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On module classes closed under extensions

Classes of modules with given properties (like being closed under direct sums and

factor modules) play an important part in various aspects of Module Theory. Most of

these classes can be determined by a single module. In this report we consider some

of these classes and we relate their properties to properties of the defining module.

Our aim is to expose the relationship between various parts of Module Theory studied

independently so far. Some of the results and the proofs are taken from the dissertation

of Berning [7].

1 Classes related to a given module

Let R be an associative ring with unit and R–Mod the category of unital left R-

modules. M will always denote a left R-module. For basic notions see [28, 39].

A full subcategory C of R–Mod which is closed under submodules, factor modules

and direct sums is called a closed subcategory.

Given an R-module M we define the class of M-generated modules,

Gen (M) = {N ∈ R–Mod | there exists an epimorphism M (Λ) → N, Λ any set},

and the class of M-cogenerated modules,

Cog (M) = {N ∈ R–Mod | there exists a monomorphism N →MΛ, Λ any set}.

Related to these are two preradicals (trace and reject) in R–Mod defined by

Tr(M,N) =
∑ {Im f | f ∈ Hom(M,N)} and

Re(N,M) =
⋂ {Ke f | f ∈ Hom(N,M)}, for N ∈ R–Mod.

Obviously Gen (M) is a prototype of a module class closed under direct sums and

factor modules whereas Cog (M) is closed under direct products and submodules.

Considered as full subcategories of R–Mod, Gen (M) is a cocomplete category with

cokernels and Cog (M) is a complete category with kernels.
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1.1 The category σ[M ]

To study properties of the module M we form the full subcategory of R–Mod,

σ[M ] = {N ∈ R–Mod |N is a submodule of an M -generated module}.

σ[M ] is a Grothendieck category and allows a homological characterization of prop-

erties of the module M . By construction, σ[M ] is the smallest closed subcategory of

R–Mod containing the module M . It is easy to see that every closed subcategory in

R–Mod is of the form σ[M ] for a suitable module M .

Moreover, σ[M ] has a generator, for example,

G :=
⊕
{K ⊂M (IN) |K cyclic }.

An R-module N for which σ[N ] = σ[M ] is called a subgenerator of σ[M ].

In particular, M is a subgenerator in R–Mod if σ[M ] = R–Mod. Such modules are

also called cofaithful. Over a left artinian ring R every faithful R-module is cofaithful.

For the investigation of the lattice of all closed subcategories of σ[M ] we refer to

[34, 35].

Since σ[M ] is a Grothendieck category every N ∈ σ[M ] has an injective hull in

σ[M ], also called the M-injective hull of N , which is usually denoted by N̂ . It is

isomorphic to the trace of M in the injective hull I(N) of N in R–Mod, i.e. we may

identify N̂ = Tr(M, I(N)). It is well-known that N̂ is a maximal essential extension

of N in σ[M ] (e.g. [39, § 17]).

The internal properties of Gen (M) and σ[M ] are determined by ’internal’ proper-

ties of M , i.e. properties related to M itself, like M -projectivity or M -injectivity. For

example, independent of the ring R, for a semisimple module M , all modules in σ[M ]

are M -injective and M -projective. For an extensive account of the study of such in-

terdependencies we refer to [39] and [13]. Here we will be interested in the relationship

of the classes defined to surrounding subcategories in R–Mod.

1.2 Definitions. Let M be an R-module. For any two classes of modules C and D in

σ[M ] denote by EM(D, C) the class of R-modules N for which there is an exact sequence

0→ C → N → D → 0

in σ[M ], where C ∈ C and D ∈ D.

C is said to be closed under extensions in σ[M ] if C = EM(C, C).

In case σ[M ] = R–Mod we put E(D, C) := EM(D, C).
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These operations yield a ’product’ of ideals (see [15]) related to the given classes

based on the following observation:

1.3 Proposition. Let C and D be subclasses of R–Mod which are closed under iso-

morphisms. For any left ideal I of R, R/I ∈ E(C, D) if and only if there exists a left

ideal J ⊃ I of R such that J/I ∈ C and R/J ∈ D.

Proof: Assume R/I ∈ E(C, D). Then there exists an exact sequence

0 −→ C
f−→ R/I −→ D −→ 0

where C ∈ C and D ∈ D. For the unique left ideal J ⊃ I of R with Im f = J/I,

J/I ' C ∈ C and R/J ' D ∈ D.

The converse implication is trivial. 2

Properties of C and D are transferred to E(D, C):

1.4 Properties of E(D, C). Let C and D be subclasses of σ[M ].

(i) If C and D are closed under submodules (factor modules, direct sums) then

EM(D, C) is also closed under submodules (resp. factor modules, direct sums).

(ii) If C and D are (finitely) closed subcategories of R–Mod then EM(D, C) is also a

(finitely) closed subcategory of σ[M ].

