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Abstract

Tilting modules generalize projective generators and may be characterized
either by weakened generating and projectivity conditions or else by equiv-
alences they define between certain subcategories. Dually cotilting modules
generalize injective cogenerators and there are again principally two ways to
describe them: first by weakened cogenerating and injectivity conditions, and
second by dualities they induce between suitable subcategories. In this paper
we begin with several characterizations related to the first point of view, and
it turns out that for properties of the second type certain finiteness conditions
are needed - similar to the situation for Morita dualities for rings.

Introduction

Dualizing tilting modules, cotilting modules Q in R-Mod are defined in [7] by the

conditions

(1) inj dim (RQ) ≤ 1,

(2) Ext1
R(QΛ, Q) = 0, for any set Λ,

(3) for all N ∈ R-Mod, HomR(N,Q) = 0 = Ext1
R(N,Q) implies N = 0.

In Section 1 various injectivity and cogenerating conditions are introduced for

objects (in Grothendieck categories), which result from dualizing notions of interest

in the study of (self-) tilting objects. Self-tilting modules M are those which are

tilting in the category σ[M ], whose objects are submodules of M -generated modules,

and they are precisely the ∗-modules (introduced by Menini-Orsatti, see [16]). For the

characterization of (self-) cotilting modules we introduce the category π[M ], whose

objects are factor modules of M -cogenerated modules. In Section 3 cotilting modules

in π[M ] and R-Mod are introduced by injectivity and cogenerating conditions and

it is shown in 3.5 that these modules coincide with those mentioned above.
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Over artinian rings the two categories σ[M ] and π[M ] coincide and this is one of

the reasons why in representation theory of finite-dimensional algebras tilting and

cotilting modules are so closely connected by formal duality.

The interest in tilting modules arose from the fact that they provide equivalences

between certain categories. So one expects certain dualities for the dual notion, the

cotilting modules. However it is well known that there are no dualities between full

module categories and one has to restrict to finitely closed subcategories. We will

see in 4.8 and 4.10 that under some finiteness conditions cotilting modules yield such

dualities.

Our techniques and results subsume and generalize previous work on the subject

by Colby [4], Wang-Xu [13], Angeleri-Hügel, Colpi, Fuller, Tonolo, Trlifaj [8, 3, 5, 6],

and others. For the special case of a faithfully balanced bimodule over an artinian

algebra related results are obtained in Zhaoyong [18].

1 Preliminaries

Throughout the paper C will denote a locally finite Grothendieck category, i.e., a

cocomplete abelian category with exact direct limits and a generating set of finitely

generated objects (e.g., [11, Chapter V]). Moreover R will be an associative ring with

unit, R-Mod the category of unital left R-modules and R-mod the full subcategory

of finitely generated R-modules.

1.1 Trace and reject. For any family X of objects in C and N ∈ C, the trace of X
in N is defined by

Tr(X , N) =
∑
{Im(f)|f ∈ HomC(X,N), X ∈ X} ⊂ N,

and the reject of X in N is given by

Re(N,X ) =
⋂
{Ke(f)|f ∈ HomC(N,X), X ∈ X} ⊂ N.

For X = {X} we simply write Tr(X,N) and Re(N,X), respectively.

1.2 P -generated and P -presented objects. Let P ∈ C. An object N ∈ C is

(finitely) P -generated if there is an epimorphism P (Λ) → N (with Λ finite), and N

is P -presented if there exists an exact sequence

P (Λ′) → P (Λ) → N → 0, Λ′,Λ some sets.

We write Gen(P ) and Pres(P ) for the full subcategories of C consisting of P -generated,

resp., P -presented modules.

2



1.3 The category σ[M ]. For any object M ∈ C, σ[M ] denotes the full subcategory

of C whose objects are subobjects of M -generated objects. σ[M ] is again a locally

finite Grothendieck category and the trace functor

T M : C → σ[M ], N 7→ T M(N) := Tr(σ[M ], N),

is right adjoint to the inclusion functor σ[M ]→ C, i.e., σ[M ] is a coreflective subcate-

gory of C (e.g., [14, 45.11]). Notice that for any injective N ∈ C, T M(N) = Tr(M,N)

is an injective object in C.
For P ∈ C, Add (P ) (resp. add (P )) stands for the class of modules which are

direct summands of (finite) direct sums of copies of P , and obviously

add (P ) ⊂ Add (P ) ⊂ Pres(P ) ⊂ Gen(P ) ⊂ σ[P ] ⊂ C,

where all these inclusions may be proper.

1.4 Tilting objects. An object P ∈ C is called tilting in C if P is Gen(P )-projective,

Gen(P ) = Pres(P ), and P is a subgenerator in C. P is said to be self-tilting if it

is tilting in the category σ[P ]. Self-tilting modules define an equivalence between

Pres(P ) and a suitable subcategory of End(P )-Mod (see [16]).

Now we consider notions which are dual to those presented above.

1.5 Q-cogenerated and Q-copresented objects. Let N,Q ∈ C. Then N is

(finitely) Q-cogenerated if there exists an embedding N → QΛ (with Λ finite), and

N is (finitely) Q-copresented if there exists an exact sequence

0→ N → QΛ → QΛ′ , Λ,Λ′ some sets (Λ finite).

