
Closure operations in module categories

Miguel Ferrero

Universidade Federal de Rio Grande do Sul, Porto Alegre, Brazil

and

Robert Wisbauer∗

University of Düsseldorf, Germany

Abstract

Singular left modules over an associative ring A are characterized by the fact

that the annihilator of every element is an essential left ideal. These modules

play an important part in torsion theory. What can be said about A-bimodules

whose elements are annihilated by (two-sided) essential ideals? It is shown

that for semiprime rings A this property characterizes bimodules which are

singular in the category σ[A] of bimodules subgenerated by A. Based on this

observation the closure operations on bimodules studied by M. Ferrero for prime

and semiprime rings A are related to the singular torsion theory in σ[A]. In this

context we give some characterizations of strongly prime rings. Our methods

also apply to non-associative rings.

Introduction

In our first sections A will denote an associative ring with unit and A-Mod will stand

for the category of all unital left A-modules.

Our first objective is to study singularity and non-singularity conditions in the

category σ[M ] whose objects are submodules of M -generated modules.

In section 2 we give a characterization of strongly prime modules by properties of

non-singular modules in σ[M ].

In section 3 we are concerned with the investigation of the singular closure of a

submodule in any module in σ[M ]. Our main observation is that for non-singular

modules K ⊂ N in σ[M ] the singular closure of K in N coincides with the essential

closure of K in N . If K is essential in N this yields a bijective correspondence between

closed submodules of K and N .
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In any self-injective module N the closed submodules are direct summands. Hence

for any moduleM which is non-singular in σ[M ] we have a bijection between the closed

submodules of M and the direct summands of its M -injective hull M̂ .

In general, a direct sum of copies of M̂ need no longer be self-injective and the

closed submodules of M̂ (Λ) need no longer be direct summands. Nevertheless we still

obtain nice relationships between closed A-submodules of M (Λ) and M̂ (Λ) and the

closed T -submodules of T (Λ), where T := EndA(M̂). In particular, putting M = A

we obtain, for left non-singular rings A, a bijection between closed A-submodules

of module A(Λ) and Q(A)(Λ), and closed Q(A)-submodules of Q(A)(Λ), where Q(A)

denotes the maximal left quotient ring of A.

The last two sections are devoted to bimodule properties of a ring. For this, let A

be any ring and M(A) its multiplication ring, i.e. the subring of EndZZ(A) generated

by left and right multiplications with elements of A and the identity map of A. Then

A can be considered as left M(A)-module and we form σ[A] as a subcategory of

M(A)-Mod (see [6]).

In section 4 we observe that for semiprime rings A the singular modules in σ[A]

are characterized by the fact that every cyclic M(A)-submodule is annihilated by an

essential ideal of A. For an associative ring A this is equivalent to say that every

element of the module is annihilated by an essential ideal of A.

We call a ring A strongly prime if it is strongly prime as an M(A)-module. The

characterization of strongly prime modules mentioned above immediately yields a

characterization of these rings. For an associative ring A we also have the notions

left strongly prime and right strongly prime and we will point out some interactions

between these properties. Notice that some authors call a ring ’strongly prime’ if it

is left and right strongly prime; this differs from our definition.

The final section is concerned with the closure operations for modules in σ[A] for

semiprime rings A. Based on the fact that these rings are non-singular in σ[A] our

previous results on non-singular modules apply. Moreover, the A-injective hull Â of

A is the central closure of A and we obtain bijective correspondences between closed

M(A)-submodules of A(Λ), closed M(Â)-submodules of Â(Λ) and closed submodules

of T (Λ), where T := EndM(A)(Â) is the extended centroid of A.

These final results extend correspondence theorems for centred bimodules over

prime and semiprime rings proved in [3, 5]. We point out that the methods used here

are completely different from the methods used in those papers.
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1 Basic notions

Let A be an associative ring with unit and let M be a left A-module. An A-module

is said to be subgenerated by M if it is isomorphic to a submodule of an M -generated

module. By σ[M ] we denote the full subcategory of A-Mod consisting of all modules

which are subgenerated by M (see [8]).

A module N ∈ σ[M ] is said to be M -injective if the functor HomA(−, N) is exact

on short exact sequences with central object M . It is well-known that this is equivalent

to the property that HomA(−, N) is an exact functor on σ[M ].

