1H , b = 1B in (3.5) yields (7), and putting a = b = 1B, l = 1H in (3.5)
yields (9). This completes the proof. tu
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Proposition 3.4 Let (BωonH,σ) be a braided Hopf algebra with

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1))u(a(2), g(2))v(h(2), b(2))τ(h(1), g(1))

for all a, b ∈ B and h, g ∈ H. Then
(1) (H, τ) is a braided Hopf algebra;

(2) (B,H, u) is a dual compatible u-Hopf algebra pair;

(3) (H,B, v) is a skew dual compatible v-Hopf algebra pair;

(4) (B, p) is a (u, v)-weakly braided Hopf algebra.

Proof. (1). Condition (br2) and (br4) follow from Proposition 3.1(2). Putting a = b =
c = 1B in (3.4) yields

τ(hg, l) =
∑

τ(h, l(1))τ(g, l(2))

and so (br1) holds. Putting a = b = c = 1B in (3.5) yields

τ(h, gl) =
∑

τ(h(2), g) τ(h(1), l)

and so (br3) holds. Putting a = b = 1B in (3.3) and applying (εB ⊗ IH) to both sides
yields

τ(h(1), g(1))h(2)g(2) =
∑

g(1)h(1)τ(h(2), g(2))

and (br5) holds. Thus (H, τ) is a braided Hopf algebra.
(2). Condition (dc2) and (dc4) follow from Proposition 3.1(3). Putting c = 1B,

h = g = 1H in (3.4) yields

u(ab, l) =
∑

u(a, l(1))u(b, l(2))

and so (dc1) holds. Putting b = c = 1B, h = 1H in (3.5) yields

u(a, gl) =
∑

u(a(1), l(2)) τ(ω1H , l(1)) u(ωa(2), g)

3.3(1)
=

∑
u(a(2), l) u(a(1), g)

and (dc3) holds. Thus (B,H, u) is a dual compatible u-Hopf algebra pair.
(3). (sdc2) and (sdc4) follow from Proposition 3.1(4). Putting a = b = 1B, l = 1H

in (3.4) yields

v(hg, c) =
∑

v(h(2), c(1)) τ(h(1),
ω1H) v(g, ωc(2))

3.3(2)
=

∑
v(h, c(2)) v(g, c(1))

and thus (sdc1) holds. Putting a = 1B, g = l = 1H in (3.5) yields

v(h, bc) =
∑

v(h(1), c) v(h(2), b)

and (sdc3) holds. Thus (H,B, v) is a skew dual compatible v-Hopf algebra pair.
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(4). (wbr2) and (wbr4) follow from Proposition 3.1(1). Putting h = g = l = 1H in
(3.4) yields

p(ab, c) =
∑

p(a(1), c(1)) u(a(2),
ω1H) p(b, ωc(2))

and (wbr1) holds. Put h = g = l = 1H in (3.5) to obtain

p(a, bc) =
∑

p(a(1), c(1)) v(ω1H , c(2)) p(ωa(2), b)

and (wbr3) holds. Put h = g = 1H in (3.3) and apply (IB ⊗ εH) to both sides to get∑
b(1)a(1) p(a(2), b(2))

=
∑

p(a(1), b(1)) u(a(2), (w1H)(2)) v((ω1H)(2), b(2)) τ((ω1H)(1), (w1H)(1)) ωa(3)
wb(3)

2.1(3)
=

∑
p(a(1), b(1)) u(a(2),

w1H) v((ω1H)(2), b(2)) τ((ω1H)(1),
w̄1H) ωa(3)

w(w̄b(3))

3.3(2)
=

∑
p(a(1), b(1))u(a(2),

w1H) v(ω1H , b(3)) ωa(3)
wb(2),

and so (wbr5) holds. Thus (B, p) is a (u, v)-weakly braided Hopf algebra. tu

We now discuss the sufficiency of the conditions in the following theorem.

Theorem 3.5 Let BωonH be an ω-smash coproduct Hopf algebra and assume that
(H, τ) is a braided Hopf algebra,
(B,H, u) is a dual compatible u−Hopf algebra pair,
(H,B, v) is a skew dual compatible v−Hopf algebra pair, and
(B, p) is a (u, v)-weakly braided Hopf algebra

such that the conditions (1)-(9) in Proposition 3.3 are satisfied.
Then (BωonH,σ) is a braided Hopf algebra where , for all a, b ∈ B, h, g ∈ H,

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1)) u(a(2), g(2)) v(h(2), b(2)) τ(h(1), g(1)).