We write Cog(Q) and Cop(Q) for the full subcategories of C consisting of Q-

cogenerated, resp., Q-copresented modules, and cop(Q) for the modules which are

finitely copresented by Q (notice that for this - in the defining sequence - we do

not require Λ′ to be finite). Prod (Q) stands for the direct summands of arbitrary

products of Q in C.
Notice that the notions Cog(Q), Cop(Q) and Prod (Q) depend on the category

C. If it is necessary we will stress this by writing CogC(Q), CopC(Q), and ProdC(Q)

for clarity.

1.6 The category π[M ]. For any object M ∈ C, we denote by π[M ] the full

subcategory of C whose objects are factor objects of M -cogenerated objects. By

definition we have

add (M) ⊂ Prod(M) ⊂ Cop(M) ⊂ Cog(M) ⊂ π[M ] ⊂ C.
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It is easy to see that σ[M ] ⊂ π[M ] and π[M ] is also closed under direct sums,

factor objects and subobjects and hence is a (locally finite) Grothendieck subcategory

of C. In fact:

For any generator G in C and Λ := HomC(G,M), we have

π[M ] = σ[MΛ] = Gen(G/Re(G,M)).

Proof. By the canonical monomorphism G/Re(G,M)→MΛ, we obviously have

Gen(G/Re(G,M)) ⊂ σ[MΛ] ⊂ π[M ].

For any N ∈ Cog(M), there exists an epimorphism G(Ω) → N which clearly yields

an epimorphism G/Re(G,M)(Ω) → N . This implies N ∈ Gen(G/Re(G,M)) and

Gen(G/Re(G,M)) = π[M ]. �

By the above equalities we know that π[M ] is a coreflective subcategory of C (see

1.3). For special categories C it is also a reflective subcategory:

Assume that in C products of epimorphisms are epimorphisms. Then

(1) π[M ] is closed under products in C.

(2) The functor C → π[M ], N 7→ N/Re(N, π[M ]),

is left adjoint to the inclusion functor I : π[M ]→ C.

(3) For any projective object (generator) P ∈ C, P/Re(P, π[M ]) is a projective

object (generator) in π[M ].

Proof. (1) Consider any family {Nλ}Λ of objects in π[M ]. Then each Nλ is an image

of some Uλ ⊂ MΩλ . By assumption,
∏

ΛNλ is a factor module of
∏

Λ Uλ and hence

belongs to π[M ].

(2) By (1) the functor is well defined and obviously

HomC(N, I(K)) ' HomC(N/Re(N, π[M ]), K), for any N ∈ C, K ∈ π[M ].

(3) This is easily verified. �

1.7 AB4∗ categories. Abelian categories with products in which products of epi-

morphisms are epimorphisms are called AB4∗ categories. It is well known that for

any associative ring R, R-Mod has this property (e.g., [14, 9.3]). In view of the

relationship between the product in R-Mod and its coreflective subcategories (see

1.3) it is straightforward to prove:

Assume that for M ∈ R-Mod the trace functor T M is exact. Then in σ[M ]

products of epimorphisms are epimorphisms.

For characterizations of T M being exact we refer to [15, 4.6].
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Recall that M ∈ C is a subgenerator in C, provided σ[M ] = C. We call M a weak

subgenerator in C, provided π[M ] = C.

1.8 Weak subgenerators. For M ∈ C the following conditions are equivalent:

(a) M is a weak subgenerator in C;

(b) for some Λ, MΛ is a subgenerator in C;

(c) every object in C is a subfactor of some object in Cog(M);

(d) every injective object in C is a factor of some object in Cog(M);

(e) Cog(M) contains a generator (a generating set of objects) of C;

(f) Cog(M) contains a subgenerator of C.

Proof. This can be easily shown by standard arguments. �

Clearly any cogenerator of C is a weak subgenerator but not necessarily a subgen-

erator of C. For example, IQ/ZZ is a cogenerator but is not a subgenerator in ZZ-Mod

(σ[ IQ/ZZ] are just the torsion ZZ-modules).

The following observations are obvious consequences.

1.9 Corollary.

(1) If M is a weak subgenerator in C, then Cog(M) contains all projectives of C.

(2) Assume C has a (sub-) generating set of finitely cogenerated projective objects.

Then Q is a weak subgenerator if and only if Q is a subgenerator in C.

For any R-module M , π[M ] has a particularly nice form:

1.10 π[M ] in R-Mod.

(1) For any M ∈ R-Mod, π[M ] = R/An(M)-Mod.

(2) An R-module Q is a weak subgenerator in R-Mod if and only if Q is a faithful

R-module.

(3) If RR is finitely cogenerated then every weak subgenerator is a subgenerator in

R-Mod.

(4) R is left artinian if and only if, for any R-module M , σ[M ] = π[M ].

In studying dualities the following finitely closed subgategory turned out to be

of importance (e.g., [14, 47.12]). Here it will also help to relate cotilting modules to

dualities.
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1.11 The category σf [M ]. For any object M ∈ C, let σf [M ] denote the full

subcategory of C whose objects are subobjects of finitely M -generated objects. This

is a finitely closed abelian subcategory of σ[M ] (see [14, 47.2]).

