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Abstract

It is well-known that any semiperfect A ring has a decom-
position as a direct sum (product) of indecomposable subrings
A = A1 ⊕ · · · ⊕ An such that the Ai-Mod are indecomposable
module categories. Similarly any coalgebra C over a field can
be written as a direct sum of indecomposable subcoalgebras
C =

⊕
I Ci such that the categories of Ci-comodules are inde-

composable. In this paper a decomposition theorem for closed
subcategories of a module category is proved which implies both
results mentioned above as special cases. Moreover it extends
the decomposition of coalgebras over fields to coalgebras over
noetherian (QF) rings.

1 Introduction

The close connection between module categories and comodule cate-

gories was investigated in [12] and it turned out that there are parts

of module theory over algebras which provide a perfect setting for the

theory of comodules. In a similar spirit the present paper is devoted

to decomposition theorems for closed subcategories of a module cate-

gory which subsume decomposition properties of algebras as well as of

coalgebras.

Let A be an associative algebra over a commutative ring R. For

an A-module M we denote by σ[M ] the category of those A-modules

which are submodules of M -generated modules. This is the smallest
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Grothendieck subcategory of A-Mod containing M . The inner proper-

ties of σ[M ] are dependent on the module properties of M and there is

a well established theory dealing with this relationship.

We define a σ-decomposition

σ[M ] =
⊕
Λ

σ[Nλ],

for a family {Nλ}Λ of modules, meaning that for every module L ∈
σ[M ], L =

⊕
ΛLλ,where Lλ ∈ σ[Nλ]. We call σ[M ] σ-indecomposable if

no such non-trivial decomposition exists.

The σ[Nλ] are closely related to fully invariant submodules of a

projective generator (if there exists one) and - under certain finiteness

conditions - to the fully invariant submodules of an injective cogen-

erator. Consequently an indecomposable decomposition of σ[M ] can

be obtained provided there is a semiperfect projective generator or an

injective cogenerator of locally finite length in σ[M ].

Such decompositions of σ[M ] were investigated in Vanaja [10] and

related constructions are considered in Garćıa-Jara-Merino [4], Nǎstǎses-

cu-Torrecillas [8] and Green [5].

Let C be a coalgebra over a commutative ring R. Then the dual C∗

is an R-algebra and C is a left and right module over C∗. The link to

the module theory mentioned above is the basic observation that the

category of right C-comodules is subgenerated by C. Moreover, if RC

is projective, this category is the same as σ[C∗C]. This is the key to

apply module theory to comodules and our decomposition theorem for

σ[M ] yields decompositions of coalgebras and their comodule categories

over noetherian (QF) rings. For coalgebras over fields such results were

obtained in Kaplansky [6], Montgomery [7], Shudo-Miyamoto [9].

2 Decompositions of module categories

Throughout R will denote an associative commutative ring with unit,

A an associative R-algebra with unit, and A-Mod the category of unital

left A-modules.

We write σ[M ] for the full subcategory of A-Mod whose objects are

submodules of M -generated modules. N ∈ σ[M ] is called a subgenera-

tor if σ[M ] = σ[N ].

2



2.1 The trace functor. For any N,M ∈ A-Mod the trace of M in N

is defined as

Tr(M,N) :=
∑
{Im f | f ∈ HomA(M,N)},

and we denote the trace of σ[M ] in N by

T M(N) := Tr(σ[M ], N) =
∑
{Im f | f ∈ HomA(K,N), K ∈ σ[M ]}.

If N is M -injective, or if M is a generator in σ[M ], then T M(N) =

Tr(M,N).

A full subcategory C of A-Mod is called closed if it is closed under

direct sums, factor modules and submodules (hence it is a Grothendieck

category). It is straightforward to see that any closed subcategory is of

type σ[N ], for some N in A-Mod.

The next result shows the correspondence between the closed sub-

categories of σ[M ] and fully invariant submodules of an injective co-

generator of σ[M ], provided M has locally finite length.

2.2 Correspondence relations. Let M be an A-module which is

locally of finite length and Q an injective cogenerator in σ[M ].

(1) For every N ∈ σ[M ], σ[N ] = σ[Tr(N,Q)].

(2) The map σ[N ] 7→ Tr(N,Q) yields a bijective correspondence be-

tween the closed subcategories of σ[M ] and the fully invariant

submodules of Q.

(3) σ[N ] is closed under essential extensions (injective hulls) in σ[M ]

if and only if Tr(N,Q) is an A-direct summand of Q.