Proof: Let 0 → C → N → D → 0 be an exact sequence in σ[M ] with C ∈ C and

D ∈ D. If 0→ L→ N is exact we obtain (as a pullback (?)) the following commutative

exact diagram:

0 0 0

↓ ↓ ↓
0 −→ P −→ L −→ Q −→ 0

↓ ? ↓ ↓
0 −→ C −→ N −→ D −→ 0.

If C and D are closed under submodules we have P ∈ C and Q ∈ D and hence L ∈
EM(D, C).

The other assertions are proved similarly. 2
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2 Torsion theory in σ[M ]

We recall some notions from torsion theory. These techniques are familiar from R–Mod

but it is well-known that they also apply to Grothendieck categories. For basic facts

we refer to [10] or [28].

In [38] some of this notions were applied for σ[M ]. In [4], [5] and [6] torsion

theory in σ[M ] was used to define strongly and properly semiprime modules. Also

the investigations in [17], [18], [40] and [41] on generalized composition series may be

considered as a part of torsion theory in σ[M ].

2.1 Definitions. A class T of modules in σ[M ] is called a

pretorsion class if T is closed under direct sums and factor modules;

hereditary pretorsion class if T is closed under direct sums, factor and submodules;

torsion class if T is closed under direct sums, factors and extensions in σ[M ];

hereditary torsion class if T is closed under direct sums, factors, submodules and

extensions in σ[M ];

stable class if T is closed under essential extensions in σ[M ];

TTF class if T is closed under direct products in σ[M ], factor modules, submodules

and extensions in σ[M ].

A pair (T, F) of subclasses of σ[M ] is called a torsion theory in σ[M ] if they satisfy

(i) T = {T ∈ σ[M ] | for all F ∈ F, HomR(T, F ) = 0},

(ii) F = {F ∈ σ[M ] | for all T ∈ T, HomR(T, F ) = 0}.

In this case T is a torsion class and F is closed under submodules, direct products and

extensions. (T, F) is called hereditary if T is closed under submodules, cohereditary if F

is closed under factor modules, stable if T is closed under essential extensions in σ[M ].

Any class of modules in σ[M ] can be extended to a torsion class (see [10, 28]):

2.2 Generating and cogenerating torsion theories

For any subclass C of σ[M ] we define

T(C) := {T ∈ σ[M ] | for all C ∈ C, HomR(T,C) = 0},
F(C) := {F ∈ σ[M ] | for all C ∈ C, HomR(C,F ) = 0}.

Then C ⊂ T(F(C)) and C ⊂ F(T(C)). Moreover,
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(i) the following assertions are equivalent:

(a) (C, F(C)) is a torsion theory,

(b) C = T(F(C)),

(c) C is a torsion class;

(ii) the following assertions are equivalent:

(a) (T(C), C) is a torsion theory,

(b) C = F(T(C)),

(c) C is closed under submodules, direct products and extensions;

(iii) if (C, F(C)) is a torsion theory the following are equivalent:

(a) (C, F(C)) is hereditary,

(b) F(C) is closed under injective hulls,

(c) there exists an M-injective Q ∈ σ[M ] with F(C) = Cog (Q);

(iv) the following assertions are equivalent:

(a) (C, F(C)) and (T(C), C) are torsion theories,

(b) C is a TTF class.

For M = R, TTF classes can be described by the trace ideal ([10, II.3.1], [28, VI.8]):

2.3 TTF classes in R–Mod. For a class C in R–Mod the following are equivalent:

(a) (C, F(C)) and (T(C), C) are torsion theories;

(b) C is a TTF class;

(c) there exists an idempotent ideal I in R such that

C = {C ∈ R–Mod | IC = 0} (= R/I–Mod),

T(C) = {T ∈ R–Mod | IT = T},
F(C) = {F ∈ R–Mod | HomR(R/I, F ) = 0}.
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3 Gen (U) closed under extensions

We investigate under which conditions the classes introduced are closed under exten-

sions. For this we need some more definitions.

3.1 Definitions. Let P be an R-module and p : N → L an epimorphism in R–Mod.

P is called pseudo-projective with respect to p if for all non-zero f ∈ HomR(P,L) there

are s ∈ End(P ) and g : P → N satisfying gp = sf 6= 0, i.e. the exact diagram

P

↓f
N

p−→ L −→ 0

can be non-trivially extended to the commutative diagram

P
s−→ P

↓g ↓f
N

p−→ L −→ 0.

Adapting a notation from [12], P is called im-projective with respect to p if the

above conditions are satisfied with s an epimorphism.

As usual we say P is projective with respect to p if the above conditions are satisfied

with s an isomorphism (or s = idP ).

It is easy to verify that P is pseudo-projective with respect to p if and only if

HomR(P,N)p is essential in HomR(P,L) as an End(P )-submodule.

