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Abstract

It is well-known that any semiperfect A ring has a decom-
position as a direct sum (product) of indecomposable subrings
A=A D - P A, such that the A;-Mod are indecomposable
module categories. Similarly any coalgebra C' over a field can
be written as a direct sum of indecomposable subcoalgebras
C = @; C; such that the categories of Cj-comodules are inde-
composable. In this paper a decomposition theorem for closed
subcategories of a module category is proved which implies both
results mentioned above as special cases. Moreover it extends
the decomposition of coalgebras over fields to coalgebras over
noetherian (QF) rings.

1 Introduction

The close connection between module categories and comodule cate-
gories was investigated in [12] and it turned out that there are parts
of module theory over algebras which provide a perfect setting for the
theory of comodules. In a similar spirit the present paper is devoted
to decomposition theorems for closed subcategories of a module cate-
gory which subsume decomposition properties of algebras as well as of
coalgebras.

Let A be an associative algebra over a commutative ring R. For
an A-module M we denote by o[M] the category of those A-modules
which are submodules of M-generated modules. This is the smallest



Grothendieck subcategory of A-Mod containing M. The inner proper-
ties of o[M] are dependent on the module properties of M and there is
a well established theory dealing with this relationship.

We define a o-decomposition

o[M] = P o[,
A
for a family {N)}x of modules, meaning that for every module L €
o[M], L = @xLyx,where Ly € o[N,]. We call o[M] o-indecomposable if
no such non-trivial decomposition exists.

The o[N,] are closely related to fully invariant submodules of a
projective generator (if there exists one) and - under certain finiteness
conditions - to the fully invariant submodules of an injective cogen-
erator. Consequently an indecomposable decomposition of o[M] can
be obtained provided there is a semiperfect projective generator or an
injective cogenerator of locally finite length in o[M].

Such decompositions of o[M] were investigated in Vanaja [10] and
related constructions are considered in Garcia-Jara-Merino [4], Nastases-
cu-Torrecillas [8] and Green [5].

Let C' be a coalgebra over a commutative ring R. Then the dual C*
is an R-algebra and C'is a left and right module over C*. The link to
the module theory mentioned above is the basic observation that the
category of right C'-comodules is subgenerated by C. Moreover, if gC
is projective, this category is the same as o[c«C]. This is the key to
apply module theory to comodules and our decomposition theorem for
o[M] yields decompositions of coalgebras and their comodule categories
over noetherian (QF) rings. For coalgebras over fields such results were
obtained in Kaplansky [6], Montgomery [7], Shudo-Miyamoto [9].

2 Decompositions of module categories

Throughout R will denote an associative commutative ring with unit,
A an associative R-algebra with unit, and A-Mod the category of unital
left A-modules.

We write o[M] for the full subcategory of A-Mod whose objects are
submodules of M-generated modules. N € o[M] is called a subgenera-
tor if o[M] = o[N].



2.1 The trace functor. For any N, M € A-Mod the trace of M in N
is defined as

Tr(M,N):=> {Im f|f € Homa(M,N)},
and we denote the trace of o[M] in N by
TM(N) :=Tr(c[M],N)=> {Im f| f € Homs(K,N), K € o[M]}.

If N is M-injective, or if M is a generator in o[M], then T (N) =
Tr(M, N).

A full subcategory C of A-Mod is called closed if it is closed under
direct sums, factor modules and submodules (hence it is a Grothendieck
category). It is straightforward to see that any closed subcategory is of
type o[N], for some N in A-Mod.

The next result shows the correspondence between the closed sub-
categories of o[M] and fully invariant submodules of an injective co-
generator of o[M], provided M has locally finite length.

2.2 Correspondence relations. Let M be an A-module which is
locally of finite length and Q) an injective cogenerator in o[M].

(1) For every N € o[M], o[N] = o[Tr(N,Q)].

(2) The map o[N] — Tr(N,Q) yields a bijective correspondence be-
tween the closed subcategories of o[M| and the fully invariant

submodules of Q.