(4) N ∈ σ[M ] is semisimple if and only if Tr(N,Q) ⊂ Soc(AQ).

Proof. Notice that by our finiteness condition every cogenerator in

σ[M ] is a subgenerator in σ[M ]. Moreover by the injectivity of Q,

Tr(σ[N ], Q) = Tr(N,Q).

(1) Tr(N,Q) is a fully invariant submodule which by definition be-

longs to σ[N ]. Consider the N -injective hull N̂ of N (in σ[N ]). This is

a direct sum of N -injective hulls Ê of simple modules E ∈ σ[N ]. Since

Q is a cogenerator we have (up to isomorphism) Ê ⊂ Q and so Ê ⊂
Tr(N,Q). This implies N̂ ∈ σ[Tr(N,Q)] and so σ[N ] = σ[Tr(N,Q)].
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(2) and (4) are immediate consequences of (1).

(3) If σ[N ] is closed under essential extensions in σ[M ] then clearly

Tr(N,Q) is an A-direct sumand in Q (and hence is injective in σ[M ]).

Now assume Tr(N,Q) to be an A-direct sumand in Q and let L be

any injective object in σ[N ]. Then L is a direct sum of N -injective hulls

Ê of simple modules E ∈ σ[N ]. Clearly the Ê’s are (isomorphic to)

direct summands of Tr(N,Q) and hence of Q, i.e., they are M -injective

and so L is M -injective, too. 2

2.3 Sum and decomposition of closed subcategories. For any

K,L ∈ σ[M ] we write σ[K] ∩ σ[L] = 0, provided σ[K] and σ[L] have

no non-zero object in common. Given a family {Nλ}Λ of modules in

σ[M ], we define ∑
Λ
σ[Nλ] := σ[

⊕
Λ
Nλ].

This is the smallest closed subcategory of σ[M ] containing all the Nλ’s.

Moreover we write

σ[M ] =
⊕
Λ

σ[Nλ],

provided for every module L ∈ σ[M ], L =
⊕

ΛT Nλ(L) (internal direct

sum). We call this a σ-decomposition of σ[M ], and we say σ[M ] is

σ-indecomposable if no such non-trivial decomposition exists.

In view of the fact that every closed subcategory of A-Mod is of

type σ[N ], for some A-module N , the above definition describes the

decomposition of any closed subcategory into closed subcategories.

2.4 σ-decomposition of modules. For a decomposition M =
⊕

ΛMλ,

the following are equivalent:

(a) for any distinct λ, µ ∈ Λ, Mλ and Mµ have no non-zero isomor-

phic subfactors;

(b) for any distinct λ, µ ∈ Λ, HomA(Kλ, Kµ) = 0, where Kλ, Kµ are

subfactors of Mλ,Mµ, respectively;

(c) for any distinct λ, µ ∈ Λ, σ[Mλ] ∩ σ[Mµ] = 0;

(d) for any µ ∈ Λ, σ[Mµ] ∩ σ[
⊕

λ6=µMλ] = 0;

(e) for any L ∈ σ[M ], L =
⊕

Λ T Mλ(L).
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If these conditions hold we call M =
⊕

ΛMλ a σ-decomposition of M

and in this case

σ[M ] =
⊕

Λ
σ[Mλ].

Proof. (a)⇒ (b) and (e)⇒ (a) are obvious.

(b) ⇒ (c) This follows from the plain fact that for any A-module

N , each non-zero module in σ[N ] contains a non-zero subfactor of N .

(c)⇒ (d) Any non-zero module in σ[
⊕

λ6=µMλ] contains a non-zero

subfactor of Mν , for some ν ∈ Λ \ {µ}. This implies (d).

(d)⇒ (e) It is easy (see [10]) to verify that L =
⊕

Λ T Mλ(L). 2

2.5 Corollary. Let σ[M ] =
⊕

Λ σ[Nλ] be a σ-decomposition of σ[M ].

Then

(1) each σ[Nλ] is closed under essential extensions in σ[M ];

(2) any L ∈ σ[Nλ] is M-injective if and only if it is Nλ-injective;

(3) M =
⊕

Λ T Nλ(M) is a σ-decomposition of M .

Proof. (1) For any L ∈ σ[Nλ], consider an essential extension L�K in

σ[M ]. Then T Nλ(K)�K and is a direct summand. So K = T Nλ(K) ∈
σ[Nλ].