A submodule K ⊂ N is said to be essential in N , we write K �N , if K ∩ L 6= 0

for any non-zero submodule L ⊂ N . Every N ∈ σ[M ] is an essential submodule of

some M -injective module N̂ in σ[M ] which is called the M-injective hull of N . Notice

that every M -injective module in σ[M ] is M -generated.

For our investigations the following notion of singularity - which extends the well-

known singularity in A-Mod - will be most important:

Definition. Let M and N be A-modules. N is called singular in σ[M ] or M-

singular if N ' L/K for some L ∈ σ[M ] and K � L (see [6, 2]).

In case M = A, we have the usual singularity in A-Mod and instead of A-singular

we will just say singular. It is well-known that a module is singular in A-Mod if and

only if the annihilator of each of its elements is an essential left ideal in A.

The class SM of all M -singular modules is closed under direct sums, submodules,

and factor modules, i.e. it is a hereditary pretorsion class in σ[M ]. Hence every

module N ∈ σ[M ] has a largest M -singular submodule which we denote by SM(N).

If SM(N) = 0 then N is said to be non-M-singular.

If the module M itself is non-M -singular it is also called polyform (see [2]). Such

modules can be characterized in the following way:

1.1 Polyform modules. Characterization.

For a module M with M-injective hull M̂ , the following are equivalent:

(a) M is polyform (i.e. SM(M) = 0)

(b) for any submodule K ⊂M and 0 6= f : K →M , Ke f is not essential in K;

(c) for any K ∈ σ[M ] and 0 6= f : K →M , Ke f is not essential in K;

(d) EndA(M̂) is regular.

2 Strongly prime modules

In this section A again will denote an associative ring with unit, and M will be a left

A-module.
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An A-module M is said to be strongly prime if for every submodule N ⊂ M ,

M ∈ σ[N ] (see [7, 1]). The following equivalences are fairly obvious:

2.1 Strongly prime modules.

For an A-module M with M-injective hull M̂ , the following are equivalent:

(a) M is strongly prime;

(b) M̂ is strongly prime;

(c) M̂ is generated by each of its nonzero submodules.

To get some more characterizations we introduce a new

Definition. A module N ∈ σ[M ] is called an absolute subgenerator in σ[M ] if

every non-zero submodule K ⊂ N is a subgenerator in σ[M ] (i.e. M ∈ σ[K]).

It is obvious that every absolute subgenerator is a strongly prime module, and M

itself is an absolute subgenerator in σ[M ] if and only if it is strongly prime. Moreover,

if N is an absolute subgenerator in σ[M ] with SM(N) 6= 0, then all modules in σ[M ]

are M -singular.

With this notions we have the following

2.2 Characterization of strongly prime modules.

For a polyform A-module M , the following assertions are equivalent;

(a) M is strongly prime;

(b) every module K ∈ σ[M ] with SM(K) 6= K is a subgenerator;

(c) every non-zero module K ∈ σ[M ] with SM(K) = 0 is an absolute subgenerator;

(d) for every non-zero N ∈ σ[M ],

SM(N) =
⋂
{K ⊂ N | N/K is an absolute subgenerator in σ[M ]};

(e) there exists an absolute subgenerator in σ[M ].

In this case, every projective module in P ∈ σ[M ] is an absolute subgenerator and

hence SM(P ) = 0.

Proof. (a) ⇒ (b) Since M is polyform the M -singular modules X ∈ σ[M ] are

characterized by the property HomA(X, M̂) = 0 (see [6]). Hence for any K ∈ σ[M ]

with SM(K) 6= K, there exists a non-zero homomorphism f : K → M̂ . Since M (and

M̂) is strongly prime the image of f is a subgenerator in σ[M ] and so is K.

(b)⇒ (c) If SM(N) = 0, every non-zero submodule of N is non-M -singular.

(c) ⇒ (d) Let K ⊂ N be such that N/K is an absolute subgenerator in σ[M ].

Assume SM(N) 6⊂ K. Then (K + SM(N))/K is an M -singular submodule of N/K.

4



This is impossible since not all modules in σ[M ] are M -singular. So SM(N) ⊂ K and

SM(N) is contained in the given intersection.

Since M is polyform, N/SM(N) is non-M -singular and hence an absolute subgen-

erator in σ[M ]. This proves our assertion.

(d)⇒ (e) Since SM(M) = 0 the equality in (d) implies the existence of an absolute

subgenerator in σ[M ].

(e) ⇒ (a) Let N be an absolute subgenerator in σ[M ]. Then clearly SM(N) = 0

and N is a strongly prime module. Now the proof (a) ⇒ (c) applies and so M is an

absolute subgenerator in σ[M ].