(3) o|[N] is closed under essential extensions (injective hulls) in o[ M]
if and only if Tr(N, Q) is an A-direct summand of Q.

(4) N € o[M] is semisimple if and only if Tr(N, Q) C Soc(4Q).

Proof. Notice that by our finiteness condition every cogenerator in
o[M] is a subgenerator in o[M]. Moreover by the injectivity of @,
Tr(o[N],Q) = Tr(N, Q).

(1) Tr(N, Q) is a fully invariant submodule which by definition be-
longs to o[N]. Consider the N-injective hull N of N (in ¢[N]). This is
a direct sum of N-injective hulls E of simple modules E € ¢[N]. Since
@ is a cogenerator we have (up to isomorphism) EC @ and so E C
Tr(N, Q). This implies N € o[Tr(N, Q)] and so o[N] = o[Tr(N, Q)].
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(2) and (4) are immediate consequences of (1).

(3) If o[N] is closed under essential extensions in o[M] then clearly
Tr(N, Q) is an A-direct sumand in @ (and hence is injective in o[M]).

Now assume Tr(N, Q) to be an A-direct sumand in @ and let L be
any injective object in o[N]. Then L is a direct sum of N-injective hulls
E of simple modules E € ¢[N]. Clearly the E’s are (isomorphic to)
direct summands of Tr(NV, @) and hence of Q, i.e., they are M-injective
and so L is M-injective, too. O

2.3 Sum and decomposition of closed subcategories. For any
K,L € o[M] we write o[K| N o[L] = 0, provided ¢[K] and ¢[L] have
no non-zero object in common. Given a family { N}, of modules in

o[M], we define
ZAU[N)‘] = U[@ANA].

This is the smallest closed subcategory of o[M] containing all the Ny’s.
Moreover we write

O'[M] = GJ?U[N)\],

provided for every module L € o[M], L = @,7™(L) (internal direct
sum). We call this a o-decomposition of o[M], and we say o[M] is
o-indecomposable if no such non-trivial decomposition exists.

In view of the fact that every closed subcategory of A-Mod is of
type o[N], for some A-module N, the above definition describes the
decomposition of any closed subcategory into closed subcategories.

2.4 o-decomposition of modules. For a decomposition M = @, M),
the following are equivalent:

(a) for any distinct A\, € A, My and M, have no non-zero isomor-
phic subfactors;

(b) for any distinct X\, p € A, Homy (K, K,,) = 0, where K, K,, are
subfactors of My, M, respectively;

(c) for any distinct A\, € A, o[My|No[M,] = 0;
(d) for any p € A, o[M,]No[@,., My] =0;
(e) for any L € o[M], L = @, T (L).



If these conditions hold we call M = @, M) a o-decomposition of M
and in this case

o[M] = @AU[M,\].

Proof. (a) = (b) and (e) = (a) are obvious.
(b) = (c¢) This follows from the plain fact that for any A-module
N, each non-zero module in ¢[/N] contains a non-zero subfactor of N.

(c) = (d) Any non-zero module in o[@,_, M,] contains a non-zero
subfactor of M, for some v € A\ {u}. This implies (d).

(d) = (e) Tt is easy (see [10]) to verify that L = @, 7 (L). O

2.5 Corollary. Let o[M]| = @, o[N,] be a o-decomposition of o[M].
Then

(1) each o[N,] is closed under essential extensions in o|M];
(2) any L € o[N,] is M -injective if and only if it is Ny-injective;
(8) M =@,T (M) is a o-decomposition of M.

Proof. (1) For any L € o[N,], consider an essential extension L <K in
o[M]. Then 7™ (K) <K and is a direct summand. So K = 7™ (K) €
a[N,].

(2) Any L € o[N,] is M-injective if it has no non-trivial essential
extensions in o[M]. Assume L to be Ny-injective. Then L has no non-
trivial essential extensions in ¢[N,] and by (1), it has no non-trivial
essential extensions in o[M].