(2) Any L ∈ σ[Nλ] is M -injective if it has no non-trivial essential

extensions in σ[M ]. Assume L to be Nλ-injective. Then L has no non-

trivial essential extensions in σ[Nλ] and by (1), it has no non-trivial

essential extensions in σ[M ].

(3) Put Mλ := T Nλ(M). By definition, Mλ ∈ σ[Nλ] and it remains

to show that Nλ ∈ σ[Mλ]. Let N̂λ denote the M -injective hull of Nλ.

N̂λ is M -generated, and by (1), N̂λ ∈ σ[Nλ]. This implies that N̂λ is

Mλ-generated and so Nλ ∈ σ[Mλ]. 2

It is obvious that any σ-decomposition of M is also a fully invariant

decomposition. The reverse implication holds in special cases:

2.6 Corollary. Assume M to be a projective generator or an injective

cogenerator in σ[M ]. Then any fully invariant decomposition of M is

a σ-decomposition.
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Proof. Let M =
⊕

ΛMλ be a fully invariant decomposition, i.e.,

HomA(Mλ,Mµ) = 0, for λ 6= µ.

Assume M to be a projective generator in σ[M ]. Then clearly every

submodule of Mλ is generated by Mλ. Since the Mλ’s are projective

in σ[M ], any non-zero (iso)morphism between (sub)factors of Mλ and

Mµ yields a non-zero morphism between Mλ and Mµ. So our assertion

follows from 2.4.

Now suppose that M is an injective cogenerator in σ[M ]. Then

every subfactor of Mλ must be cogenerated by Mλ. From this it follows

that for λ 6= µ, there are no non-zero maps between subfactors of Mλ

and Mµ and so 2.4 applies. 2

Remark. 2.4 and 2.6 are shown in Vanaja [10, Proposition 2.2] and

related constructions are considered in Garćıa-Jara-Merino [4, Section

3] and [3, Theorem 5.2], Nǎstǎsescu-Torrecillas [8, Lemma 5.4] and

Green [5, 1.6c].

Following Garćıa-Jara-Merino [3], we call a moduleM σ-indecompos-

able if M has no non-trivial σ-decomposition.

2.7 Corollary. The following are equivalent:

(a) σ[M ] is σ-indecomposable;

(b) M is σ-indecomposable;

(c) any subgenerator in σ[M ] is σ-indecomposable;

(d) an injective cogenerator which is a subgenerator in σ[M ], has no

fully invariant decomposition.

If there exists a projective generator in σ[M ] then (a)-(d) are equivalent

to:

(e) projective generators in σ[M ] have no fully invariant decomposi-

tions.

It is straightforward to see that a σ-decomposition of the ring A is

of the form

A = Ae1 ⊕ · · · ⊕ Aek, for central idempotents ei ∈ A,

and so A-Mod is σ-indecomposable if and only if A has no non-trivial

central idempotent.
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By the structure theorem for cogenerators with commutative endo-

morphism rings (see [11, 48.16]) we have:

2.8 σ-decomposition when EndA(M) commutative. Let M be a

cogenerator in σ[M ] with EndA(M) commutative. Then M ' ⊕
ΛÊλ,

where {Eλ}Λ is a minimal representing set of simple modules in σ[M ].

This is a σ-decomposition of M and

σ[M ] =
⊕

Λ
σ[Êλ],

where each σ[Êλ] is indecomposable and contains only one simple mod-

ule.

A special case of the situation described above is the ZZ-module

IQ/ZZ =
⊕

p primeZZp∞ and the decomposition of the category of torsion

abelian groups as a direct sum of the categories of p-groups,

σ[ IQ/ZZ] =
⊕

p prime
σ[ZZp∞ ].

Notice that although IQ/ZZ is an injective cogenerator in ZZ-Mod

with a non-trivial σ-decomposition, ZZ-Mod is σ-indecomposable. This

is possible since IQ/ZZ is not a subgenerator in ZZ-Mod.

In general it is not so easy to get σ-decompositions of modules. We

need some technical observations to deal with modules whose endomor-

phism rings are not commutative.

2.9 Relations on families of modules. Consider any family of A-

modules {Mλ}Λ in σ[M ]. Define a relation ∼ on {Mλ}Λ by putting

Mλ ∼Mµ if there exist non-zero morphisms Mλ →Mµ or Mµ →Mλ.

Clearly ∼ is symmetric and reflexive and we denote by ≈ the smallest

equivalence relation on {Mλ}Λ determined by ∼, i.e.,

Mλ ≈Mµ if there exist λ1, . . . , λk ∈ Λ, such that

Mλ = Mλ1 ∼ · · · ∼Mλk = Mµ .