For Q ∈ C, we denote by Cogf (Q) (resp., cog(Q)) the class of (finitely) Q-

cogenerated objects in σf [Q]. Clearly Cogf (Q) = Cog(Q) ∩ σf [Q], where Cog(Q) is

defined in C. cog(Q) is the same when formed in σf [Q] or C and this also applies to

cop(Q), the class of finitely Q-copresented modules (see 1.5).

1.12 Ext-functor in C. By Ext1
C and Ext2

C we denote the first and second Ext-

functor in C. For Q ∈ C and any exact sequence 0 → K → L → N → 0 in C, we

have the long exact sequence

0→ HomR(N,Q)→ HomR(L,Q)→ HomR(K,Q)→
Ext1

C(N,Q)→ Ext1
C(L,Q)→ Ext1

C(K,Q)→ Ext2
C(N,Q)→ · · · .

and we denote the kernel of Ext1
C(−, Q) by

⊥CQ := {N ∈ C | Ext1
C(N,Q) = 0}.

Applied to the Grothendieck category π[M ], for any M ∈ C, we have the functors

Ext1
π[M ] and Ext2

π[M ] and, for Q ∈ π[M ], we write

⊥MQ := {N ∈ π[M ] | Ext1
π[M ](N,Q) = 0}.

In particular, for Q ∈ C we use the notation

⊥fQ := {N ∈ σf [Q] | Ext1
σf [Q](N,Q) = 0}.

For C = R-Mod and M = R we apply the usual notation Ext1
R and Ext2

R.

2 Injectivity conditions

Dualizing projectivity conditions which came up in the study of tilting modules

we recall and introduce injectivity properties which are of interest for our further

investigations.

2.1 Definitions. Consider exact sequences (∗) 0→ K → L→ N → 0 in C.
An object Q ∈ C is called if HomC(−, Q) is exact on (∗)

C-injective for all sequences (∗) in C;
self-Ext-injective provided N ∈ Cog(Q);

Cog(Q)-injective provided L,N ∈ Cog(Q);

cog(Q)-injective provided L ∈ cog(Q), N ∈ Cog(Q);

w-Π-quasi-injective provided L = QΛ, N ∈ Cog(Q);

w-Πf -quasi-injective provided L = Qk, k ∈ IN , N ∈ Cog(Q);

self-pseudo-injective provided K = Re(L,Q).
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The notation w-Π-quasi-injective should indicate that this notion is dual to w-Σ-

quasi-projective. Notice that for the definition of cog(Q)-injective the object N in

the sequence (∗) is not required to be in cog(Q) but only in Cog(Q). We have the

obvious implications

C-injective

⇓
self-Ext-injective ⇒ Cog(Q)-injective ⇒ w-Π-quasi-injective

⇓ ⇓ ⇓
self-pseudo-injective cog(Q)-injective ⇒ w-Πf -quasi-injective

Notice that in general these implications cannot be reversed. For example, any

left hereditary Artin algebra A is self-Ext-injective but not necessarily injective in

A-Mod; for a non-semisimple ring R, any cogenerator Q in R-Mod is trivially self-

pseudo-injective but need not be self-Ext-injective; for such rings every semisim-

ple R-module is cog(Q)-injective (w-Πf -quasi-injective) but not necessarily Cog(Q)-

injective (w-Π-quasi-injective). We will see in 2.3 that for a module Q, w-Π-quasi-

injectivity is equivalent to Cog(Q)-injectivity, provided Cog(Q) = Cop(Q).

Next we give some characterizations and properties resulting from this notions.

2.2 Self-pseudo-injective modules in C.

(1) For Q ∈ C the following are equivalent:

(a) Q is self-pseudo-injective;

(b) for any N ∈ C, HomC(Re(N,Q), Q) = 0;

(c) Cog(Q) is closed under extensions in C;

(d) any diagram with exact row in C,

0 → K → L → N → 0

↓ β
...
∨

Q
α· · · > Q ,

where N ∈ Cog(Q), can be non-trivially commutatively extended by some

α : Q→ Q, β : L→ Q.

(2) If Q is self-pseudo-injective then Cog(Q) is closed under kernels.

Proof. (1) These properties are known or easily verified ([12, 2.2], [15, 6.5]).

(2) This is proved in [9, Proposition 4.4], (d)⇒(e). �

Dual to the properties of w-Σ-quasi-projective-modules given in [16, 3.2] we have

the following observations on w-Π-quasi-injective objects.
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2.3 w-Π-quasi-injective objects.

(1) For any Q ∈ C the following are equivalent:

(a) Q is w-Π-quasi-injective;

(b) HomC(−, Q) respects exact sequences 0→ K → L→ N → 0,

where N ∈ Cog(Q) and L ∈ Cop(Q).

(2) If Q is w-Π-quasi-injective then Cop(Q) is closed under kernels.

(3) If Cog(Q) = Cop(Q) the following are equivalent:

(a) Q is w-Π-quasi-injective;

(b) Q is Cog(Q)-injective.

Proof. (1) (b)⇒(a) is trivial.