We will be interested in modules which are pseudo-projective with respect to dif-

ferent classes of epimorphisms.

3.2 Definitions. Let M be an R-module and U,P ∈ σ[M ]. P is called

U-pseudo-projective in σ[M ] if P is pseudo-projective with respect to all epimor-

phisms p : N → L in σ[M ] with Ke p ∈ Gen (U);

self-pseudo-projective in σ[M ] if it is P-pseudo-projective in σ[M ];

pseudo-projective in σ[M ] if it is pseudo-projective with respect to all epis in σ[M ];

im-projective in σ[M ] if it is im-projective with respect to all epis in σ[M ].

Instead of pseudo-projective in R–Mod we will just say pseudo-projective for short.

Two R-modules U and M are called trace equivalent if Gen (U) = Gen (M). In

R–Mod we have the following relationship (compare [12, 1.1]):
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3.3 Proposition. For an R-module U the following are equivalent:

(a) U is pseudo-projective in R–Mod;

(b) for some set Λ, U (Λ) is im-projective;

(c) U is trace equivalent to an im-projective R-module;

(d) there exists a free (projective) R-module P and f ∈ End(P ) with Im f = Im f 2,

such that U and Im f are trace equivalent;

(e) there exists a free (projective) R-modul P and f, h ∈ End(P ) with f = hf2, such

that U and Im f are trace equivalent.

With the notions introduced we are now able to describe the case

3.4 Self-pseudo-projective modules in σ[M ]

For an R-module M and U ∈ σ[M ], the following are equivalent:

(a) U is self-pseudo-projective in σ[M ];

(b) Gen (U) is closed under extensions in σ[M ];

(c) every generator in Gen (U) is U-pseudo-projective in σ[M ];

(d) every N ∈ σ[M ] with an exact sequence U (Λ) → N → U (Λ) → 0 belongs to

Gen (U).

Proof: (a)⇒(b) Let 0 → K → L → N → 0 be an exact sequence in σ[M ] with

K,N ∈ Gen (U). We have to show that L ∈ Gen (U). Suppose Tr(U,L) 6= L. Then

K ⊂ Tr(U,L) and N ′ := L/Tr(U,L) is a factor module of N and hence is U -generated.

For any non-zero f : U → N ′ we obtain (by (b)) a commutative diagram

U
s→ U → 0

↓g ↓f
0 → Tr(U,L) → L

p→ N ′ → 0,

where gp 6= 0. This contradicts (U)g ⊂ Tr(U,L).

(b)⇒(a) Let p : N → L be an epimorphism in σ[M ] with Ke p ∈ Gen (U). For

any non-zero f ∈ HomR(U,L) we form a pullback to obtain the commutative diagram

with exact rows
0 → K → P

s′→ U → 0

‖ ↓g′ ↓f
0 → K → N

p→ L → 0.
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Since g′p = s′f 6= 0 and P ∈ Gen (U) (by (a)) there exists h : U → P satisfying

hg′p = hs′f 6= 0. This shows that U is U -pseudo-projective in σ[M ].

The remainig implications are standard (compare 4.2). 2

For M = R, 3.4 yields the following characterizations of modules which include

[36, Proposition 2.1] (see [7, 8.4]):

3.5 Self-pseudo-projective modules

For an R-module U the following are equivalent:

(a) U is self-pseudo-projective;

(b) Gen (U) is closed under extensions;

(c) every generator in Gen (U) is self-pseudo-projective;

(d) every N ∈ R–Mod with an exact sequence U (Λ) → N → U (Λ) → 0 belongs to

Gen (U).

The above notions are closely related to ext-projective modules considered in rep-

resentation theory of algebras. Adapting a definition from Auslander-Smalø [2] we

say:

3.6 Definition. Let M be an R-module and U,P ∈ σ[M ]. P is called U-ext-projective

in σ[M ] if P is projective with respect to all epimorphisms p : N → L in σ[M ] with

Ke p ∈ Gen (U), i.e. any exact diagram

P

↓f
N

p−→ L −→ 0

can be extended commutatively by some P → N provided Ke p ∈ Gen (U) and N ∈
σ[M ].

U is called self-ext-projective if it is U -ext-projective in R–Mod. Obviously such a

module is self-pseudo-projective.

3.7 Properties. Let M be an R-module and U,P ∈ σ[M ].

(1) Direct sums and direct summands of U-ext-projective modules are again U-ext-

projective (in σ[M ]).
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(2) A direct sum of copies of a self-ext-projective module is again self-ext-projective

(in σ[M ]).

(3) P is U-ext-projective if and only if every exact sequence

0→ K → X
p→ P → 0

in σ[M ] with Ke p ∈ Gen (U) splits, i.e. Ext1
R (P,K) = 0 (in σ[M ]) for every

K ∈ Gen (U).