Then {Mλ}Λ is the disjoint union of the equivalence classes {[Mω]}Ω,

Λω ⊂ Λ.

Assume each Mλ ' Êλ, the M-injective hull of some simple module

Eλ ∈ σ[M ]. Then
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Êλ ∼ Êµ if and only if ExtM(Eλ, Eµ) 6= 0 or ExtM(Eµ, Eλ) 6= 0,

where ExtM denotes the extensions in σ[M ].

Proof. For any non-zero morphism Êλ → Êµ, there exists a submodule

Eλ ⊂ L ⊂ Êλ with a non-splitting exact sequence

0→ Eλ → L→ Eµ → 0.

Assume such a sequence is given. From this it is easy to construct

a non-zero morphism f : Êλ → Êµ. 2

A decomposition M =
⊕

ΛMλ is said to complement direct sum-

mands if, for every direct summand K of M , there exists a subset

Λ′ ⊂ Λ such that M = K ⊕ (
⊕

Λ′Mλ) (cf. [1, § 12]). We observe that

such decompositions yield fully invariant indecomposable decomposi-

tions.

2.10 Lemma. Let M =
⊕

ΛMλ be a decomposition which complements

direct summands, where all Mλ are indecomposable. Then M has a

decomposition M =
⊕

ANα, where each Nα ⊂ M is a fully invariant

submodule and does not decompose non-trivially into fully invariant

submodules.

Proof. Consider the equivalence relation ≈ on {Mλ}Λ (see 2.9) with

the equivalence classes {[Mω]}Ω and Λ =
·⋃

Ω Λω. Then Nω :=
⊕

Λω Mλ

is a fully invariant submodule of M , for each ω ∈ Ω, and

M =
⊕

Ω

(⊕
Λω
Mλ

)
=
⊕

Ω
Nω.

Assume Nω = K ⊕ L for fully invariant K,L ⊂ Nω. Since the defining

decomposition of Nω complements direct summands we may assume

that Λω is the disjoint union of subsets X,Y such that

Nω =
(⊕

X
Mλ

)
⊕
(⊕

Y
Mλ

)
.

By construction, for any x ∈ X, y ∈ Y , we have Mx ≈My and it is easy

to see that this implies the existence of non-zero morphisms K → L

or L → K, contradicting our assumption. So Nω does not decompose

into fully invariant submodules. 2

The following are standard examples of module decompositions which

complement direct summands.

8



2.11 Proposition. Let M =
⊕

ΛMλ, where each EndA(Mλ) is local.

(1) If M is M-injective the decomposition complements direct sum-

mands.

(2) If M is projective in σ[M ] and Rad(M) << M , then the decom-

position complements direct summands.

Proof. For the first assertion we refer to [2, 8.13].

The second condition characterizes M as semiperfect in σ[M ] (see

[11, 42.5]) and the assertion follows from [2, 8.12]. 2

2.12 σ-decomposition for locally noetherian modules. Let M be

a locally noetherian A-module. Then M has a σ-decomposition M =⊕
ΛMλ and

σ[M ] =
⊕

Λ
σ[Mλ],

where each σ[Mλ] is σ-indecomposable.

(1) σ[M ] is σ-indecomposable if and only if for any indecomposable

injectives K,L ∈ σ[M ], K ≈ L (as defined in 2.9).

(2) If M has locally finite length, then σ[M ] is σ-indecomposable if

and only if for any simple modules S1, S2 ∈ σ[M ], Ŝ1 ≈ Ŝ2 (M-

injective hulls).

Proof. Let Q be an injective cogenerator which is also a subgenera-

tor in σ[M ]. Then Q is a direct sum of indecomposable M -injective

modules and this is a decomposition which complements direct sum-

mands (by 2.11). By Lemma 2.10, Q has a fully invariant decomposition

Q =
⊕

ΛQλ such that Qλ has no non-trivial fully invariant decomposi-

tion. Now the assertions follow from Corollaries 2.6, 2.7, and 2.5.

(1) This is clear by the above proof.

(2) By our assumption every indecomposable M -injective module is

an M -injective hull of some simple module in σ[M ]. 2

2.13 σ-decomposition for semiperfect generators. If M is a

projective generator which is semiperfect in σ[M ], then M has a σ-

decomposition M =
⊕

ΛMλ, where each Mλ is σ-indecomposable.