Proof. It is not difficult to verify that, for all b ∈ B, h ∈ H,

σ(1B ⊗ 1H , b⊗ h) = σ(b⊗ h, 1B ⊗ 1H) = εB(b)εH(h).

Thus (br2) and (br4) hold and it remains to show that (br1), (br3) and (br5) are
satisfied for σ. To prove (br1), it suffices to show that for all a, b, c ∈ B, h, g, l ∈ H,

σ((a⊗ h)(b⊗ g), c⊗ l) =
∑

σ(a⊗ h, c(1) ⊗ ωl(1))σ(b⊗ g, ωc(2) ⊗ l(2)).

To this end we compute

σ((a⊗ h)(b⊗ g), c⊗ l)

=
∑

p(a(1)b(1), c(1))u(a(2)b(2), l(2))v(h(2)g(2), c(2))τ(h(1)g(1), l(1))

br1,dc1,sdc1
=

∑
p(a(1)b(1), c(1))u(a(2), l(3))u(b(2), l(4))v(g(2), c(2))v(h(2), c(3))

τ(h(1), l(1))τ(g(1), l(2))
3.3(8)
=

∑
p(a(1)b(1), c(1))u(a(2), l(2))u(b(2), l(4))v(g(2), c(2))v(h(2), c(3))
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τ(h(1), l(1))τ(g(1), l(3))
3.3(6)
=

∑
p(a(1)b(1), c(1))u(a(2)b(2),

ω1H)u(a(3), l(2))u(b(3), l(4))

v(g(2),
ωc(2))v(h(2), c(3))τ(h(1), l(1))τ(g(1), l(3))

dc1=
∑

p(a(1)b(1), c(1))u(a(2), (
ω1H)(1))u(b(2), (

ω1H)(2))

u(a(3), l(2))u(b(3), l(4))v(g(2),
ωc(2))v(h(2), c(3))τ(h(1), l(1))τ(g(1), l(3))

wbr1=
∑

p(a(1), c(1))u(a(2),
w1H)p(b(1),

wc(2))u(a(3), (
ω1H)(1))

u(b(2), (
ω1H)(2))u(a(4), l(2))u(b(3), l(4))v(g(2),

ωc(3))
v(h(2), c(4))τ(h(1), l(1))τ(g(1), l(3))

dc3=
∑

p(a(1), c(1))u(a(2),
w1H(ω1H)(1))p(b(1),

wc(2))

u(b(2), (
ω1H)(2))u(a(3), l(2))u(b(3), l(4))v(g(2),

ωc(3))
v(h(2), c(4))τ(h(1), l(1))τ(g(1), l(3))

2.1(3)
=

∑
p(a(1), c(1))u(a(2),

w1H
ω1H)p(b(1),

wc(2))

u(b(2),
ω̄1H)u(a(3), l(2))u(b(3), l(4))v(g(2),

ω̄(ωc(3)))
v(h(2), c(4))τ(h(1), l(1))τ(g(1), l(3))

2.5(2)
=

∑
p(a(1), c(1))u(a(2),

ω1H)p(b(1), (
ωc(2))(1))u(b(2),

ω̄1H)u(a(3), l(2))

u(b(3), l(4))v(g(2),
ω̄(ωc(2))(2))v(h(2), c(3))τ(h(1), l(1))τ(g(1), l(3))

3.3(6)
=

∑
p(a(1), c(1))u(a(2),

ω1H)p(b(1), (
ωc(2))(1))u(a(3), l(2))

u(b(2), l(4))v(g(2), (
ωc(2))(2))v(h(2), c(3))τ(h(1), l(1))τ(g(1), l(3))