(3) Put My, := T™(M). By definition, M, € ¢[N,] and it remains
to show that N, € o[M,]. Let N, denote the M-injective hull of N,.
N, is M-generated, and by (1), Ny € o[N,]. This implies that N is
M,y-generated and so N, € o[M,]. a

It is obvious that any o-decomposition of M is also a fully invariant
decomposition. The reverse implication holds in special cases:

2.6 Corollary. Assume M to be a projective generator or an injective
cogenerator in o[M]. Then any fully invariant decomposition of M is
a o-decomposition.



Proof. Let M = @, M, be a fully invariant decomposition, i.e.,
Homy (My, M,) = 0, for X # p.

Assume M to be a projective generator in o[M]. Then clearly every
submodule of M, is generated by M,. Since the M,’s are projective
in o[M], any non-zero (iso)morphism between (sub)factors of M, and
M,, yields a non-zero morphism between M, and M,. So our assertion
follows from 2.4.

Now suppose that M is an injective cogenerator in o[M]. Then
every subfactor of M) must be cogenerated by M,. From this it follows
that for A # u, there are no non-zero maps between subfactors of M),
and M, and so 2.4 applies. O

Remark. 2.4 and 2.6 are shown in Vanaja [10, Proposition 2.2] and
related constructions are considered in Garcia-Jara-Merino [4, Section
3] and [3, Theorem 5.2], Nastasescu-Torrecillas [8, Lemma 5.4] and
Green [5, 1.6¢|.

Following Garcia-Jara-Merino [3], we call a module M o-indecompos-
able if M has no non-trivial o-decomposition.

2.7 Corollary. The following are equivalent:
(a) o[M] is o-indecomposable;
(b) M is o-indecomposable;
(¢) any subgenerator in o[M] is o-indecomposable;
(d) an injective cogenerator which is a subgenerator in o[M], has no
fully invariant decomposition.

If there exists a projective generator in o[M| then (a)-(d) are equivalent
to:

(e) projective generators in o[M| have no fully invariant decomposi-
tions.

It is straightforward to see that a o-decomposition of the ring A is
of the form

A= Ae; d--- D Aey, for central idempotents e; € A,

and so A-Mod is o-indecomposable if and only if A has no non-trivial
central idempotent.



By the structure theorem for cogenerators with commutative endo-
morphism rings (see [11, 48.16]) we have:

2.8 o-decomposition when End, (M) commutative. Let M be a
cogenerator in o[M] with End (M) commutative. Then M ~ @, Ej,
where {Ex}a is a minimal representing set of simple modules in o[M].
This is a o-decomposition of M and

where each O’[E)\] 1s indecomposable and contains only one simple mod-
ule.

A special case of the situation described above is the Z-module
D/ Z = @, primeZ p~ and the decomposition of the category of torsion
abelian groups as a direct sum of the categories of p-groups,

ol@/Z] = D 0| Z p].

Notice that although @/Z is an injective cogenerator in Z-Mod

p prime

with a non-trivial o-decomposition, Z-Mod is o-indecomposable. This
is possible since @/ Z is not a subgenerator in Z-Mod.

In general it is not so easy to get o-decompositions of modules. We
need some technical observations to deal with modules whose endomor-
phism rings are not commutative.

2.9 Relations on families of modules. Consider any family of A-
modules { M)}, in o[M]. Define a relation ~ on {M,}, by putting

My ~ M,  if there exist non-zero morphisms M, — M, or M, — M.

Clearly ~ is symmetric and reflexive and we denote by ~ the smallest
equivalence relation on {M,}, determined by ~, i.e.,

My ~ M, if there exist Ai,..., Ay € A, such that
My=My ~---~M, =M,.

Then {M,}, is the disjoint union of the equivalence classes {[M,]}q,
A, CA.