In particular, every semiperfect ring A has a σ-decomposition A =

Ae1 ⊕ · · · ⊕ Aek, where the ei are central idempotents of A which are

not a sum of non-zero orthogonal central idempotents.
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Proof. By [11, 42.5] and 2.11, M has a decomposition which com-

plements direct summands. By Lemma 2.10, M has a fully invariant

decomposition and the assertions follow from the Corollaries 2.6, 2.7,

and 2.5. 2

3 Coalgebras and comodules

We recall some basic definitions for coalgebras and comodules.

An R-module C is an R-coalgebra if there is an R-linear map (co-

multiplication)

∆ : C → C ⊗R C, with (id⊗∆) ◦∆ = (∆⊗ id) ◦∆.

An R-linear map ε : C → R is a counit if (id⊗ε)◦∆ and (ε⊗id)◦∆

yield the canonical isomorphism C ' C ⊗R R.

Henceforth C will denote a coalgebra with counit (C,∆, ε) and we

assume that C is flat as an R-module.

The R-dual of C, C∗ = HomR(C,R), is an associative R-algebra

with unit ε where the multiplication of f, g ∈ C∗ is defined by

(f ∗ g)(c) = (f ⊗ g)(∆(c)), for c ∈ C.

An R-submodule D ⊂ C is a left coideal if ∆(D) ⊂ C ⊗RD, a right

coideal if ∆(D) ⊂ D⊗R C, and a sub-coalgebra if ∆(D) ⊂ D⊗RD and

D is pure in C.

An R-module M is called a right C-comodule if there exists an R-

linear map % : M → M ⊗R C such that (id ⊗ ∆) ◦ % = (% ⊗ id) ◦ %,

and (id ⊗ ε) ◦ % yields the canonical isomorphism M ' M ⊗R R. An

R-submodule N ⊂M is called C-sub-comodule if %(N) ⊂ N ⊗R C.

Left C-comodules are defined similarly. Clearly C is a right and

left C-comodule, and right (left) sub-comodules of C are right (left)

coideals.

An R-linear map f : M →M ′ between right comodules is a comod-

ule morphism provided %′ ◦ f = (f ⊗ id) ◦ %.

The right (left) C-comodules and the comodule morphisms form a

category which we denote by Comod-C (C-Comod). These are Grothen-

dieck categories (remember that we assume RC to be flat). The close

connection between comodules and modules is based on the following

facts which are proved in [12, Section 3,4].

10



3.1 C-comodules and C∗-modules. Assume RC to be projective and

let % : M → M ⊗R C be any right C-comodule. Then M is a left C∗-

module by

ψ : C∗ ⊗RM →M, f ⊗m 7→ ((id⊗f) ◦ %)(m).

(1) An R-submodule U ⊂ M is a sub-comodule if and only if it is a

C∗-submodule.

(2) Any R-linear map between right comodules is a comodule mor-

phism if and only if it is C∗-linear.

(3) The category of right C-comodules can be identified with σ[C∗C],

the full subcategory of C∗-Mod, subgenerated by C∗C.

(4) C is a balanced (C∗, C∗)-bimodule and the subcoalgebras of C cor-

respond to the (C∗, C∗)-sub-bimodules.

The properties of the comodule C are strongly influenced by the

properties of the ring R (see [12, 4.9]).

3.2 Coalgebras over special rings. Let RC be projective.

(1) If R is noetherian, then C is a locally noetherian C∗-module and

direct sums of injectives are injective in σ[C∗C].

(2) If R is artinian, then every finitely generated module in σ[C∗C]

has finite length.

(3) If R is injective, then C is injective in σ[C∗C].

Applying our results on decompositions of closed subcategories we

obtain

3.3 σ-decomposition of coalgebras. Let C be a coalgebra over a

noetherian ring R with CR projective.

(1) There exist a σ-decomposition C =
⊕

ΛCλ, and a family of or-

thogonal central idempotents {eλ}Λ in C∗, with Cλ = C · eλ, for

each λ ∈ Λ.

(2) σ[C∗C] =
⊕

Λ σ[C∗Cλ].

(3) Each Cλ is a sub-coalgebra of C, C∗λ ' C∗ ∗ eλ, and σ[C∗Cλ] =

σ[C∗
λ
Cλ].
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(4) σ[C∗C] is indecomposable if and only if, for any two injective

uniform L,N ∈ σ[C∗C], we have L ≈ N .

(5) Assume R to be artinian. Then σ[C∗C] is indecomposable if and

only if for any two simple E1, E2 ∈ σ[C∗C], we have Ê1 ≈ Ê2.