Proof: (1) is easily seen by standard arguments.

(2) Assume U is self-ext-projective. Then Gen (U) = Gen (U (Λ)) and the assertion

follows from (1).

(3) This follows from the pullback diagram

0 −→ K −→ X −→ P −→ 0

‖ ↓ ↓
0 −→ K −→ N −→ L −→ 0.

2

As mentioned before, any self-ext-projective module is self-pseudo-projective. The

inverse implication does not hold in general: Consider a self-pseudo-projective module

U with a U -generated submodule K ⊂ U . Obviously U ⊕ U/K is a generator in

Gen (U) and hence it is self-pseudo-projective by 3.5(c). If K is not a direct summand

in U , then U ⊕ U/K is certainly not self-ext-projective.

However, under suitable conditions we may find a self-ext-projective generator in

Gen (U) (compare Assem [1]).

Definition. A generator X ∈ Gen (U) is called minimal if for any decomposition

X = X ′ ⊕X ′′, Tr(X ′, X ′′) 6= X ′′.

For example, if U is finitely generated and a direct sum of modules with local

endomorphism rings, then there exists a minmal U -generator.

3.8 Proposition. Let U ∈ σ[M ] be finitely generated and minimal (in the above

sense) and T = End(U). Assume that T is right perfect or UT is finitely generated

and T is semiperfect. Then the following assertions are equivalent:

(a) Gen (U) is closed under extensions in σ[M ];

(b) U is self-pseudo-projective in σ[M ];
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(c) U is self-ext-projective in σ[M ].

Proof: It remains to show that (a)⇒(c). We adopt an argument in Assem [1, 1.3].

Assume (a). We have to show that Ext1
R (U,K) = 0 for all K ∈ Gen (U).

Let U = U0 ⊕ U1 with S := End(U0) local. By minimality of U , Tr(U1, U0) 6= U0.

Suppose that Ext1
R (U0, K) 6= 0 for some K ∈ Gen (U). Consider a non-split extension

0→ K → E
f→ U0 → 0.

By (a), E is U -generated and hence there is an epimorphism

Uk
1 ⊕ Uk

0 = Uk h→ E
f→ U0.

Since f is not a retraction, none of the hf |U0 ∈ S is an isomorphism and hence they all

belong to Jac S. By our assumptions, RadS(U0) is a small S-submodule of U0. Hence

we conclude

U0 = (Uk
1 )hfS ⊂ Tr(U1, U0),

a contradiction to the minimality of U . 2

Next we characterize pseudo-projective modules in σ[M ]. The implications are

more or less straightforward.

3.9 Pseudo-projective modules in σ[M ]

For U ∈ σ[M ] the following assertions are equivalent:

(a) U is pseudo-projective in σ[M ];

(b) for N ∈ σ[M ] and Tr(U,N) ⊂ L ⊂ N with N/L cocyclic, Tr(U,N/L) = 0;

(c) for any N ∈ σ[M ] and K ⊂ N , Tr(U,N/K) = (Tr(U,N) +K)/K;

(d) (Gen (U), F(Gen (U)) is a cohereditary torsion theory in σ[M ].

Pseudo-projective modules U in R–Mod can be characterized by their trace ideals

Tr(U,R). For this we recall the following facts:

3.10 Lemma. Let I be a left ideal in R and N an R-module. Then IN ∈ Gen (I),

hence IN ⊂ Tr(I,N). If I is idempotent then IN = Tr(I,N).

The assertions in 3.9 can be extended by properties of the trace ideal. Some of the

resulting characterizations (and some others) may be found in [36, 2.3] and [9, 2.1,3.5].
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3.11 Pseudo-projective modules in R–Mod (see [7, Satz 8.7])

For an R-module U and T := Tr(U,R) the following are equivalent:

(a) U is pseudo-projective;

(b) for any free R-module N and K ⊂ N , Tr(U,N/K) = (Tr(U,N) +K)/K;

(c) (Gen (U), F(Gen (U)) is a cohereditary torsion theory;

(d) there is a free (projective) R-module P and an epimorphism p0 : P → U with

P = Ke p0 + Tr(U,P );

(e) there exists a free (projective) R-module P and an epimorphism p0 : P → U and

a homomorphism q0 : U (∆) → P such that q0p0 : U (∆) → U is epic;

(f) for every R-module L, Tr(U,L) = TL;

(g) U = TU ;

(h) F(Gen (U)) = R/T -Mod.

If these conditions hold then T = T 2 and Gen (U) = Gen (T ).

4 σ[U ] closed under extensions

σ[U ] is closed under extensions in σ[M ] if and only if it is a hereditary torsion class in

σ[M ]. To study this case recall that there always exists a generator G in σ[U ]. Then

Gen (G) = σ[U ] and we can refer to 3.4. Note that this is not quite satisfying because

we cannot see the property under consideration directly from the module M .