(a)⇒(b) For any morphism h : K → Q, we have a commutative diagram with

exact row and columns,

0 0

↓ ↓
0 → K

f→ L
g→ N → 0

h ↓ p ↓ q ↓
Q

γ
< · · · QΛ α· · · > QΩ

k ↓
QΛ′ ,

where Λ, Λ′, and Ω are suitable sets. By (a), there exists α : QΛ → QΩ with

pα = gq. It is easy to verify that (up to isomorphism) Kfp = Ke k∩Keα and hence

QΛ/Kfp ∈ Cog(Q). Again referring to (a) we obtain a morphism γ : Q→ QΛ with

h = fpγ thus proving our assertion.

(2) This can be seen from the above proof. Notice that this is also proved in [9,

Proposition 4.4], (c)⇒(e).

(3) follows immediately from (1). �

In the next proposition we dualize the properties of Gen(Q)-projective modules

(e.g., [16, 3.3]).

2.4 Cog(Q)-injective objects. If Q is a weak subgenerator in C, the following are

equivalent:

(a) Q is Cog(Q)-injective;

(b) Q is self-Ext-injective;
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(c) for each K ∈ Cog(Q), Ext1
C(K,Q) = 0 (i.e., Cog(Q) ⊂ ⊥CQ).

If C has a generator G ∈ Cog(Q) with Ext2
C(G,Q) = 0 (e.g., a projective generator),

then (a)-(c) are equivalent to:

(d) (i) Ext1
C(Q

Λ, Q) = 0, for any set Λ;

(ii) Ext2
C(N,Q) = 0, for each N ∈ C.

Proof. (a)⇒(b) Let 0→ K → L→ N → 0 be an exact sequence with N ∈ Cog(Q)

and consider any morphism f : K → Q. By assumption, every object in C is a

factor of a subobject of some QΛ, and so there is an epimorphism α : X → L with

X ∈ Cog(Q). We use this to construct the commutative diagram with exact rows,

0 → K ′ → X
αg→ N → 0

↓ α ↓ ‖
0 → K → L

g→ N → 0

f ↓
Q ,

where the upper exact sequence is in Cog(Q) and the left hand square is a pushout.

By hypothesis we can extend the diagram commutatively by some morphism X → Q,

and the pushout property yields the desired morphism L → Q, thus proving our

assertion.

(b)⇒(a) and (b)⇔(c) are obvious.

(c)⇒(d) Clearly Ext1
C(Q

Λ, Q) = 0, for any set Λ.

For any N ∈ C, there exists an exact sequence 0 → K → P → N → 0, where

P ∈ Cog(Q) with Ext2
C(P,Q) = 0. From this we obtain the exact sequence

0 = Ext1
C(K,Q)→ Ext2

C(N,Q)→ Ext2
C(P,Q) = 0,

proving Ext2
C(N,Q) = 0.

(d)⇒(c) By the connecting morphisms of the Ext-functor (see 1.12), (ii) implies

that ⊥CQ is closed under submodules. Hence (i) implies Cog(Q) ⊂ ⊥CQ. �

It is easy to see that the above conditions on Q imply that Q is self-pseudo-

injective in C and hence we have by 2.2:

2.5 Corollary. Let Q be a Cog(Q)-injective weak subgenerator in C. Then Cog(Q)

is closed under extensions in C, and for any N ∈ C, HomC(Re(N,Q), Q) = 0.

Most of the injectivity conditions defined in 2.1 also apply for C = σf [Q] (although

this is not a Grothendieck category). For example, for a self-pseudo-injective module

Q in σf [Q], Cogf (Q) is closed under extensions in σf [Q]. With the proof of 2.3 we

obtain:
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2.6 w-Πf -quasi-injective objects.

(1) For any Q ∈ C the following are equivalent:

(a) Q is w-Πf -quasi-injective;

(b) HomC(−, Q) respects exact sequences 0→ K → L→ N → 0,

where N ∈ Cogf (Q) and L ∈ cop(Q).

(2) If cog(Q) = cop(Q) the following are equivalent:

(a) Q is w-Πf -quasi-injective;

(b) HomC(−, Q) respects exact sequences 0→ K → L→ N → 0,

where N ∈ Cogf (Q) and L ∈ cog(Q).

Notice that every module in σf [Q] is a subfactor of some Qk. Hence a slight

modification of the proof of 2.4 yields:

2.7 cog(Q)-injective objects. For Q ∈ C the following are equivalent:

(a) Q is cog(Q)-injective;

(b) HomC(−, Q) respects exact sequences 0→ K → L→ N → 0 in σf [Q],

where N ∈ Cogf (Q);

(c) for each K ∈ Cogf (Q), Ext1
σf [Q](K,Q) = 0 (i.e., Cogf (Q) ⊂ ⊥σf [Q]Q).

2.8 Corollary. Let Q ∈ C be cog(Q)-injective. Then Cogf (Q) is closed under

extensions in σf [Q], and for any N ∈ σf [Q], HomC(Re(N,Q), Q) = 0.

3 Cotilting objects

Dualizing the definitions of tilting and self-tilting modules given in [16] leads to the

following notions.

3.1 Definitions. We call Q ∈ C a cotilting object in C if

(i) Q is Cog(Q)-injective,

(ii) every Q-cogenerated module in C is Q-presented (i.e., Cog(Q) = Cop(Q)),

(iii) Q is a weak subgenerator of C (i.e., π[Q] = C).