Proof. (1),(2) By 3.2, C is a locally noetherian C∗-module. Now the

decomposition of σC∗ [C] follows from 2.12. Clearly the resulting σ-

decomposition of C is a fully invariant decomposition and hence it can

be described by central idempotents in the endomorphism ring (= C∗,

see 3.1).

(3) The fully invariant submodules Cλ ⊂ C are in particular R-

direct summands in C and hence are sub-coalgebras (by [12, 4.4]). It

is straightforward to verify that HomR(Cλ, R) = C∗λ ' C∗ ∗ eλ is an

algebra isomorphism.

(4) is a special case of 2.12(2).

(5) follows from 2.12(3). Notice that Ê1 ≈ Ê2 can be described by

extensions of simple modules (see 2.9). The assertion means that the

Ext-quiver of the simple modules in σC∗ [C] is connected. 2

3.4 Corollary. Let R be a QF ring and C an R-coalgebra with CR
projective. Then:

(1) C has fully invariant decompositions with σ-indecomposable sum-

mands.

(2) Each fully invariant decomposition is a σ-decomposition.

(3) C is σ-indecomposable if and only if C has no non-trivial fully

invariant decomposition.

(4) If C is cocommutative then C =
⊕

ΛÊλ is a fully invariant de-

composition, where {Eλ}Λ is a minimal representing set of simple

modules.

Proof. By [12, 6.1], C is an injective cogenerator in σC∗ [C] and so the

assertions (1)-(3) follow from 2.6 and 3.3.

(4) Our assumption implies that C∗ is a commutative algebra and

so the assertion follows by 2.8. 2
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For coalgebras C over QF rings we have a bijective correspondence

between closed subcategories of σ[C∗C] and (C∗, C∗)-submodules in C.

However the latter need not be pure R-submodules of C and hence they

may not be sub-coalgebras.

3.5 Correspondence relations. Let R be a QF ring and C an R-

coalgebra with CR projective. Then

(1) for every N ∈ σ[C∗C], σ[N ] = σ[Tr(N,C)];

(2) the map σ[N ] → Tr(N,C) yields a bijective correspondence be-

tween the closed subcategories of σ[C∗C] and the (C∗, C∗)-submod-

ules of C;

(3) σ[N ] is closed under essential extensions (injective hulls) in σ[C∗C]

if and only if Tr(N,C) is a C∗-direct summand of C∗C. In this

case Tr(N,C) is a sub-coalgebra of C.

(4) N ∈ σ[C∗C] is semisimple if and only if Tr(N,C) ⊂ SocC∗(Q);

(5) If R is semisimple, then all Tr(N,C) are sub-coalgebras of C.

Proof. Since R is a QF ring, C∗C has locally finite length and is an

injective cogenerator of σ[C∗C]. Hence (1)-(4) follow from 2.2.

(5) For R semisimple all (C∗, C∗)-submodules Tr(σ[N ], C) are direct

summands as R-modules in C and so they are sub-coalgebras by [12,

4.4]. 2

Remarks. 3.3 and 3.4 extend decomposition results for coalgebras

over fields to coalgebras over noetherian (QF) rings. It was shown in

Kaplansky [6] that any coalgebra C over a field K is a direct sum of

indecomposable coalgebras, and that for C cocommutative, these com-

ponents are even irreducible. In Montgomery [7, Theorem 2.1], a direct

proof was given to show that C is a direct sum of link-indecomposable

components. It is easy to see that the link-indecomposable components

are just the σ-indecomposable components of C (see remark in proof

of 3.3(5)). As outlined in [7, Theorem 1.7] this relationship can also be

described by using the ”wedge”. In this context another proof of the de-

composition theorem is given in Shudo-Miyamoto [9, Theorem]. These

techniques are also used in Zhang [13]. We refer to Garćıa-Jara-Merino

[3, 4] for a detailed description of the corresponding constructions.
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In Green [5], for every C-comodule M , the coefficient space C(M)

was defined as the smallest sub-coalgebra C(M) ⊂ C such that M is a

C(M)-comodule. The definition heavily relies on the existence of a K-

basis for comodules. In the more general correspondence theorem 3.5,

the C(M) are replaced by Tr(M,C). For coalgebras over fields, C(M)

and Tr(M,C) coincide and 3.5 yields [5, 1.3d], [4, Proposition 7], and

[7, Lemma 1.8]. Notice that in [5] closed subcategories in σ[C∗C] are

called pseudovarieties.
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