Assume each M), ~ E,\, the M -injective hull of some simple module
E\ € o[M]. Then



E\ ~ E, if and only if Exty(Ex, E,) # 0 or Exta(E,, Ey) # 0,
where Extyy denotes the extensions in o[M].

Proof. For any non-zero morphism Ey — E#, there exists a submodule
E\ C L C E) with a non-splitting exact sequence

0—Ey—L—E,—0.

Assume such a sequence is given. From this it is easy to construct
a non-zero morphism f : By — FE,,. O

A decomposition M = @, M, is said to complement direct sum-
mands if, for every direct summand K of M, there exists a subset
N C A such that M = K @ (Px M) (cf. [1, § 12]). We observe that
such decompositions yield fully invariant indecomposable decomposi-
tions.

2.10 Lemma. Let M = @, M, be a decomposition which complements
direct summands, where all M, are indecomposable. Then M has a
decomposition M = @4 N,, where each N, C M is a fully invariant
submodule and does not decompose non-trivially into fully invariant
submodules.

Proof. Consider the equivalence relation ~ on {M,}a (see 2.9) with

the equivalence classes {[M,]}q and A :UQ A,. Then N, := @, M,
is a fully invariant submodule of M, for each w € €2, and

M= EBQ (@AWM)‘) - @QN“"

Assume N, = K & L for fully invariant K, L C N,. Since the defining
decomposition of N, complements direct summands we may assume
that A, is the disjoint union of subsets X, Y such that

N, = <@XM/\) @ (GBYMA) ‘
By construction, for any z € X, y € Y, we have M, ~ M, and it is easy
to see that this implies the existence of non-zero morphisms K — L

or L — K, contradicting our assumption. So NN, does not decompose
into fully invariant submodules. a

The following are standard examples of module decompositions which
complement direct summands.



2.11 Proposition. Let M = @, M), where each End (M) is local.

(1) If M is M-injective the decomposition complements direct sum-
mands.

(2) If M is projective in o[M] and Rad(M) << M, then the decom-
position complements direct summands.

Proof. For the first assertion we refer to [2, 8.13].
The second condition characterizes M as semiperfect in o[M] (see
[11, 42.5]) and the assertion follows from [2, 8.12]. O

2.12 o-decomposition for locally noetherian modules. Let M be
a locally noetherian A-module. Then M has a o-decomposition M =
@D\ My and

o[M] =P, o[M],
where each o[M,] is o-indecomposable.

(1) o[M] is o-indecomposable if and only if for any indecomposable
injectives K, L € o[M], K ~ L (as defined in 2.9).

(2) If M has locally finite length, then o[M] is o-indecomposable if
and only if for any simple modules Sy, Sy € o[M], Sy~ Sy (M -
injective hulls).

Proof. Let () be an injective cogenerator which is also a subgenera-
tor in o[M]. Then @ is a direct sum of indecomposable M-injective
modules and this is a decomposition which complements direct sum-
mands (by 2.11). By Lemma 2.10, @ has a fully invariant decomposition
Q = PQ, such that @, has no non-trivial fully invariant decomposi-
tion. Now the assertions follow from Corollaries 2.6, 2.7, and 2.5.

(1) This is clear by the above proof.

(2) By our assumption every indecomposable M-injective module is
an M-injective hull of some simple module in o[M]. O

2.13 o-decomposition for semiperfect generators. If M is a
projective generator which is semiperfect in o[M|, then M has a o-
decomposition M = @, My, where each My is o-indecomposable.

In particular, every semiperfect ring A has a o-decomposition A =
Aey @ --- @ Aeyg, where the e; are central idempotents of A which are
not a sum of non-zero orthogonal central idempotents.
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Proof. By [11, 42.5] and 2.11, M has a decomposition which com-
plements direct summands. By Lemma 2.10, M has a fully invariant
decomposition and the assertions follow from the Corollaries 2.6, 2.7,
and 2.5. O

3 Coalgebras and comodules

We recall some basic definitions for coalgebras and comodules.
An R-module C' is an R-coalgebra if there is an R-linear map (co-
multiplication)

A:C—C®gC, with (id® A)o A = (A®id) o A.