3.3(2)
=

∑
p(a(1), c(1))u(a(2),

ω1H)p(b(1), (
ω(wc(3)))(1))u(a(3), l(2))u(b(2), l(4))

v(g(2), (
ω(wc(3)))(2))v(h(3), c(2))τ(h(2),

w1H)τ(h(1), l(1))τ(g(1), l(3))
2.1(3)
=

∑
p(a(1), c(1))u(a(2), (

ω1H)(2))p(b(1), (
ωc(3))(1))u(a(3), l(2))u(b(2), l(4))

v(g(2), (
ωc(3))(2))v(h(3), c(2))τ(h(2), (

ω1H)(1))τ(h(1), l(1))τ(g(1), l(3))
br3,dc3

=
∑

p(a(1), c(1))u(a(2), (
ω1H)(2)l(2))p(b(1), (

ωc(3))(1))u(b(2), l(4))

v(g(2), (
ωc(3))(2))v(h(2), c(2))τ(h(1), (

ω1H)(1)l(1))τ(g(1), l(3))
2.5(1)
=

∑
p(a(1), c(1))u(a(2), (

ωl(1))(2))p(b(1), (
ωc(3))(1))u(b(2), l(3))

v(g(2), (
ωc(3))(2))v(h(2), c(2))τ(h(1), (

ωl(1))(1))τ(g(1), l(2))

=
∑

σ(a⊗ h, c(1) ⊗ ωl(1))σ(b⊗ g, ωc(2) ⊗ l(2)).

In a similar manner, we can show that (br3) is satisfied for σ. To prove that (br5)
holds it suffices to show, for all a, b ∈ B, h, g ∈ H,∑

(b(1)a(1) ⊗ wg(1)
ωh(1)) σ(ωa(2) ⊗ h(2),

wb(2) ⊗ g(2))

=
∑

σ(a(1) ⊗ ωh(1), b(1) ⊗ wg(1)) (ωa(2)
wb(2) ⊗ h(2)g(2)).

11



In fact we have∑
(b(1)a(1) ⊗ wg(1)

ωh(1)) σ(ωa(2) ⊗ h(2),
wb(2) ⊗ g(2))

=
∑

(b(1)a(1) ⊗ wg(1)
ωh(1)) p((ωa(2))(1), (

wb(2))(1))

u((ωa(2))(2), g(3)) v(h(3), (
wb(2))(2)) τ(h(2), g(2))

2.1(4)
=

∑
(b(1)a(1) ⊗ w̄(wg(1))

ω̄(ωh(1))) p(ω̄a(2),
w̄b(2))

u(ωa(3), g(3)) v(h(3),
wb(3)) τ(h(2), g(2))

2.5(1)
=

∑
(b(1)a(1) ⊗ wg(1)

w̄1H
ω̄1H

ωh(1)) p(ω̄a(2),
w̄b(2))

u(ωa(3), g(3)) v(h(3),
wb(3)) τ(h(2), g(2))

3.3(5)
=

∑
(b(1)a(1) ⊗ wg(1)

ωh(1)) p(a(2), b(2))

u(ωa(3), g(3)) v(h(3),
wb(3)) τ(h(2), g(2))

2.5(1)
=

∑
(b(1)a(1) ⊗ w1Hg(1)h(1)

ω1H) p(a(2), b(2))

u(ωa(3), g(3)) v(h(3),
wb(3)) τ(h(2), g(2))

br5=
∑

(b(1)a(1) ⊗ w1Hh(2)g(2)
ω1H) p(a(2), b(2))

u(ωa(3), g(3)) v(h(3),
wb(3)) τ(h(1), g(1))

3.3(3,4)
=

∑
(b(1)a(1) ⊗ h(3)g(3)) p(a(2), b(2))

u(a(3), g(2)) v(h(2), b(3)) τ(h(1), g(1))
wbr5=

∑
(ωa(3)

wb(2) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2),
w1H)

v(ω1H , b(3)) u(a(4), g(2)) v(h(2), b(4)) τ(h(1), g(1))
sdc1=

∑
(ωa(3)

wb(2) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2),
w1H)

v(h(2)
ω1H , b(3)) u(a(4), g(2)) τ(h(1), g(1))

2.5(1)
=

∑
(ωa(3)

wb(2) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2),
w1H)

v(h(2)
ω1H , b(3)) u(a(4), g(2)) τ(h(1), g(1))

3.3(1)
=

∑
(ω(ω̄a(4))

wb(2) ⊗ h(3)g(4)) p(a(1), b(1)) u(a(2),
w1H)

v(ω1Hh(2), b(3)) u(a(3), g(3)) τ(ω̄1H , g(2)) τ(h(1), g(1))
br1=

∑
(ω(ω̄a(4))

wb(2) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2),
w1H)

v(ω1Hh(2), b(3)) u(a(3), g(2)) τ(ω̄1Hh(1), g(1))
2.1(3)
=

∑
(ωa(4)

wb(2) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2),
w1H)

v((ω1H)(2)h(2), b(3)) u(a(3), g(2)) τ((ω1H)(1)h(1), g(1))
3.3(2)
=

∑
(ωa(4)

w(w̄b(3))⊗ h(4)g(3)) p(a(1), b(1)) u(a(2),
w1H)

v((ω1H)(3)h(3), b(2)) τ((ω1H)(2)h(2),
w̄1H) u(a(3), g(2))