Every projective module P ∈ σ[M ] is isomorphic to a submodule of some M (Λ)

which is an absolute subgenerator (by (c)). Hence P is also an absolute subgenerator.

2

Applying 2.2 to M = A, we immediately have the following

2.3 Characterization of left strongly prime rings.

For the ring A the following properties are equivalent:

(a) A is a left strongly prime ring;

(b) every left A-module which is not singular is a subgenerator in A-Mod;

(c) every non-singular left A-module is an absolute subgenerator in A-Mod;

(d) for every non-zero left A-module N ,

Z(N) =
⋂
{K ⊂ N | N/K is an absolute subgenerator in A-Mod};

(e) there exists an absolute subgenerator in A-Mod.

3 Closure operations on modules in σ[M ]

Let A be an associative ring with unit and let M be any left A-module.

Definitions. Let K ⊂ N be modules in σ[M ]. A maximal essential extension of

K in N will be called an essential closure of K in N . K is said to be closed in N if

it has no proper essential extension in N .

We define the M-singular closure [K]N of K in N by

[K]N/K = SM(N/K).

K is said to be M-singular closed in N if K = [K]N , i.e. if N/K is non-M -singular.

Notice that forming [K]N depends on the category σ[M ] we are working in. Usually

it should be clear from the context which closure is meant.
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In particular, for M = A the notion A-singular defines precisely those A-modules

X for which the annihilator of each element is an essential left ideal in A. Hence we

have the following characterization of

3.1 Singular closure in A-Mod.

Let K ⊂ N be left A-modules. Then in A-Mod the singular closure of K in N is

[K]N = {x ∈ N | Ix ⊂ K for some essential left ideal I ⊂ A}.

It should be observed that, in general, forming the singular closure need not be an

idempotent operation on the submodules of N . However, it will be idempotent in the

cases we are interested in, for example, if M is polyform or in the following situation:

3.2 Essential closure in non-M-singular modules.

Let K ⊂ N be non-M-singular modules in σ[M ]. Then for every essential closure

K in N ,

K/K = SM(N/K) = [K]N/K.

This implies that K has a unique essential closure in N .

Proof. Clearly K ⊂ [K]N . Since [K]N is non-M -singular, any map from [K]N to an

M -singular module has essential kernel. Hence K � [K]N and K = [K]N . 2

The preceding observation implies a close relationship between closed submodules

of essential extensions of non-M -singular modules.

Denote by L(X) the lattice of submodules of any module X.

3.3 Correspondence of closed submodules.

Let K �N be non-M-singular modules in σ[M ]. Then the mappings

L(K)→ L(N), U 7→ [U ]N ,

L(N)→ L(K), V 7→ V ∩K,

provide a bijection between closed submodules of K and closed submodules of N .

Proof. For a closed submodule U ⊂ K, U = K ∩ [U ]N . If V ⊂ N is a closed

submodule, then V ∩K � V and hence [V ∩K]N = V . Therefore the composition of

the two maps yields the identity on closed submodules. 2

For polyform modules M , we can relate singular closed submodules of any module

N ∈ σ[M ] to closed submodules of the non-M -singular module N/SM(N):
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3.4 Correspondence of singular closed submodules.

Let M be a polyform A-module and N ∈ σ[M ]. Then the canonical projection

p : N → N/SM(N)

provides a bijection between singular closed submodules of N and (singular-) closed

submodules of N/SM(N).

Proof. Since N/SM(N) is non-M -singular, its closed submodules coincide with the

M -singular closed submodules (by 3.2).

Let U ⊂ N be singular closed and assume SM(N) 6⊂ U . Then (U + SM(N))/U is

a non-zero M -singular submodule of N/U , a contradiction.

Now the bijection suggested follows from the canonical isomorphism

N/U ' (N/SM(N))/(U/SM(N)).

2

Because of the above correspondence we will concentrate our investigation on non-

M -singular modules.

The correspondence described in 3.3 has remarkable consequences. They are based

on the well-known fact (e.g. [2, Proposition 7.2]):

3.5 Closed submodules in self-injective modules.

In a self-injective module, every closed submodule is a direct summand.

3.6 Lemma. Let K ⊂ N be non-M-singular modules in σ[M ]. Let U ⊂ K be a

closed submodule and U ⊂ N its essential closure in N .

(1) The canonical map K/U → N/U is an essential monomorphism.