4.1 σ[U ] closed under extensions in σ[M ]

For U ∈ σ[M ] the following assertions are equivalent:

(a) σ[U ] is closed under extensions in σ[M ];

(b) there exists a generator G in σ[U ] which is G-pseudo-projective in σ[M ];

(c) every generator in σ[U ] is self-pseudo-projective in σ[M ];

(d) σ[U ] contains all cyclic modules from EM(σ[U ], σ[U ]);

(e) every N ∈ σ[M ] which allows an exact sequence U (Λ) → N → U (Λ) (for some

set Λ) belongs to σ[U ].
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Proof: By the preceding remark the equivalence of (a), (b) and (c) follows from 3.5.

(a)⇒(d)⇒(e) are obvious.

(e)⇒(a) Let 0→ K → L→ N → 0 be an exact sequence in R–Mod, K,N ∈ σ[U ].

For a suitable set Λ, we can find an epimorphism g : U (Λ) → X and embeddings

K ↪→ X and N ↪→ X . For V := (N)g−1 ⊂ U (Λ) we have (V )g = N . A pushout (?)

yields the commutative exact diagram

0 0

↓ ↓
0 −→ K −→ L −→ N −→ 0

↓ ? ↓ ‖
0 −→ X −→ P −→ N −→ 0.

By a pullback (?) we obtain the commutative exact diagram

0 −→ X −→ Q −→ V −→ 0

‖ ↓ ? ↓
0 −→ X −→ P −→ N −→ 0

↓ ↓
0 0 .

Combining these yields an exact sequence U (Λ) −→ Q −→ U (Λ).

By (c), Q ∈ σ[U ] and hence P ∈ σ[U ] and L ∈ σ[U ]. 2

Putting U = R the above theorem has the following form:

4.2 σ[U ] closed under extensions in R–Mod

For an R-module U the following assertions are equivalent:

(a) σ[U ] is closed under extensions;

(b) there exists a self-pseudo-projective generator in σ[U ];

(c) every generator in σ[U ] is self-pseudo-projective;

(d) σ[U ] contains all cyclic modules from E(σ[U ], σ[U ]);

(e) every R-module N which allows an exact sequence U (Λ) → N → U (Λ) (for some

set Λ) belongs to σ[U ].
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In view of 4.1 it is natural to consider the case when σ[U ] has a generator which is

pseudo-projective in σ[U ]. This case is essentially described by 3.9.

When σ[U ] has a pseudo-projective generator in R–Mod we can again refer to prop-

erties of the trace ideal. For this several techniques developed in different situations

are helpful. We recall some facts and definitions.

4.3 Flat factor rings

For a right ideal J of R the following are equivalent:

(a) R/J is a flat right R-module;

(b) the exact sequence 0→ J → R→ R/J → 0 is pure in Mod-R;

(c) for every left ideal I of R, JI = J ∩ I.

If J is a (two-sided) ideal in R, then the following are also equivalent to (a)-(c):

(d) every injective left R/J-module is R-injective;

(e) R/J-Mod contains an R-injective cogenerator.

In Tominaga [29] modules over rings T without identity were considered. He calls

a left T -module N s-unital if u ∈ Tu for every u ∈ N . We refer to [37] for an account

on the relationship of this notion to σ[U ].

For an ideal T ⊂ R, every R-module is a T -module and we have:

4.4 s-unital T -modules

Let T be an ideal in R. For any R-module N the following are equivalent:

(a) N is an s-unital T -module;

(b) for every submodule RL ⊂ RN , L = TL;

(c) for any k ∈ IN and n1, . . . , nk ∈ N , there exists t ∈ T with

ni = tni for i = 1, . . . , k;

(d) for any set Λ, N (Λ) is an s-unital T -module.

With straightforward arguments we obtain (see 4.3):

4.5 s-unital rings

For an ideal T in R the following are equivalent:
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(a) T is left s-unital;

(b) for every left ideal I of R, TI = T ∩ I;

(c) for every R-module RL ⊂ RN , TL = TN ∩ L;

(d) R/T is a flat right R-module.

We are now ready for our next theorem:

4.6 σ[U ] with a pseudo-projective generator (see [7, Satz 9.8])

Let U be an R-module, G :=
⊕{K ⊂ U (IN) |K cyclic } and T := Tr(σ[U ], R) =

Tr(G,R). The following assertions are equivalent:

(a) G is pseudo-projective;

(b) every generator in σ[U ] is pseudo-projective;

(c) σ[U ] is closed under extensions and F(σ[U ]) is closed under factor modules;

(d) (σ[U ], F(σ[U ])) is a cohereditary torsion theory;

(e) G is an s-unital T -module;

(f) every module in σ[U ] is an s-unital T -module;

(g) U is an s-unital T -module;

(h) for any k ∈ IN and g1, . . . , gk ∈ G, R = T +
⋂k
i=1 AnnR(gi);

(i) for every g ∈ G, R = T + AnnR(g);

(j) for every N ∈ σ[U ] the canonical morphismus ϕN : T ⊗R N → N is a bijection;

(k) U = TU and (R/T )R is U-flat.