τ((ω1H)(1)h(1), g(1))
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br3=
∑

(ωa(4)
w(w̄b(3))⊗ h(3)g(3)) p(a(1), b(1)) u(a(2),

w1H)

v((ω1H)(2)h(2), b(2)) τ((ω1H)(1)h(1),
w̄1Hg(1)) u(a(3), g(2))

2.1(3)
=

∑
(ωa(4)

wb(3) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2), (
w1H)(2))

v((ω1H)(2)h(2), b(2)) τ((ω1H)(1)h(1), (
w1H)(1)g(1)) u(a(3), g(2))

dc3=
∑

(ωa(3)
wb(3) ⊗ h(3)g(3)) p(a(1), b(1)) u(a(2), (

w1H)(2)g(2))

v((ω1H)(2)h(2), b(2)) τ((ω1H)(1)h(1), (
w1H)(1)g(1))

2.5(1)
=

∑
(ωa(3)

wb(3) ⊗ h(2)g(2)) p(a(1), b(1)) u(a(2), (
wg(1))(2))

v((ωh(1))(2), b(2)) τ((ωh(1))(1), (
wg(1))(1))

=
∑

σ(a(1) ⊗ ωh(1), b(1) ⊗ wg(1))(
ωa(2)

wb(2) ⊗ h(2)g(2)).

Finally, we conclude that (BωonH,σ) is a braided Hopf algebra. tu

Combining the Propositions 3.2, 3.3, 3.4 and Theorem 3.5, we obtain the main result
of this section.

Theorem 3.6 Let BωonH be an ω-smash coproduct Hopf algebra. Then the following are
equivalent:

(a) (BωonH,σ) is a braided Hopf algebra;
(b) for all a, b ∈ B and h, g ∈ H,

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1)) u(a(2), g(2)) v(h(2), b(2)) τ(h(1), g(1)),

and (H, τ) is a braided Hopf algebra,
(B,H, u) is a dual compatible u-Hopf algebra pair,
(H,B, v) is a skew dual compatible v-Hopf algebra pair,
(B, p) is a (u, v)-weakly braided Hopf algebra, and
p, τ, u, v satisfy the conditions 3.3(1)-(9).

4 Applications

In this section, we will discuss some applications of Theorem 3.6.
Let B and H be Hopf R-algebras, B a left H-comodule bialgebra, we know from

Example 2.4(2) that the usual smash coproduct Hopf algebra B ×H can be viewed as a
special case of an ω-smash coproduct Hopf algebra BωonH, where the right normal linear
map ω : B⊗H → H⊗B, is given by ω(b⊗h) =

∑
b(1)h⊗ b<2>, for b ∈ B and h ∈ H. So,

we can repeat the Definitions 2.7 - 2.9 in terms of the usual smash coproduct. Especially,
Theorem 3.6 takes the following form.

Theorem 4.1 Let B × H be a smash coproduct Hopf algebra. Then the following are
equivalent:

(a) (B ×H,σ) is a braided Hopf algebra with σ a bilinear form on B ×H;
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(b) for all a, b ∈ B and h, g ∈ H,

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1))u(a(2), g(2))v(h(2), b(2))τ(h(1), g(1)),

(H, τ), (B,H, u), (H,B, v) and (B, p) have the properties as in Theorem 3.6(b), and
for p, τ, u, v,

(1)
∑

b(1)u(b(2), h) =
∑

u(b(1), h(2))τ(b(2)
(1), h(1))b(2)

<2>;

(2)
∑

b(1)v(h, b(2)) =
∑

v(h(2), b(1))τ(h(1), b(2)
(1))b(2)

<2>;

(3)
∑

u(b, h(1))h(2) =
∑

h(1)b
(1)u(b<2>, h(2));

(4)
∑

v(h(1), b)h(2) =
∑

v(h(2), b
<2>, )b(1)h(1);

(5) p(a, b)1H =
∑

b(1)a(1)p(a<2>, b<2>);

(6)
∑

p(a, b(1))v(h, b(2)) =
∑

p(a(1), b(1))u(a(2), b(2)
(1))v(h, b(2)

<2>);

(7)
∑

p(a(1), b)u(a(2), h) =
∑

p(a(1), b(1))v(a(2)
(1), b(2))u(a(2)

<2>, h);

(8)
∑

u(a, h(2))τ(g, h(1)) =
∑

u(a, h(1))τ(g, h(2));

(9)
∑

v(h(2), a)τ(h(1), g) =
∑

v(h(1), a)τ(h(2), g).