(2) If N is M-injective then N/U is an M-injective hull on K/U .

(3) If K/U is M-injective then K/U ' N/U .

Proof. (1) The composition of the canonical homomorphisms

K/U → N/U → N/U

is a monomorphism since K ∩ U = U . Assume its image is not essential in N/U .

Then there exists a submodule U ⊂ V ⊂ N such that

((K + U)/U) ∩ (V/U) = (K ∩ V + U)/U = 0,

and hence K ∩ V ⊂ K ∩ U = U implying V ⊂ U .

(2) If N is M -injective the closed submodule U ⊂ N is a direct summand (by 3.5)

and hence N/U is M -injective. Now the assertion is clear by (1).

(3) is obvious by (1). 2
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For the module M itself we obtain the following properties:

3.7 Relations with the injective hull.

Let M be a polyform module with M-injective hull M̂ and T := EndA(M̂).

(1) There exist bijections between

(i) the closed submodules of M ,

(ii) the direct summands of M̂ ,

(iii) the left ideals which are direct summands of T .

(2) (i) For any essential left ideal I � T , M̂I � M̂ .

(ii) For every V ⊂ M̂ with Tr(M̂, V ) � M̂ , HomA(M̂, V ) � T .

Proof. (1) This follows from 3.3 and 3.5 and the fact that direct summands in M̂

correspond to left ideals which are direct summands in T .

(2) Assume that M̂I is not essential in M̂ . Then the essential closure MI of M̂I

is a proper direct summand in M̂ and I ⊂ HomA(M̂, M̂I) ⊂ HomA(M̂,MI), which

is a proper direct summand in T . This is a contradiction to I � T .

Now let V ⊂ M̂ such that Tr(M̂, V ) � M̂ . If HomA(M̂, V ) is not essential in T ,

then it is contained in a proper direct summand Te, e2 = e ∈ T . Then

Tr(M̂, V ) = M̂HomA(M̂, V ) ⊂ M̂e,

contradicting Tr(M̂, V ) � M̂ . 2

For an infinite index set Λ, the direct sum M̂ (Λ) need not be M -injective. Never-

theless we have nice characterizations of its closed submodules.

First we make some technical observations.

3.8 Lemma. Let M be a polyform A-module with M-injective hull M̂ . Then every

closed submodule of M̂ (Λ) is M̂-generated.

Proof. Let U ⊂ M̂ (Λ) be a closed submodule, and denote by {Uγ}Γ the (directed)

set of finitely generated submodules of U . Then each Uγ is contained in some finite

partial sum of M̂ (Λ), which is M -injective and contains the unique essential closure

Uγ (of Uγ in M̂ (Λ)) as a direct summand. Clearly Uγ ⊂ U and lim
−→

Uγ = U . This

implies that U is M̂ -generated. 2

3.9 Lemma. Let M be a finitely generated polyform A-module with M-injective hull

M̂ and T := EndA(M̂) . Then:

(1) For every f : M̂ → M̂ (Λ), M̂f is contained in a finite partial sum of M̂ (Λ) and

hence we may identify

T (Λ) = HomA(M̂, M̂ (Λ)).
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(2) for any f1, . . . , fn ∈ HomA(M̂, M̂ (Λ)),
∑n
i=1 M̂fi is a direct summand in M̂ (Λ)

and the exact sequence determined by the fi splits:

M̂n →
n∑
i=1

M̂fi → 0;

(3) for every left T -submodule X ⊂ T (Λ), HomA(M̂, M̂X) = X.

Proof. (1) Since M is finitely generated, for every f : M̂ → M̂ (Λ), we have the

following diagram, where k ∈ IN ,

0 → M → M̂

↓ f |M ↓ f
M̂k → M̂ (Λ).

Since M̂k is M -injective we can extend f |M to some g : M̂ → M̂k. However, since

M is polyform there is a unique extension of f |M from M to M̂ . This means f = g

and M̂f ⊂ M̂k.

As a consequence, for every f ∈ HomA(M̂, M̂ (Λ)) we have in fact, for some k ∈ IN ,

f ∈ HomA(M̂, M̂k) = T k,

which implies our assertion.

(2) By (1),
n∑
i=1

M̂fi is contained in some finite partial sum M̂k, k ∈ IN . Then we

have

M̂n f−→
n∑
i=1

M̂fi ⊂ M̂k,

where f is determined by the fi.