Proof: The equivalences (a)-(e) follow from 3.11.

(e)⇒(h) For k ∈ IN and g1, . . . , gk ∈ G, consider the monomorphism

γ : R/
k⋂
i=1

AnnR(gi) −→ Gk, r 7−→ (rgi)1≤i≤k.

By (e), T · Im γ = Im γ. From Im γ ' R/
⋂k
i=1 AnnR(gi) we conclude

T ·R/
n⋂
i=1

AnnR(gi) = R/
n⋂
i=1

AnnR(gi),
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i.e. R = T +
⋂n
i=1 AnnR(gi).

(f)⇒(g) and (h)⇒(i) are trivial.

(g)⇒(e) By (g) and 4.4, G is a submodule of the s-unital T -module U (Λ) and hence

is s-unital.

(i)⇒(e) For g ∈ G there exist (by (i)) elements x ∈ AnnR(g), t ∈ T with 1R = x+t.

Hence g = (x+ t)g = tg ∈ Tg, i.e. G is an s-unital T -module.

(e)⇒(j) For N ∈ σ[U ], N = TN (by (e)), i.e. ϕN is surjective. To prove injectivity

of ϕN consider
∑k
i=1 ti⊗ni ∈ KernϕN (where ti ∈ T , ni ∈ N), i.e.

∑k
i=1 tini = 0. Since

RT is an s-unital T -module there exist t ∈ T with ti = tti for all i = 1, . . . , k (by 4.4).

From this we obtain

k∑
i=1

ti ⊗ ni =
k∑
i=1

tti ⊗ ni = t⊗
k∑
i=1

tini = 0.

Hence ϕN is injective.

(j)⇒(e) Consider a submodule K ⊂ G and form the commutative exact diagram

T ⊗R K −→ T ⊗R G −→ T ⊗R G/K −→ 0

↓ϕK ↓ϕG ↓ϕG/K
0 −→ K −→ G −→ G/K −→ 0.

By (j), ϕG and ϕG/K are isomorphisms. Then ϕK is epic and K = Im ϕK = TK, i.e.

G is s-unital.

(a)⇒(k) U = TU is clear by (a)⇒(h). Since G is pseudo-projective, T = T 2 (by

3.11). By 4.7, (R/T )R is flat and hence, in particular, U -flat.

(k)⇒(g) For any submoduleN ⊂ U consider the commutative diagram with canon-

ical isomorphisms

0 −→ R/T ⊗R N −→ R/T ⊗R U
↓' ↓'

0 −→ N/TN −→ U/TU .

Since (R/T )R is U -flat the rows are exact. From U/TU = 0 follows N/TN = 0, i.e.

N = TN and hence U is an s-unital T -module. 2

Some of the characterizations in 4.7 were obtained in [42, 2.4], [22, Th.1.9] and [21,

Th.2.2]. Combining the preceding results with 3.11 we obtain the following observa-

tions about idempotent ideals part of which were proved in [25, 1.2].

4.7 Corollary. For an idempotent ideal T of R the following are equivalent:
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(a) Gen RT is closed under submodules;

(b) for any R-modules RL ⊂ RN , TL = TN ∩ L;

(c) R/T is a flat right R-module;

(d) T is a left s-unital ring;

(e) for every t ∈ T , R = T + AnnR(t);

(f) for any k ∈ IN and t1, . . . , tk ∈ T , R = T +
⋂k
i=1 AnnR(ti);

(g) every injective left R/T -module is R-injective;

(h) R/T -Mod contains an R-injective cogenerator.

5 Stable subcategories

Recall that a class T ⊂ σ[M ] is called stable in σ[M ] if T is closed under essential

extensions in σ[M ].

5.1 Stable subcategories in σ[M ] (see [7, Satz 5.6])

For U ∈ σ[M ] the following assertions are equivalent:

(a) σ[U ] is stable in σ[M ];

(b) σ[U ] is closed under M-injective hulls;

(c) every U-injective module in σ[U ] is M-injective;

(d) for any N ∈ σ[M ], Tr(σ[U ], N) is essentially closed in N ;

(e) for any M-injective module N ∈ σ[M ], Tr(U,N) is a direct summand in N ;

(f) for any U-injective module N ∈ σ[M ], Tr(U,N) is M-injective.