Similarly by Example 2.4(3), Theorem 3.6 takes the following form for the twisted
smash coproduct.

Theorem 4.2 Let B×r H be a twisted smash coproduct Hopf algebra. Then the following
are equivalent:

(a) (B ×r H,σ) is a braided Hopf algebra with σ a bilinear form on B ×r H;
(b) for all a, b ∈ B and h, g ∈ H,

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1))u(a(2), g(2))v(h(2), b(2))τ(h(1), g(1)),

(H, τ), (B,H, u), (H,B, v) and (B, p) have the properties as in Theorem 3.6(b), and
for p, τ, u, v,

(1)
∑

b(1)u(b(2), h) =
∑

u(b(1), h(2))τ(b(2)
(1)SH(b(2)

<2>(2)), h(1))b(2)
<2><1>;

(2)
∑

b(1)v(h, b(2)) =
∑

v(h(2), b(1))τ(h(1), b(2)
(1)SH(b(2)

<2>(2)))b(2)
<2><1>;

(3)
∑

u(b, h(1))h(2) =
∑

h(1)b
(1)SH(b<2>(2))u(b<2><1>, h(2));

(4)
∑

v(h(1), b)h(2) =
∑

b(1)SH(b<2>(2))h(1)v(h(2), b
<2><1>);

(5) p(a, b)1H =
∑

b(1)SH(b<2>(2))a(1)SH(a<2>(2))p(a<2><1>, b<2><1>);

(6)
∑

p(a, b(1))v(h, b(2)) =
∑

p(a(1), b(1))u(a(2), b(2)
(1)SH(b(2)

<2>(2)))
v(h, (b(2)

<2><1>);

(7)
∑

p(a(1), b)u(a(2), h) =
∑

p(a(1), b(1))v(a(2)
(1)SH((a(2)

<2>(2)), b(2))
u(a(2)

<2><1>, h);

(8)
∑

u(a, h(2))τ(g, h(1)) =
∑

u(a, h(1))τ(g, h(2));

(9)
∑

v(h(2), a)τ(h(1), g) =
∑

v(h(1), a)τ(h(2), g).
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Any commutative Hopf algebra H has a trivial braided structure τ(h, g) = εH(h)εH(g),
for all h, g ∈ H, and this yields the following.

Theorem 4.3 Let BωonH be an ω-smash coproduct Hopf algebra with H a commutative
Hopf algebra. Assume that (B,H, u) is a dual compatible u-Hopf algebra pair, (H,B, v) is
a skew dual compatible v-Hopf algebra pair, (B, p) is a (u, v)-weakly braided Hopf algebra,
and that, for a, b ∈ B and h ∈ H,

(1)
∑

b(1)u(b(2), h) =
∑

u(b(1), h)b(2);
(2)

∑
b(1)v(h, b(2)) =

∑
v(h, b(1))b(2);

(3)
∑

u(b, h(1))h(2) =
∑

h(1)
ω1Hu(ωb, h(2));

(4)
∑

v(h(1), b)h(2) =
∑

v(h(2),
ωb)ω1Hh(1);

(5) p(a, b)1H =
∑

w1H
ω1H p(ωa, wb);

(6)
∑

p(a, b(1))v(h, b(2)) =
∑

p(a(1), b(1))u(a(2),
ω1H)v(h, ωb(2));

(7)
∑

p(a(1), b)u(a(2), h) =
∑

p(a(1), b(1))v(ω1H , b(2))u(ωa(2), h).
Then (BωonH,σ) is a braided Hopf algebra, with the bilinear form

σ : BωonH ⊗BωonH → R, σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1))u(a(2), g)v(h, b(2)),

for all a, b ∈ B and h, g ∈ H.