An R-linear map € : C'— R is a counitif (id®e)oA and (e®id)o A
yield the canonical isomorphism C' ~ C' @ R.

Henceforth C' will denote a coalgebra with counit (C, A, ¢) and we
assume that C' is flat as an R-module.

The R-dual of C, C* = Homg(C, R), is an associative R-algebra
with unit € where the multiplication of f, g € C* is defined by

(f % 9)(c) = (f © g)(A(e)), for c € C.

An R-submodule D C C'is a left coideal if A(D) C C®pr D, a right
coideal if A(D) C D®gC, and a sub-coalgebra if A(D) C D ®g D and
D is pure in C.

An R-module M is called a right C'-comodule if there exists an R-
linear map ¢ : M — M ®p C such that (id ® A)o g = (0 ® id) o p,
and (id ® €) o p yields the canonical isomorphism M ~ M ®g R. An
R-submodule N C M is called C-sub-comodule if o(N) C N ®p C.

Left C-comodules are defined similarly. Clearly C is a right and
left C-comodule, and right (left) sub-comodules of C' are right (left)
coideals.

An R-linear map f : M — M’ between right comodules is a comod-
ule morphism provided ¢’ o f = (f ® id) o .

The right (left) C-comodules and the comodule morphisms form a
category which we denote by Comod-C' (C-Comod). These are Grothen-
dieck categories (remember that we assume gC' to be flat). The close
connection between comodules and modules is based on the following
facts which are proved in [12, Section 3.4].
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3.1 C-comodules and C*-modules. Assume gC' to be projective and
let o: M — M ®g C be any right C'-comodule. Then M is a left C*-
module by

V:C"@r M — M, f@m— ((iddf)oe)(m).

(1) An R-submodule U C M is a sub-comodule if and only if it is a
C*-submodule.

(2) Any R-linear map between right comodules is a comodule mor-
phism if and only if it is C*-linear.

(3) The category of right C-comodules can be identified with o|c-C],
the full subcategory of C*-Mod, subgenerated by cC'.

(4) C is a balanced (C*, C*)-bimodule and the subcoalgebras of C' cor-
respond to the (C*, C*)-sub-bimodules.

The properties of the comodule C' are strongly influenced by the
properties of the ring R (see [12, 4.9]).

3.2 Coalgebras over special rings. Let rC' be projective.
(1) If R is noetherian, then C' is a locally noetherian C*-module and

direct sums of injectives are injective in o[c«C]|.

(2) If R is artinian, then every finitely generated module in o|c+C]
has finite length.

(3) If R is injective, then C' is injective in o|c+C].

Applying our results on decompositions of closed subcategories we
obtain

3.3 o-decomposition of coalgebras. Let C be a coalgebra over a
noetherian ring R with Cr projective.

(1) There ezist a o-decomposition C = @, C, and a family of or-
thogonal central idempotents {e)}n in C*, with C\ = C - ey, for
each X € A.

(2) olc-Cl = @ olc-Ch-
(3) Each C is a sub-coalgebra of C, C§ ~ C* x ey, and o[c~C)| =

U[C;C)\].
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(4) olc+C| is indecomposable if and only if, for any two injective
uniform L, N € o[c-C], we have L ~ N.

(5) Assume R to be artinian. Then o|c+C| is indecomposable if and
only if for any two simple Ey, Ey € o[c+C|, we have Ey ~ Es.

Proof. (1),(2) By 3.2, C is a locally noetherian C*-module. Now the
decomposition of oc«[C] follows from 2.12. Clearly the resulting o-
decomposition of C'is a fully invariant decomposition and hence it can
be described by central idempotents in the endomorphism ring (= C*,
see 3.1).