Q is called self-cotilting if it is cotilting in π[Q], i.e., if (i) and (ii) hold in the

category π[Q].
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For a cotilting module Q in C we have C = π[Q] (by (iii)) and so essentially it

suffices to investigate self-cotilting objects in detail.

It is obvious that every injective cogenerator is cotilting in C and (dual to the

situation for tilting modules) we have a close connection between cotilting objects

and injective cogenerators (see 3.4).

3.2 Q cotilting in σ[Q]. For any Q ∈ C we may ask when Q is cotilting in σ[Q].

This is clearly the case when Q is an injective cogenerator in σ[Q]. Notice that in

general this does not imply that Q is cotilting in π[Q] (i.e., self-cotilting) even when

Q is a weak subgenerator in C.
For this consider the Prüfer group ZZp∞ , for any prime number p. This is an

injective cogenerator in σ[ZZp∞ ] (abelian p-groups) and hence is cotilting in σ[ZZp∞ ].

Moreover, as a faithful ZZ-module, ZZp∞ is a weak subgenerator (i.e., π[ZZp∞ ] =

ZZ-Mod). However, ZZp∞ is not cotilting in ZZ-Mod by 3.4, since it is injective but

not a cogenerator in ZZ-Mod.

Dualizing the characterizations of self-tilting modules and their proofs (see [16,

4.2]) we obtain characterizations of self-cotilting objects.

3.3 Self-cotilting objects. For any Q ∈ C the following are equivalent:

(a) Q is self-cotilting;

(b) Cog(Q) = Cop(Q) and Q is w-Π-quasi-injective ;

(c) Cog(Q) = Cop(Q) and Q is self-Ext-injective in π[Q];

(d) Cog(Q) = ⊥QQ;

(e) Q is Cog(Q)-injective, ⊥QQ is closed under submodules, and

(i) for N ∈ π[Q], HomC(N,Q) = 0 = Ext1
π[Q](N,Q) implies N = 0, or

(ii) for any injective object (some injective cogenerator) W ∈ π[Q], there

exists an exact sequence

0→ Q′ → Q′′ → W → 0, where Q′, Q′′ ∈ Prod (Q).

Proof. (a)⇔(b) and (b)⇔(c) follow from 2.3 and 2.4, respectively.

(c)⇒(d) and (c)⇒(e)(ii): Consider an exact sequence 0 → K → L → N → 0,

where L is a submodule of some QΛ. With a Q-corepresentation of K (first column,
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X ∈ Cog(Q)) and a pushout construction we obtain the commutative exact diagram

0 0

↓ ↓
0 → K → L → N → 0

↓ ↓ ‖
0 → QΛ → P → N → 0

↓ ↓
X == X

↓ ↓
0 0 .

Assume N ∈ ⊥QQ. By 2.5, Cog(Q) is closed under extensions in π[Q] and hence

P ∈ Cog(Q). Since Ext1
π[Q](N,Q

Λ) = 0 the central sequence splits and so N ∈
Cog(Q). This proves (d).

Now assume that N is injective in π[Q]. Then, for any Y ∈ Cog(Q), we have the

exact sequence

0 = Ext1
π[Q](Y,Q

Λ)→ Ext1
π[Q](Y, P )→ Ext1

π[Q](Y,N) = 0,

and hence Ext1
π[Q](Y, P ) = 0. By (c), there exists a copresentation of P ,

0→ P → QΩ → Y → 0, where Y ∈ Cog(Q).

Since Ext1
π[Q](Y, P ) = 0 this sequence splits and hence P ∈ Prod (Q), thus proving

(e)(ii).

(e): (ii)⇒(i) Let W be any injective cogenerator in π[Q]. The given sequence

yields the exact sequence

HomC(N,Q
′′)→ HomC(N,W )→ Ext1

π[Q](N,Q) = 0,

and HomC(N,Q) = 0 implies HomC(N,Q
′′) = 0 and hence HomC(N,W ) = 0, which

means N = 0.

(d)⇒(c) Let N ∈ Cog(Q) and Λ := HomC(N,Q). With the canonical sequence

on the top and any extension with X ∈ π[Q] on the bottom we have the diagram

0 → N → QΛ → L → 0

β
...
∨

α
...
∨

‖
0 → Q → X → L → 0 ,

which can be extended by some α : QΛ → X (since Ext1
π[Q](Q

Λ, Q) = 0) and some

β : N → Q commutatively. Since Q is injective with respect to the upper sequence
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we conclude (by the Homotopy Lemma) that the bottom sequence splits. Hence

Ext1
π[Q](L,Q) = 0 implying L ∈ ⊥QQ = Cog(Q) and therefore N ∈ Cop(Q).

(e)(i)⇒(d) Let N ∈ ⊥QQ. Then Re(N,Q) ∈ ⊥QQ and HomC(Re(N,Q), Q) = 0

by 2.5. Now (i) implies Re(N,Q) = 0 which means N ∈ Cog(Q). �

3.4 Corollary. For any self-cotilting module Q ∈ C, the following are equivalent:

(a) Q is a cogenerator in π[Q];

(b) Q is injective in π[Q].