Proof. Take τ(h, g) = εH(h)εH(g), for all h, g ∈ H. We always have that (H, τ) is a
braided Hopf algebra and the conditions 3.3(8)-3.3(9) hold. In this case, the conditions
3.3(1) and 3.3(2) change to 4.3(1) and 4.3(2). Thus we have that p, u, v, τ satisfy the all
conditions in Theorem 3.5 and we conclude that (BωonH,σ) is a braided Hopf algebra. tu

Theorem 4.4 Let BωonH be an ω-smash coproduct Hopf algebra, and assume (H, τ),
(B, p) to be braided Hopf algebras such that, for a, b,∈ B and h ∈ H,

(1)
∑

b εH(h) =
∑

τ(ω1H , h)ωb;
(2)

∑
b εH(h) =

∑
τ(h, ω1H)ωb;

(3) p(a, b)1H =
∑

w1H
ω1H p(ωa, wb).

Then (BωonH,σ) is a braided Hopf algebra, with bilinear form

σ : BωonH ⊗BωonH → R, σ(a⊗ h, b⊗ g) =
∑

p(a, b)τ(h, g),

for all a, b ∈ B, h, g ∈ H.

Proof. By assumption, (H, τ) and (B, p) are braided Hopf algebras. With the linear
forms u = εB ⊗ εH and v = εH ⊗ εB, we always have that (B,H, u) is a dual compatible
u-Hopf algebra pair, (H,B, v) is a skew dual compatible v-Hopf algebra pair, (B, p) is
a (u, v)-weakly braided Hopf algebra, and the conditions 3.3(3)-3.3(4) and 3.3(6)-3.3(9)
hold. In this case, the conditions 3.3(1), 3.3(2) and 3.3(5) take the forms 4.4(1), 4.4(2)
and 4.4(3). Thus we have that p, u, v, τ satisfy all conditions in Theorem 3.5 and from
this we conclude that (BωonH,σ) is a braided Hopf algebra. tu

Combining Theorem 4.3 and Theorem 4.4 we get the
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Corollary 4.5 Let BωonH be an ω-smash coproduct Hopf algebra, H a commutative Hopf
algebra, and (B, p) a braided Hopf algebra such that, for a, b ∈ B,

p(a, b)1H =
∑

ω̄1H
ω1Hp(ωa, ω̄b).

Then (BωonH,σ) is a braided Hopf algebra, with bilinear form

σ : BωonH ⊗BωonH → R, (a⊗ h)⊗ (b⊗ g) =
∑

p(a, b)εH(h)εH(g),

for all a, b ∈ B, h, g ∈ H.

5 Examples

To end our paper we construct explicit examples of ω-smash coproduct Hopf algebras over
a ring R. First assume that 2 is invertible in R and let B = H4 be Sweedler’s 2-generated
Hopf R-algebra (see [8]). This is a free R-module with basis 1, g, x, gx and as an algebra
it has the generators g and x with relations

g2 = 1, x2 = 0, xg = −gx.

The coalgebra structure and antipode of H4 are given by

∆(g) = g ⊗ g, ∆(x) = x⊗ g + 1⊗ x, ∆(gx) = gx⊗ 1 + g ⊗ gx;

ε(g) = 1, ε(x) = 0, ε(gx) = 0; S(g) = g, S(x) = gx.

Let H = RZ2 be the (group) Hopf algebra [11], where Z2 is written multiplicatively as
{1, a}.

Lemma 5.1 Define a linear map ω : B ⊗H → H ⊗B by

ω : 1B ⊗ 1H 7→ 1H ⊗ 1B, 1B ⊗ a 7→ a⊗ 1B

g ⊗ 1H 7→ 1H ⊗ g, g ⊗ a 7→ a⊗ g
x⊗ 1H 7→ a⊗ x, x⊗ a 7→ 1H ⊗ x
gx⊗ 1H 7→ a⊗ gx, gx⊗ a 7→ 1H ⊗ gx.

Then BωonH is an ω-smash coproduct Hopf algebra and ω is right normal.