(3) The fully invariant submodules C, C C are in particular R-
direct summands in C' and hence are sub-coalgebras (by [12, 4.4]). It
is straightforward to verify that Homgz(C\, R) = C§ ~ C* x e, is an
algebra isomorphism.

(4) is a special case of 2.12(2).

(5) follows from 2.12(3). Notice that F; ~ E» can be described by
extensions of simple modules (see 2.9). The assertion means that the
Ext-quiver of the simple modules in o¢+[C] is connected. O

3.4 Corollary. Let R be a QF ring and C an R-coalgebra with Cg
projective. Then:

(1) C has fully invariant decompositions with o-indecomposable sum-
mands.

(2) Each fully invariant decomposition is a o-decomposition.

(8) C is o-indecomposable if and only if C has no non-trivial fully
invariant decomposition.

(4) If C is cocommutative then C' = @xEy is a fully invariant de-
composition, where { Ex}x is a minimal representing set of simple
modules.

Proof. By [12, 6.1], C' is an injective cogenerator in o¢+[C] and so the
assertions (1)-(3) follow from 2.6 and 3.3.

(4) Our assumption implies that C* is a commutative algebra and
so the assertion follows by 2.8. O
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For coalgebras C' over QF rings we have a bijective correspondence
between closed subcategories of o[c+«C| and (C*, C*)-submodules in C.
However the latter need not be pure R-submodules of C' and hence they
may not be sub-coalgebras.

3.5 Correspondence relations. Let R be a QF ring and C an R-
coalgebra with C'r projective. Then

(1) for every N € o[c+C], o[N] = o[Tr(N,C)];

(2) the map o[N] — Tr(N,C) yields a bijective correspondence be-
tween the closed subcategories of o[c+C] and the (C*, C*)-submod-
ules of C;

(8) o[N] is closed under essential extensions (injective hulls) in o[c+C]|
if and only if Tr(N,C) is a C*-direct summand of ¢-C. In this
case Tr(N, C) is a sub-coalgebra of C.

(4) N € olc-C] is semisimple if and only if Tr(N,C) C Soce+(Q);
(5) If R is semisimple, then all Tr(N,C) are sub-coalgebras of C.

Proof. Since R is a QF ring, ¢+C' has locally finite length and is an
injective cogenerator of o[c+C]. Hence (1)-(4) follow from 2.2.

(5) For R semisimple all (C*, C*)-submodules Tr(c[NV], C') are direct
summands as R-modules in C' and so they are sub-coalgebras by [12,
4.4]. O

Remarks. 3.3 and 3.4 extend decomposition results for coalgebras
over fields to coalgebras over noetherian (QF) rings. It was shown in
Kaplansky [6] that any coalgebra C' over a field K is a direct sum of
indecomposable coalgebras, and that for C' cocommutative, these com-
ponents are even irreducible. In Montgomery [7, Theorem 2.1], a direct
proof was given to show that C'is a direct sum of link-indecomposable
components. It is easy to see that the link-indecomposable components
are just the o-indecomposable components of C' (see remark in proof
of 3.3(5)). As outlined in [7, Theorem 1.7] this relationship can also be
described by using the "wedge”. In this context another proof of the de-
composition theorem is given in Shudo-Miyamoto [9, Theorem|. These
techniques are also used in Zhang [13]. We refer to Garcia-Jara-Merino
3, 4] for a detailed description of the corresponding constructions.
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In Green [5], for every C-comodule M, the coefficient space C'(M)
was defined as the smallest sub-coalgebra C'(M) C C' such that M is a
C(M)-comodule. The definition heavily relies on the existence of a K-
basis for comodules. In the more general correspondence theorem 3.5,
the C(M) are replaced by Tr(M, C). For coalgebras over fields, C'(M)
and Tr(M, C') coincide and 3.5 yields [5, 1.3d], [4, Proposition 7], and
[7, Lemma 1.8]. Notice that in [5] closed subcategories in o[c«C] are
called pseudovarieties.
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