Now f may be considered as an endomorphism of M̂n+k. Since EndA(M̂n+k) is

regular the image and the kernel of f are direct summands (see [8, 37.7]) proving our

assertion.

(3) Let g ∈ HomA(M̂, M̂X). Then Mg ⊂
k∑
i=1

M̂xi, for some xi ∈ X. By (2),

k∑
i=1

M̂xi is M -injective and g|M can be uniquely extended from M to M̂ . Hence we

may assume M̂g ⊂
k∑
i=1

M̂xi. We describe the situation in the diagram

M̂

↓ g
M̂k → ∑k

i=1 M̂xi → 0 .

By (2), the lower row splits. Hence we have a map M̂ → M̂k which yields a commu-

tative diagram and is determined by some t1, . . . , tk ∈ T satisfying g =
∑
i≤k tixi ∈ X.

This proves HomA(M̂, M̂X) = X. 2
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With these preparations we are able to prove correspondences for closed submod-

ules of infinite direct sums.

3.10 Correspondences for closed submodules of M (Λ).

Let M be a finitely generated polyform A-module with M-injective hull M̂ . We

denote T := EndA(M̂) and identify T (Λ) = HomA(M̂, M̂ (Λ)) (by 3.9).

There are bijective correspondences between

(i) the closed submodules of M (Λ),

(ii) the closed submodules of M̂ (Λ),

(iii) the closed left T -submodules of T (Λ).

For closed submodules V ⊂M (Λ) and X ⊂ T (Λ), these are given by

V → [V ]
M̂(Λ) → HomA(M̂, [V ]

M̂(Λ)),

M (Λ) ∩ M̂X ← M̂X ← X .

Proof. The correspondence between (i) and (ii) is just a special case of the situation

described in 3.3.

Let U ⊂ M̂ (Λ) be a closed submodule. We want to show that HomA(M̂, U) is

a closed T -submodule in T (Λ). Since T is left non-singular it is to show that any

f ∈ T (Λ), which satisfies If ⊂ HomA(M̂, U) for an essential left ideal I ⊂ T , already

belongs to HomA(M̂, U). In fact, this condition implies M̂If ⊂ U , where M̂I � M̂

(by 3.7). Assume that M̂f 6⊂ U . Then the map M̂
f−→ M̂ (Λ) → M̂ (Λ)/U is non-zero

and has essential kernel. This is not possible since M̂ (Λ)/U is non-M -singular and we

conclude that f ∈ HomA(M̂, U).

Moreover, M̂HomA(M̂, U) = U (by 3.8).

Now let X ⊂ T (Λ) be a closed T -submodule and put U := [M̂X]
M̂(Λ) . Denote by

{Xγ}Γ the family of finitely generated submodules of X. Assume there is an

f ∈ HomA(M̂, U) such that M̂f 6⊂ M̂X.

Then V := (M̂X)f−1 � M̂ . Clearly (M̂X)f−1 =
⋃

Γ(M̂Xγ)f
−1.

The M̂Xγ are direct summands in M̂ (Λ) (by 3.9). So any (M̂Xγ)f
−1 ⊂ M̂ is closed

and hence a direct summand in M̂ . This shows that V is M̂ -generated, and by 3.7,

HomA(M̂, V ) is an essential left ideal in T . By construction and 3.9,

HomA(M̂, V )f ⊂ HomA(M̂, V f) ⊂ HomA(M̂, M̂X) = X,

and this implies f ∈ X (since X is closed in T (Λ)). 2

In particular the preceding result applies to A = M . In this case we detect

some more interesting relationships for submodules of free modules. Recall that for

a left non-singular ring A with injective hull E(A), the maximal left quotient ring is

Q(A) = EndA(E(A)) and 3.10 reads as follows:
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3.11 Closed left submodules of A(Λ).

Let A be a left non-singular ring with maximal left quotient ring Q(A).

There is a bijective correspondence between

(i) the closed left A-submodules of A(Λ),

(ii) the closed left A-submodules of Q(A)(Λ),

(iii) the closed left Q(A)-submodules of Q(A)(Λ).

Combining 3.11 with 3.10 we recover some properties of non-singular left A-

modules known from localization theory.

3.12 Corollary. Let A be a left non-singular ring with maximal left ring of quotients

Q(A), and let L be any non-singular left A-module. Then:

(1) L is an essential A-submodule of a Q(A)-module L̃.

(2) If L is a finitely generated A-module, then L̃ is a finitely generated Q(A)-module.