Proof. A direct calculation shows that ω is well defined, conormal, comultiplicative
and an algebra map. By Proposition 2.2, we see that BωonH is an ω-smash coproduct
Hopf algebra. It is obvious that ω is right normal. tu

We prepare to compute braidings of BωonH. For this we need

Lemma 5.2 Let B = H4,H = RZ2 and ω the linear map defined above. Then
(1) (RZ2, τ) is a braided Hopf algebra, where τ : RZ2 ⊗RZ2 → R is given by

τ 1 a

1 1 1
a 1 -1
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(2) (H4, RZ2, u) is a dual compatible u-Hopf algebra pair, where u : H4 ⊗ RZ2 → R is
given by

u 1 a

1 1 1
g 1 -1
x 0 0
gx 0 0

(3) (RZ2,H4, v) is a skew dual compatible v-Hopf algebra pair, where v : RZ2⊗H4 → R
is given by

v 1 g x gx

1 1 1 0 0
a 1 -1 0 0

(4) (H4, p) is a (u, v)-weakly braided Hopf algebra, where p : H4 ⊗H4 → R is given by

p 1 g x gx

1 1 1 0 0
g 1 1 0 0
x 0 0 0 0
gx 0 0 0 0

and p, τ, u, v satisfy the conditions 3.3(1)-(9) (as in Theorem 3.6).

Proof. The proof is straightforward and left to the reader. tu

Combining Lemma 4.6 and 4.7, we see that all conditions of Theorem 3.6 are satisfied
for B = H4 and H = RZ2. Thus we have

Proposition 5.3 Let B = H4, H = RZ2 and ω the linear map given above. Then
(BωonH,σ) is a braided Hopf algebra, where

σ(a⊗ h, b⊗ g) =
∑

p(a(1), b(1))u(a(2), g(2))v(h(2), b(2))τ(h(1), g(1))

is given by

σ 1⊗ 1 1⊗ a g ⊗ 1 g ⊗ a x⊗ 1 x⊗ a gx⊗ 1 gx⊗ a

1⊗ 1 1 1 1 1 0 0 0 0
1⊗ a 1 1 -1 1 0 0 0 0
g ⊗ 1 1 -1 1 -1 0 0 0 0
g ⊗ a 1 1 -1 -1 0 0 0 0
x⊗ 1 0 0 0 0 0 0 0 0
x⊗ a 0 0 0 0 0 0 0 0
gx⊗ 1 0 0 0 0 0 0 0 0
gx⊗ a 0 0 0 0 0 0 0 0

To find other braidings recall that if 2 is invertible in R, then H4 is quasitriangular
and selfdual. Using the Hopf algebra isomorphism H4

∼= H∗
4 described in [9] at the end of

Section 2 (or specializing [10, Proposition 8]) we can compute all the braided structures
of H4.
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Lemma 5.4 For any α ∈ R, (H4, pα) is a braided Hopf algebra, where pα is given by

pα 1 g x gx

1 1 1 0 0
g 1 −1 0 0
x 0 0 α −α
gx 0 0 α α

Moreover, for all α ∈ R, pα satisfies the condition (5) in Proposition 3.3.

Proof. This is proved by a direct computation. tu

Observe that the assumption about invertibility of 2 in R is not necessary for computing
the braided structures of H4. Since RZ2 is commutative, by applying Corollary 4.5 we
obtain a class of new braidings for H4ωonRZ2.

Proposition 5.5 Let B = H4, H = RZ2 and ω the linear map given above. Then for all
α ∈ R, (BωonH,σα) is a braided Hopf algebra, where

σα(a⊗ h, b⊗ g) =
∑

p(a, b)εH(h)εH(g)

is given by

σα 1⊗ 1 1⊗ a g ⊗ 1 g ⊗ a x⊗ 1 x⊗ a gx⊗ 1 gx⊗ a

1⊗ 1 1 1 1 1 0 0 0 0
1⊗ a 1 1 1 1 0 0 0 0
g ⊗ 1 1 1 -1 -1 0 0 0 0
g ⊗ a 1 1 -1 -1 0 0 0 0
x⊗ 1 0 0 0 0 α α -α -α
x⊗ a 0 0 0 0 α α -α -α
gx⊗ 1 0 0 0 0 α α α α
gx⊗ a 0 0 0 0 α α α α

By Lemma 4.7(1), RZ2 has a (unique) non-trivial braided structure τ (see also [10]). If
the characteristic of R is 2, then τ satisfies the conditions (1)-(2) in Theorem 4.4. Applying
now Theorem 4.4 we can compute a third braiding family σα, α ∈ R for H4ωonRZ2, where

σα(a⊗ h, b⊗ g) =
∑

p(a, b)τ(h, g), for a, b ∈ B, h, g ∈ H.

But in this case (characteristic 2) τ becomes trivial, so we are in the situation considered
above.
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