Proof: The assertions follow from basic properties of M -injectivity. 2

Notice that for a stable subcategory σ[U ] ⊂ σ[M ], U -injective modules in σ[M ]

need not be M -injective. In fact we have (see [7, Satz 5.8]):
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5.2 Proposition. For U ∈ σ[M ] the following are equivalent:

(a) Every U-injective module in σ[M ] is M-injective;

(b) every U-injective module in σ[U ] and every module X ∈ σ[M ] for which

Tr(σ[U ], X) = 0, is M-injective.

Proof: (a)⇒(b) If Tr(σ[U ], X) = 0 then X is trivially U -injective.

(b)⇒(a) Consider a U -injective X ∈ σ[M ]. Then Y := Tr(σ[U ], X) ⊂ X is also

U -injective, hence M -injective (by (b)) and therefore a direct summand in X. For

RZ ⊂ RX with X = Y ⊕ Z, Tr(σ[U ], Z) = 0 and hence Z - and X - are M -injective.

2

5.3 Proposition. Let U ∈ σ[M ] and assume that σ[U ] is stable in σ[M ]. Then σ[U ]

is closed under extensions in σ[M ].

Proof: Let 0→ K → L→ N → 0 be an exact sequence in σ[M ], where K,N ∈ σ[U ]

and L ∈ σ[M ]. By assumption the M -injective hull K̂ of K belongs to σ[U ]. A

pushout (?) yields the exact commutative diagram

0 0

↓ ↓
0 −→ K −→ L −→ N −→ 0

↓ ? ↓ ‖
0 −→ K̂ −→ Q −→ N −→ 0

The lower row splits. Hence Q ' K̂ ⊕N ∈ σ[U ] and L ∈ σ[U ]. 2

6 Cog (U) closed under extensions

The fact that Cog (U) is closed under extensions is related to injectivity conditions for

the module U which are dual to the projectivity conditions considered above.

6.1 Definitions. Two R-module N and L are called

reject equivalent if Cog (N) = Cog (L);

subisomorphic if there are momorphisms N → L and L→ N .

We observe the following relationship between these notions ([7, A.2]):
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6.2 Proposition. For two R-modules N , L the following are equivalent:

(a) N and L are reject equivalent;

(b) there is a set Λ such that NΛ and LΛ are subisomorphic.

The notions dual to those of 3.1 are as follows:

6.3 Definitions. Let Q be an R-module and h : L→ N a monomorphism in R–Mod.

Q is called pseudo-injective with respect to h if for any non-zero f : L→ Q there exist

s ∈ End(Q) and g : N → Q with fs = hg 6= 0, i.e. the diagram

0 −→ L
h−→ N

↓f
Q

can be extended non-trivially to a commutative diagram

0 −→ L
h−→ N

↓f ↓g
Q

s−→ Q;

Obviously Q is pseudo-injective with respect to h if and only if hHomR(N,Q) is an

essential End(Q)-submodule of HomR(L,Q).

Q is called kern-injective with respect to h if the above conditions can be satisfied

with s monic.

Q is injective with respect to h if the above conditions can be satisfied with s an

isomorphism (or s = idQ).

We will apply these notions with respect to different classes of monomorphisms.

6.4 Definitions. Let M be an R-module and U,Q ∈ σ[M ]. Q is called

U-pseudo-injective in σ[M ] if Q is pseudo-injective with respect to all monos h :

L→ N in σ[M ] with Coke h ∈ Cog (U);

self-pseudo-injective in σ[M ] if it is pseudo-injective with respect to all monos

h : L→ N in σ[M ] with Coke h ∈ Cog (Q);

pseudo-injective in σ[M ] if Q is pseudo-injective with respect to all monos in σ[M ];

ker-injective in σ[M ] if it is ker-injective with respect to all monos in σ[M ].

18



Dual to 3.4 we have (see also [36, 2.2]):

6.5 Self-pseudo-injective modules in σ[M ]

For U ∈ σ[M ] the following assertions are equivalent:

(a) U is self-pseudo-injective in σ[M ];

(b) if h : L→ N is a mono in σ[M ] with Coke h ∈ Cog (U) and hHomR(N,U) = 0,

then Hom(L,U) = 0;

(c) Cog (U) is closed under extensions;

(d) (T(U),Cog (U)) is a torsion theory;

(e) every N ∈ σ[M ] with an exact sequence 0→ UΛ → N → UΛ belongs to Cog (U).

The next result is dual to 3.9. Compare also [36, 2.4], [10, IV.7.1], [31] and [19].

6.6 Pseudo-injective modules in σ[M ]

For U ∈ σ[M ] the following assertions are equivalent:

(a) U is pseudo-injective in σ[M ];

(b) for all monos h : L→ N in σ[M ] with hHomR(N,U) = 0, HomR(L,U) = 0;

(c) Cog (U) is closed under extensions, T(U) is closed under submodules;

(d) (T(U),Cog (U)) is a hereditary torsion theory;

(e) for every monomorphism h : L → N in σ[M ] with L ∈ Cog (U) there exists

some g : N → UΛ such that hg : L→ UΛ is monic;

(f) Û ∈ Cog (U).