Proof. (a)⇒(b) is obvious.

(b)⇒(a) follows from 3.3(d), since for Q injective in π[Q] clearly ⊥QQ = π[Q]. �

To make a self-cotilting object Q ∈ C cotilting in C some condition is needed to

turn Q into a weak subgenerator in C.

3.5 Cotilting objects. For any Q ∈ C the following are equivalent:

(a) Q is cotilting in C;

(b) Q is self-cotilting and a weak subgenerator in C;

If C has a projective (sub-) generator then (a)-(b) are equivalent to:

(c) Cog(Q) = ⊥CQ;

(d) (i) Ext1
C(Q

Λ, Q) = 0, for any set Λ;

(ii) Ext2
C(N,Q) = 0, for each N ∈ C;

(iii) for N ∈ π[Q], HomC(N,Q) = 0 = Ext1
C(N,Q) implies N = 0;

(e) (i) and (ii) as in (e) and

(iv) for some injective cogenerator W ∈ C, there exists an exact sequence

0→ Q′ → Q′′ → W → 0, where Q′, Q′′ ∈ Prod (Q).

Proof. The assertions follow by 3.3, 2.4, and the observation that any projective

object of C belongs to ⊥CQ. The latter implies that in (c),(d) and (e), Q is a weak

subgenerator in C. �

For any R-module Q, π[Q] = R/An(Q)-Mod and hence it has a projective gen-

erator. So we obtain from 3.3 and 3.5:

3.6 Self-cotilting modules. For any left R-module Q, put R = R/An(Q). Then

the following are equivalent:
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(a) Q is self-cotilting;

(b) Cog(Q) = Cop(Q) and Q is w-Π-quasi-injective ;

(c) Q is cotilting in R-Mod;

(d) Cog(Q) = ⊥RQ;

(e) (i) Ext1
R

(QΛ, Q) = 0, for any set Λ;

(ii) Ext2
R

(N,Q) = 0, for each N ∈ R-Mod;

(iii) for N ∈ R-Mod, HomR(N,Q) = 0 = Ext1
R

(N,Q) implies N = 0;

(f) (i), (ii) as in (e) and

(iv) for some injective cogenerator W ∈ R-Mod, there exists an exact se-

quence

0→ Q′ → Q′′ → W → 0, where Q′, Q′′ ∈ Prod (Q).

3.7 Cotilting in R-Mod. By definition, Q is cotilting in R-Mod if and only if it

is self-cotilting and faithful. Hence 3.6 yields characterizations of these modules by

replacing R by R in (c),(d),(e) and (f).

Notice that for this case (d)⇔(e) was proved in Colpi-D’Este-Tonolo [7, Proposi-

tion 1.7] and (d) implies Cog(Q) = Cop(Q) is shown in [7, Proposition 1.8]. Moreover

(d)⇒(f) corresponds to Angeleri-Hügel-Tonolo-Trlifaj [3, Proposition 2.3].

From 3.5 we obtain the

3.8 Corollary. For Q cotilting in R-Mod, the following are equivalent:

(a) Q is a cogenerator in R-Mod;

(b) Q is injective in R-Mod.

To investigate dualities we introduce a finite version of cotilting objects.

3.9 Definition. We call Q ∈ C an f-cotilting object if

(i) Q is cog(Q)-injective,

(ii) every finitely Q-cogenerated object in C is finitely Q-copresented

(i.e., cog(Q) = cop(Q)).

For example, every semisimple R-module is f-cotilting.

Remark. In Angeleri-Hügel-Valenta [2] finitely cotilting modulesQ are defined as

”cotilting” modules (with a slightly different definition) which are finitely generated

R-modules such that HomR(X,Q) is a finitely generated EndR(Q)-module, for any

14



finitely generated R-module X. It is easy to see that over noetherian rings such

modules are f-cotilting in the sense defined above (compare [2, Corollary 5.2]).

Recall that an object Q is injective in σf [Q] if and only if it is injective in σ[Q]

(i.e., Q-injective) and Q is an injective cogenerator in σf [Q] if and only if it is an

injective cogenerator in σ[Q]. Similar to 3.4 we have now:

3.10 Proposition. For any f-cotilting object Q ∈ C, the following are equivalent:

(a) Q is a cogenerator in σf [Q] (in σ[Q]);

(b) Q is injective in σf [Q] (in σ[Q]).

Proof. (a)⇒(b) is obvious.

(b)⇒(a) (compare proof of 3.3, (c)⇒(d)) For any subobject K ⊂ Q we obtain

the commutative exact diagram, where the first column is a Q-copresentation of K

(k ∈ IN , X ∈ Cog(Q)), by a pushout construction

0 0

↓ ↓
0 → K → Q → N → 0

↓ ↓ ‖
0 → Qk → P → N → 0

↓ ↓
X == X

↓ ↓
0 0 .

Since P is in σ[Q] and Q is Q-injective, the central column splits implying that

P ∈ Cog(Q). For the same reasons the central row splits and hence N ∈ Cog(Q).