(3) If L is A-injective then it is a Q(A)-module.

Proof. L is A-generated and we have the exact commutative diagram

0 → U → A(Λ) → L → 0

↓ ↓ ↓
0 → U → Q(A)(Λ) → L̃ → 0 ,

where U is a closed submodule of A(Λ) (since L is non-singular), and U denotes the

essential closure of U in Q(A)(Λ). Now apply 3.10 and 3.11. 2

4 Singular pretorsion theory in σ[A]

Now let A be any ring with multiplication algebra M(A), and denote by σ[A] the full

subcategory of M(A)-Mod whose objects are submodules of A-generated modules.

For any M(A)-module X and x ∈ X, left (right) multiplication with an a ∈ A is

defined by ax := Lax (xa := Rax).

Recall that a module N ∈ σ[A] is said to be singular in σ[A], or A-singular, if

N ' L/K, for some L ∈ σ[A] and K � L.

We denote by S the pretorsion class of all A-singular modules in σ[A], and for any

X ∈ σ[A] we write S(X) for the largest A-singular submodule of X.

Recall that for a semiprime ring A, S(A) = 0 and S is a torsion class, i.e. it is

closed under extensions in σ[A] (see [6]).

Over an associative ring A with unit, a left module is singular if and only if the

annihilator of each of its elements is an essential left ideal. This characterization is
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based on the fact that A is projective as a left A-module and hence any homomorphism

from A to a singular left A-module has essential kernel.

In general, A is not projective as a bimodule (even if it is associative) and hence

we do not have a corresponding characterization of A-singular modules in σ[A]. How-

ever, any homomorphism from a non-A-singular module to an A-singular module has

essential kernel. So we may expect a similar characterization of A-singularity in case

A is non-A-singular, in particular, if A is semiprime. This is what we show now.

4.1 A-singular modules for semiprime rings.

Let A be a semiprime ring. Then for any N ∈ σ[A], the following are equivalent:

(a) N is A-singular;

(b) for every cyclic M(A)-submodule X ⊂ N , there exists an essential ideal I � A

such that IX = 0 (or XI = 0).

If A is associative, (b) is equivalent to:

(c) For every x ∈ N , there exists an essential ideal I �A with Ix = 0 (or xI = 0).

Proof. (a) ⇒ (b) Let X ⊂ N be generated by one element. Then X is contained in

a finitely A-generated, A-singular module X̃. For this we have an epimorphism f :

An → X̃, for some n ∈ IN . Since A is non-A-singular, for each inclusion εi : A→ An,

i = 1, . . . , n, we have Ke εif �A. Then I :=
⋂n
i=1 Ke εif is an essential ideal in A and

IX̃ = I(An)f ⊂ (In)f = 0.

Similarly we get X̃I = 0. From this the assertion follows.

(b) ⇒ (a) Let X ⊂ N be a cyclic M(A)-submodule and let H � A be such that

HX = 0. Take X̃ to be a finitely A-generated essential extension of X. Then we have

the exact diagram
An

↓ f
0 −→ X −→ X̃

p−→ X̃/X −→ 0 ,

↓
0

and for every inclusion εi : A→ An, i = 1, . . . , n,

Ii := (X)(εif)−1 � A, and I :=
n⋂
i=1

Ii � A.

For this we have

<HI> X̃ =<HI> (An)f ⊂ H(In)f ⊂ HX = 0 ,

12



where <HI> denotes the ideal generated by HI. This shows that < HI >n⊂ Ke f .

Also, < HI > is an essential ideal in A since for every non-zero ideal L ⊂ A, 0 6=
(I ∩H ∩ L)2 ⊂ IH ∩ L. Hence X̃ and X are A-singular.

(b)⇔ (c) For an associative algebra A, the ideal generated by x ∈ N has the form

(ZZ + A)x(ZZ + A). Hence for any ideal I ⊂ A, Ix = 0 implies

I(ZZ + A)x(ZZ + A) = Ix(ZZ + A) = 0.

2

For an associative left non-singular ring A with unit, we have a nice one sided

characterization of the A-singular (bi)modules in σ[A]. Denoting the singular sub-

module of any left module X by Sl(X) we can generalize Theorem 4.6 of [3] from

prime to semiprime rings:

4.2 A-singularity over left-nonsingular rings.

For an associative semiprime ring A with unit, the following are equivalent:

(a) Sl(A) = 0, i.e. A is left non-singular;

(b) for every module X ∈ σ[A], S(X) = Sl(X).