By (f), M is pseudo-injective in σ[M ] if and only if M cogenerates its M -injective hull.

Such modules are also called (self) QF-3’ modules.

As a special case of the above result we have (compare [11]):

6.7 Ker-injective modules in σ[M ]

For U ∈ σ[M ] the following assertions are equivalent:

(a) U is ker-injective;

(b) for all monos h : L→ N and all f : L→ U in σ[M ] there exists g : N → U with

Ke hg ⊂ Ke f ;
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(c) for all monos h : U → N in σ[M ] there exists g : N → U such that hg : U → U

is monic;

(d) U and Û are subisomorphic;

(e) U is subisomorphic to an M-injective module.

Between pseudo-injective and ker-injective modules we have the connection:

6.8 Proposition. For U ∈ σ[M ] the following assertions are equivalent:

(a) U is pseudo-injective in σ[M ];

(b) there is a set Λ such that UΛ is ker-injective;

(c) U is reject equivalent to a ker-injective module in σ[M ].

7 Linear topologies

Any linear topology T on RR is characterized by the T -discrete modules which form

a closed subcategory of R–Mod. As noticed above this category is of type σ[M ] and

hence every linear topology on RR is of the following type:

7.1 The M-adic topology. For any R-module M , the set

{Ke f | f : R→ N, N ∈ σ[M ]}

forms a filter of left ideals of R which is a linear topology of R, called the M-adic

topology of R. A basis of the neighbourhoods of 0 is given by

TM := {Ke f | k ∈ IN, f ∈ HomR(R,Mk)}.

Since σ[M ] is uniquely determined by its cyclic modules there is a bijective corre-

spondence between the subcategories σ[M ] of R–Mod and the left linear topologies on

R. So every linear topology on R is an M -adic topology for some R-module M .

Asking which properties of an M -adic topology correspond to which property of

σ[M ] we note as a first example:

7.2 Jansian topologies

An M -adic topology on R is called a Jansian topology if σ[M ] is closed under

direct products in R–Mod. It is easy to verify that this is equivalent to the fact that

σ[M ] = R/I–Mod, where I = AnnR(M).
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Linear topologies for which the discrete modules are closed under extensions deserve

special attention:

7.3 Gabriel topologies

An M -adic topology is called a Gabriel topology if σ[M ] is closed under extensions.

We can apply 4.2 to study these topologies. The property that σ[M ] is closed under

extensions can be described by the fact that the filter of left ideals corresponding to

σ[M ] is closed under the product described in 5.3 (see [15], [33]).

7.4 Stable topologies

An M -adic topology is called a stable topology if σ[M ] is closed under injective

hulls.

Properties of such topologies can be derived from 5.1. We know from 5.3 that

stable topologies are in particular Gabriel topologies.

An interesting interplay between the M -adic topology and σ[M ] is the following

observation:

7.5 Closed ideals

Let Q be a cogenerator in σ[M ] and I ⊂ R a left ideal. Then the following are

equivalent:

(a) I is closed in the M-adic topology;

(b) R/I is cogenerated by Q, i.e. R/I ⊂ QΛ (product in R–Mod).

The above result is useful for our next investigations.

7.6 Definition. Two left linear topologies on R are called equivalent if they have the

same closed left ideals in R.

It follows from 7.5 that an M -adic topology is equivalent to an N -adic topology if

and only if the cogenerators in σ[M ] and σ[N ] cogenerate the same cyclic R-modules.

7.7 The Leptin topology

The coarset topology which is equivalent to a given linear topology T on RR is

called the Leptin topology for T . The set

B∗ := {RI ⊂ RR | I ∈ T and R/I finitely cogenerated }
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is a basis for the open left ideals of the Leptin topology for T .

For the M -adic topology we have the interesting fact (compare [23, L.5,L.6]):

Let {Eλ}Λ be a minimal representing set of the simple modules in σ[M ] and K :=⊕
Λ Êλ (minimal cogenerator in σ[M ]).

Then the K-adic topology is the Leptin topology for the M-adic topology on R.

7.8 The Warner topology

The finest topology which is equivalent to a given linear topology T on RR is called

the Warner topology for T . The set

B∗ := {RI ⊂ RR | all left ideals J of R with I ⊂ J are closed}

is a basis for the open left ideals of the Leptin topology for T .

The existence of the Warner topology was shown in [30] by using a duality argu-

ment. The main problem is to show that B∗ is closed under finite intersections.

It is an open question to find an R-module U (somehow related to σ[M ]) such that

the U -adic topology is the Warner topology for the M -adic topology.
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