From this we conclude that Q is a cogenerator in σ[Q] (e.g., [14, 16.5]). �

The condition cog(Q) = cop(Q) holds trivially provided Q is a cogenerator in

σf [Q] but it need not follow from the condition Cog(Q) = Cop(Q). In fact it is

related to some finiteness properties.

3.11 Proposition. Let Q ∈ C be w-Πf -quasi-injective. Then for every K ∈ cop(Q),

HomC(K,Q) is a finitely generated right EndC(Q)-module.

Proof. This is obvious. �

Adapting the proofs of 3.3 we obtain characterizations of f-cotilting objects.

3.12 f-cotilting objects. For any Q ∈ C and S = EndC(Q), the following are

equivalent:
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(a) Q is f-cotilting;

(b) cog(Q) = cop(Q) and Q is w-Πf -quasi-injective;

(c) cog(Q) = cop(Q) and Cogf (Q) ⊂⊥f Q;

(d) Cogf (Q) = ⊥fQ, and for every K ∈ cog(Q), HomC(K,Q) ∈ mod-S;

(e) (i) Q is cog(Q)-injective, ⊥fQ is closed under submodules,

(ii) for N ∈ σf [Q], HomC(N,Q) = 0 = Ext1
σf [Q](N,Q) implies N = 0, and

(iii) for every K ∈ cog(Q), HomC(K,Q) ∈ mod-S.

Proof. (a)⇔(b) and (b)⇔(c) follow from 2.6 and 2.7, respectively.

(c)⇒(d) In the proof of 3.3, (c)⇒(d), take N ∈⊥f Q and Λ a finite index set.

(d)⇒(c) Let N ∈ cog(Q) and f1, . . . , fk a generating set for the S-module

HomC(K,Q). The fi’s yield a canonical monomorphism N → Qk. Now procede

as in the proof of 3.3, (d)⇒(c).

The remaining implications can also be transferred from 3.3. �

More examples of f-cotilting objects will be given at the end of the paper.

4 Reflexive modules and dualities

To avoid technical complications we restrict our study of dualities to module cate-

gories. We investigate dualities induced by any left R-module Q with S = EndR(Q).

4.1 Canonical functors. Related to RQS we have the adjoint pair of functors

D : R-Mod
HomR(−,Q)−→ Mod-S, D′ : Mod-S

HomS(−,Q)−→ R-Mod,

and for any N ∈ R-Mod and X ∈ S-Mod, the canonical (evaluation) morphisms

ΦN : N → D′D(N), n 7→ [β 7→ (n)β],

Φ′X : X → DD′(X), x 7→ [α 7→ α(x)].

where

Ke ΦN = Re(N,Q), Ke Φ′X = Re(N,Q).

4.2 (Semi-)reflexive modules. A module N ∈ R-Mod is called (semi-) Q-reflexive

if ΦN : N → D′D(N) is an isomorphism (epimorphism). Similarly (semi-) Q-

reflexive objects in Mod-S are defined. It is straightforward to prove:

N ∈ σ[Q] is semi-Q-reflexive if and only if N/Re(N,Q) is Q-reflexive.

The class of all Q-reflexive modules in R-Mod (in Mod-S) is denoted my RefR(Q)

(resp., RefS(Q)).
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Obviously we have the following

4.3 Basic duality. For any R-module Q, the functor

D = HomR(−, Q) : RefR(Q)→ RefS(Q)

defines a duality with inverse D′ = HomS(−, Q).

For any N ∈ R-Mod consider an exact sequence S(Λ′) → S(Λ) → D(N) → 0 in

Mod-S. By left exactness of HomS(−, Q) we obtain the exact sequence

0→ HomS(D(N), Q)→ QΛ → QΛ′ .

Now if N ∈ RefR(Q), i.e., N ' D′D(N), we conclude N ∈ CopR(Q).

4.4 Classes of modules related to Q. We have the following inclusions:

(1) D′(Mod-S) ⊂ CopR(Q), D(R-Mod) ⊂ CopS(Q).

(2) add (Q) ⊂ RefR(Q) ⊂ CopR(Q) ⊂ CogR(Q) ⊂ R-Mod.

(3) add (Q) ⊂ copR(Q) ⊂ cogR(Q) ⊂ σf [Q].

We investigate the properties of the classes considered above in view of certain

injectivity conditions.

A submodule K ⊂M in called Q-closed in M provided M/K ∈ Cog(Q).

4.5 w-Π-quasi-injective modules. Let RQ be w-Π-quasi-injective. Then:

(1) RefR(Q) is closed under Q-closed submodules; in particular, RefR(Q) is closed

under kernels.

(2) Every factor module of a Q-reflexive right S-module is semi-Q-reflexive.

Proof. (1) Let P ∈ RefR(Q) with a Q-closed submodule K ⊂ P . Then we have an

exact commutative diagram,

0 0

↓ ↓
0 → K → P → Y → 0

↓ ' ↓ ↓
0 → K∗∗ → P ∗∗

g→ Y ∗∗

↓
0 ,

where Y ∈ Cog(Q). This shows that K is Q-reflexive.
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(2) Let X ∈ RefS(Q). For any epimorphism X → L we have the exact commu-

tative diagram
X → L → 0

' ↓ ↓
X∗∗ → L∗∗ → 0,

which shows that L is semi-Q-reflexive. �

The question arises to which extent properties of RefR(Q) imply injectivity con-

ditions on Q. Since RefR(Q) is not closed under products we are not able to get a

general assertion converse to 4.5. However the situation is different if we restrict our

considerations to finite products as we will see below. First we formulate a finite

version of 4.5. Since for any k ∈ IN , Qk ∈ RefR(Q) and Sk ∈ RefS(Q), essentially

the same proof yields:

4.6 w-Πf -quasi-injective modules. Let Q be a w-Πf -quasi-injective R-module.