Proof. (a) ⇒ (b) By Proposition 4.1, the elements of S(X) are annihilated by

essential ideals. Since A is semiprime, any essential ideal I ⊂ A is also essential as

left ideal. So S(X) ⊂ Sl(X).

Denote N := Sl(X). This is obviously an A-bimodule and hence it is contained

in an A-generated essential extension Ñ ∈ σ[A]. Consider the exact sequence of

A-bimodules

0→ N → Ñ → Ñ/N → 0.

By construction, Ñ/N is A-singular and hence left singular by the above argument.

Considering this sequence in A-Mod, we have Ñ as an extension of the left singular

A-modules N and Ñ/N . Since Sl(A) = 0 we know that the class of singular left

modules is closed under extensions and hence Ñ is left singular.

By construction, there is a bimodule epimorphism f : A(Λ) → Ñ . For every

inclusion ελ : A→ A(Λ), Ke ελf is an ideal, which is essential as a left ideal, since Ñ is

left singular. Then it is certainly essential as an ideal showing that Ñ is A-singular.

(b)⇒ (a) Since A ∈ σ[A], we have Sl(A) = S(A) = 0. 2

Remark. In Proposition 4.2 we needed a unit in A to have the usual notion of

left non-singularity. For rings A without unit one can work in the category σ[AA] of

A-subgenerated left A-modules and use the singularity defined in this category. Since

obviously σ[M(A)A] ⊂ σ[AA] a result similar to 4.2 can be shown with this notion.

Since a semiprime ring A is non-A-singular we obtain from 2.2 the following
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4.3 Characterization of strongly prime rings.

For a semiprime ring A, the following properties are equivalent:

(a) A is a strongly prime ring (in σ[A]);

(b) any module in σ[A] is A-singular or a subgenerator in σ[A];

(c) every non-A-singular module in σ[A] is an absolute subgenerator in σ[A];

(d) for every non-zero N ∈ σ[A],

S(N) =
⋂
{K ⊂ N | N/K is an absolute subgenerator in σ[A]};

(e) there exists an absolute subgenerator in σ[A].

An associative ring A is an object of σ[A] and of A-Mod. Accordingly A can be

strongly prime in each of these categories. Left strongly prime rings A (i.e. A strongly

prime in A-Mod) were characterized in 2.3. Combining this with 4.3 we arrive at a

description of left strongly prime associative rings by properties of two-sided modules

which was already shown in [3, Theorem 4.13]:

4.4 More characterizations of left strongly prime rings.

For an associative semiprime ring A with unit the following are equivalent:

(a) A is a left strongly prime ring;

(b) any module N ∈ σ[A] is A-singular (in σ[A]) or is a subgenerator in A-Mod;

(c) every non-A-singular module in σ[A] is an absolute subgenerator in A-Mod;

(d) for every non-zero N ∈ σ[A],

S(N) =
⋂ {K ⊂ N | K is a sub-bimodule and

N/K is an absolute subgenerator in A-Mod};

(e) there exists a module in σ[A] which is an absolute subgenerator in A-Mod.

Proof. (a) ⇒ (b) Let A be left strongly prime. Then A is left non-singular and, by

4.2, modules which are not A-singular in σ[A] are not singular left A-modules. Hence,

by 2.3, they are subgenerators in A-Mod.

(b)⇒ (c) By the same argument this follows from 2.3.

(c) ⇒ (d) By 4.3, S(N) is the intersection of those K ⊂ N for which N/K is an

absolute subgenerator in σ[A]. Then N/K is non-A-singular and hence an absolute

subgenerator in A-Mod.

(d)⇒ (e)⇒ (a) are obvious since S(A) = 0. 2
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5 Closure operations in σ[A]

We are now going to outline the transfer of the closure operations for modules in σ[M ]

to the category σ[A], where A is any ring with multiplication algebra M(A).

Recall that for modules K ⊂ N in σ[A] we have two types of ’closures’ of K in N :

the maximal essential extension of K in N (which is unique if N is non-A-singular),

and the A-singular closure of K in N defined by [K]N/K := S(N/K).

Using the characterization of A-singular modules given in 4.1 we obtain:

5.1 Singular closure in σ[A].

Let A be a semiprime ring and K ⊂ N in σ[A]. Then

[K]N = {x ∈ N | Ix ⊂ K ( or xI ⊂ K) for some essential ideal I � A}.