Then:

(1) cop(Q) ⊂ RefR(Q).

(2) Every finitely generated right S-module is semi-Q-reflexive.

(3) By restriction we have the functor HomR(−, Q) : cop(Q)→ mod-S.

4.7 Proposition. Let Q ∈ R-Mod. Assume cop(Q) ⊂ RefR(Q) and that all finitely

generated right S-modules are semi-Q-reflexive. Then Q is w-Πf -quasi-injective.

Proof. (compare [14, 47.12]) We have to show that HomR(−, Q) = (−)∗ is exact on

sequences

0→ K
f→ Qk → Y → 0, where Y ∈ Cog(Q).

From the inclusion δ : Im f ∗ → K∗ we obtain the commutative diagram with

exact rows

0 → K
f→ Qk → Y → 0

ΦK ↓
K∗∗

δ∗ ↓
↓ΦQk ↓ΦY

0 → (Im f∗)∗ → (Qk)∗∗ → Y ∗∗ .

Since ΦQk is an isomorphism and ΦY is a monomorphism, ΦKδ
∗ is an isomorphism.

Now K being Q-reflexive implies that δ∗ is also an isomorphism. We have the

commutative diagram

Im f ∗
δ−→ K∗

↓ΦIm f∗ ↓ΦK∗

(Im f ∗)∗∗
δ∗∗−→ K∗∗∗,
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where ΦImf∗ is surjective (by our assumptions) and δ∗∗ is an isomorphism. This

clearly implies that δ is an isomorphism which means that (−)∗ is exact on the given

sequence. �

Combining the results just derived we obtain:

4.8 Injectivity and duality. For Q ∈ R-Mod the following are equivalent:

(a) Q is w-Πf -quasi-injective;

(b) cop(Q) ⊂ RefR(Q) and all finitely generated right S-modules are semi-Q-

reflexive;

(c) cop(Q) ⊂ RefR(Q) and mod-S ∩ CogS(Q) ⊂ RefS(Q);

(d) HomR(−, Q) : cop(Q)→ mod-S ∩ CogS(Q) is a duality.

Proof. (a)⇒(b) follows from 4.6.

(b)⇔(c) is clear by the comments in 4.2.

(c)⇒(a) holds by Proposition 4.7.

(c)⇔(d) is obvious. �

4.9 Remark. Dualizing the notion of s-
∑

-quasi-projective used in Sato [10] we may

call an R-module Q s-Π-quasi-injective if HomR(−, Q) is exact on sequences

0→ K → QΛ → QΛ′ , for any (or finite) sets Λ, Λ′.

With similar proofs one gets that for such modules, HomR(−, Q) induces an equiv-

alence between the kernels of morphisms Qk → Ql, k, l ∈ IN (a subclass of cog(Q))

and the finitely presented right S-modules (compare [17, 4.6]).

By the definition of f-cotilting modules, 4.8 yields immediately:

4.10 f-cotilting and duality. For Q ∈ R-Mod the following are equivalent:

(a) Q is f-cotilting;

(b) cog(Q) ⊂ RefR(Q) and all finitely generated right S-modules are semi-Q-

reflexive;

(c) cog(Q) ⊂ RefR(Q) and mod-S ∩ CogS(Q) ⊂ RefS(Q);

(d) HomR(−, Q) : cog(Q)→ mod-S ∩ CogS(Q) is a duality.
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Finally we mention some more examples of f-cotilting objects. Clearly an object

Q which is an injective cogenerator in C - or more generally in σ[Q] - is f-cotilting.

In particular any semisimple object has this property.

Cotilting modulesQ are f-cotilting, provided for everyK ∈ cog(Q), HomC(K,Q) ∈
mod- EndC(Q). Sufficient for the latter condition is that Q is noetherian both as left

R- and right EndC(Q)-module. This situation was considered in Wang-Xu [13, The-

orem 2 and 3]. If RQ is cotilting and artinian the conditions are also satisfied and

this is the situation usually considered in representation theory.

It was already mentioned in the remark following 3.9 that over noetherian rings

the ”finitely cotilting” modules studied in Angeleri-Hügel-Valenta [2] are f-cotilting

modules in our sense. Notice that artinian cotilting modules need not be ”finitely

cotilting” in the sense of [2] since they need not be finitely generated as modules

over their endomorphism ring (see Example 2.3 in [1]).

The Morita duality as described in [14, 47.12] is a special case of 4.10. Notice

that in [14, 47.12] the class of reflexive R-modules is closed under factor modules

and submodules while in 4.10 this class is only closed under submodules.
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[2] L. Angeleri-Hügel, H. Valenta, A duality result for almost split sequences,

Coll. Math. 80 (1999), 267-292.
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