Notice that for associative semiprime rings this property was used in [3, 5] to define

the closure of K in N .

Over a semiprime ring A, for any N ∈ σ[A], the A-singular closed submodules are

in one-to-one correspondence with the closed submodules of N/S(N) (by 3.4). Hence

in what follows we will focus on non-A-singular modules.

Applying 3.7 to A, and recalling that the central closure Â is just the A-injective

hull of A we have:

5.2 Relations with the central closure.

Let A be a semiprime ring with central closure Â and extended centroid T :=

EndM(A)(Â).

(1) There exists bijections between

(i) the closed ideals in A,

(ii) the ideals which are direct summands in Â,

(iii) the ideals which are direct summands in T .

(2) (i) For any essential ideal I � T , ÂI ⊂ Â is an essential ideal.

(ii) For every Â-generated essential ideal V ⊂ Â, Hom
M(Â)

(Â, V ) � T .

Proof. (1) is immediately clear by 3.7(1).

(2) It is easy to see that the M(A)-submodule ÂI is in fact an ideal in Â. Moreover,

since T is commutative, HomM(A)(Â, V ) is a (two-sided) ideal in T and Tr(Â, V ) (in

M(A)-Mod) is an ideal in Â. With this remark the assertions follow from 3.7 (2). 2

Transferring the correspondece theorem for submodules of any M (Λ) and M̂ (Λ) to

A(Λ) and Â(Λ) a new phenomenon occurs (similar to 5.2): In Â(Λ) we have M(A)-

submodules and M(Â)-submodules. It is a nice aspect of the theory that closed
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M(A)-submodules and closed M(Â)-submodules coincide. We are going to prove this

fact, which is similar to the observation (made in 3.11) that for associative rings A

with unit the closed left A-submodules of Q(A)(Λ) are precisely the same as the closed

left Q(A)-submodules.

5.3 M(A)-submodules of A(Λ).

Let A be a semiprime ring with central closure Â and T := EndM(A)(Â). Then:

(1) HomM(A)(Â, Â
(Λ)) = Hom

M(Â)
(Â, Â(Λ)).

(2) Closed M(A)-submodules of Â(Λ) are closed M(Â)-submodules, and conversely.

(3) Closed M(A)-submodules of Â(Λ) are Â-generated M(Â)-submodules.

(4) If A is a finitely generated M(A)-module, then, for every T -submodule X ⊂
Hom

M(Â)
(Â, Â(Λ)),

Hom
M(Â)

(Â, ÂX) = X.

Proof. (1) Recall that T = EndM(A)(Â) = End
M(Â)

(Â). Now the assertion follows

from the fact that every f ∈ HomM(A)(Â, Â
(Λ)) is determined by the fπλ ∈ T , where

πλ : Â(Λ) → Â denote the canonical projections.

(2) Since M(Â) = M(A)T we have to show that every closed M(A)-submodule

U ⊂ Â(Λ) is a T -submodule: Let t ∈ T and I � A such that It ⊂ A. Then Ut · I =

U(It) ⊂ U . Since U is closed this implies Ut ⊂ U (by 5.1).

Clearly every M(A)-closed submodule is M(Â)-closed.

Suppose that V ⊂ Â(Λ) is a closed M(Â)-submodule. Let u ∈ Â(Λ) be such that

uI ⊂ V for some I � A. Then obviously uIT ⊂ V , where IT is an essential ideal in

Â. Since V is M(Â)-closed this implies u ∈ V showing that V is M(A)-closed.

(3) By 3.8, a closed submodule U ⊂ Â(Λ) is Â-generated as M(A)-module. Now

it is obvious by (1) that Â generates U as M(Â)-module.

(4) Applying (1) this follows from 3.9. 2

We are now prepared to present the following

5.4 Correspondence of closed submodules of A(Λ).

Let A be a semiprime ring which is finitely generated as M(A)-module. We put

T := End(M(A)(Â) and identify T (Λ) = Hom
M(Â)

(Â, Â(Λ)). Then there are bijections

between

(i) the closed M(A)-submodules of A(Λ),

(ii) the closed M(Â)-submodules of Â(Λ),

(iii) the closed T -submodules of T (Λ).
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Correspondences as above can also be obtained by the methods used in [5]. How-

ever, in [5, Corollary 3.20] not every closed submodule of T (Λ) was involved. Our

result obtained here is more precise and from this we conclude that every T -closed

submodule of T (Λ) is a ’special’ closed submodule.
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