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Abstract

For left modules X,M over the unital ring R, the M -adic topology on X is

defined by taking as a basis of open neighbourhoods of zero in X the kernels of

all morphisms X →Mk, k ∈ IN .

The aim of this paper is to study the relationship between the notions ad-

dressed in the title. We describe the M -adic completions of the modules X and

RR and display some of their module theoretic properties.

Adopting ideas from Leptin [6], for a given filter basis L of submodules of M ,

we investigate the ring of endomorphisms f of M with (L)f ⊆ L for all L ∈ L.

It is shown that this ring is complete in the point-wise convergence topology

provided M is Hausdorff and complete in the topology determined by the filter

basis L. Taking for L the filter of all submodules of M we obtain information

about alglat(M) (as considered in [2, 3, 4]).

The paper generalizes results from Fuller [2], Fuller-Nicholson-Watters [3],

Hauger-Zimmermann [5], Leptin [6], Menini-Orsatti [8], Vámos [12], Wisbauer

[13].
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Introduction

Let M be a left R-module over the unital ring R, and denote by σ[M ] the full sub-

category of R-Mod consisting of all M -subgenerated R-modules, a closed subcategory

of R-Mod (see e.g. [13, Section 15]). Any closed subcategory of R-Mod is uniquely

determined by a left linear topology on R and vice versa (cf. [11, p. 145] or [14]). In

particular, σ[M ] defines the filter of left ideals of R,

FM = { I ≤R R |R/I ∈ σ[M ] } ,

which is the set of all open left ideals of R in the so called M -adic topology on R.

Similarly, an M -adic topology can be defined on any left R-module X, by taking

as a basis of open neighbourhoods of zero in X the set of all submodules X ′ of X such

that X/X ′ is finitely M -cogenerated. It is worth mentioning that for a two-sided ideal

I of R and RX finitely generated (in particular, if X = R), the classical I-adic topology

on X is precisely the M -adic topology on X, for M =
⊕
n≥1(R/In) .

In section 1 we collect some preliminaries. In section 2 we describe the M -adic

completion of any R-module X (resp. RR) and ask when this completion coincides

with X∗∗ (resp. R∗∗), the double dual with respect to the module M .

Applying these results we observe in section 3 that the M -adic completion R̂ is the

’largest’ ring extension of R for which the categories σ[RM ] and σ[
R̂
M ] coincide.

In section 4 we study the R-module M with a given filter basis L of submodules

of M . Adopting ideas from Leptin [6], we study the ring of ZZ-endomorphisms f of

M satisfying (L)f ⊆ L for each L ∈ L. We show that this ring is complete in the

point-wise convergence topology (induced from MM) if M is Hausdorff and complete

in the topology determined by the filter basis L.

Taking for L the filter of all submodules of M , the ring considered in section 4 yields

alglat(M) as studied by Fuller, Nicholson and Watters (see [3, 4]). We extend their

description of ’alglat’ of finite direct sums to infinite direct sums. Applying results from

the previous sections we provide more information about these notions. In particular,

we observe that alglat(M (IN)) is isomorphic to the M -adic completion of R.

Our results generalize and subsume observations of Fuller [2], Fuller-Nicholson-

Watters [3], Hauger-Zimmermann [5], Leptin [6], Menini-Orsatti [8], Vámos [12], Wis-

bauer [13].

1 Topological preliminaries

Throughout this paper R will denote an associative ring with nonzero identity, and

R-Mod the category of all unital left R-modules. The notation RM (resp. MR) will

be used to emphasize that M is a left (resp. a right) R-module. Any unexplained

terminology or notation can be found in [1] and [13].
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Let RM be a fixed left R-module, and denote by E = End`(ZZM) the ring of all

endomorphisms of the underlying additive group of RM acting on M from the left,

S = End(RM), and B = Biend(RM) the ring of biendomorphisms of RM , i.e., the ring

End(MS). Module morphisms will be written as acting on the side opposite to scalar

multiplication. All other maps will be written as acting on the left.

For any subsets L, F ⊆ M we denote (L : F ) = { r ∈ R | rF ⊆ L } . In particular,

for I ⊆ R and a ∈ R, (I : a) = { r ∈ R | ra ∈ I } .

1.1 Finite topology. If X and Y are two nonempty sets, then the finite topology

of the set Y X of all maps from X to Y , identified with the cartesian product Y X , is

the product topology on Y X , where Y is endowed with the discrete topology. For an

arbitrary f ∈ Y X a basis of open neighbourhoods of f consists of the sets

V{x1,...,xn}(f) = { g ∈ Y X | g(xi) = f(xi) , ∀ i, 1 ≤ i ≤ n } ,

where {x1, . . . , xn} ranges over the finite subsets of X.

For any Z ⊆ Y X , by the finite topology of Z we will understand the topology on Z

induced by the finite topology on Y X .

In particular, for X = Y = M an R-module, we have the finite topology on the

set MM of all maps from M to M , and the finite topology of E = End`(ZZM) is the

induced topology on E ⊆MM .

1.2 Point-wise convergence topology. More generally, if Y is a nonempty topo-

logical space and X is any nonempty set, then the point-wise convergence topology of

Y X is the product topology on Y X (Y with the given topology). When the topology on

Y is discrete we obtain the finite topology on Y X . By the point-wise convergence topol-

ogy of any Z ⊆ Y X we will understand the topology on Z induced by the point-wise

convergence topology on Y X .

1.3 M-dense subrings. If A and C are two unital subrings of the ring E =

End`(ZZM), with A ⊆ C, we say that A is M-dense in C, and we write C ⊆ A, if

A is a dense subset of C endowed with the finite topology, where A means the closure

of A in E. This means precisely that for every finite subset {x1, . . . , xn} of M and for

every c ∈ C there exists an a ∈ A such that

axi = cxi for each i , 1 ≤ i ≤ n .

1.4 M-(co-)generated modules. A left R-module X is said to be M -generated

(resp. M -cogenerated) if there exists a set I and an epimorphism M (I) −→ X (resp.

a monomorphism X −→ M I) ; in case the set I is finite, then X is called finitely M-

generated (resp. finitely M-cogenerated). The full subcategory of R-Mod consisting

of all M -generated (resp. M -cogenerated) R-modules is denoted by Gen(M) (resp.

Cog(M)).
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1.5 σ[M ] and M-adic topology on R. A left R-module X is called M -subgenerated

if X is isomorphic to a submodule of an M -generated module, and the full subcategory

of R-Mod consisting of all M -subgenerated R-modules is denoted by σ[M ]. This is a

Grothendieck category (see [13]) and it determines a filter of left ideals,

FM = { I ≤R R |R/I ∈ σ[M ] } ,

which is precisely the set of all open left ideals of R in the so called M -adic topology

on R. A basis of open neighbourhoods of zero in this topology is

BM(R) = {AnnR(F ) |F a finite subset of M } .

It is easily verified that the inverse image under the canonical ring morphism

λ : R −→ E , λ(r)x = rx , r ∈ R , x ∈M ,

of the finite topology on E is the M -adic topology on R.

1.6 M-adic topology on X. More generally, for any RX, the set

BM(X) = {X ′ |X ′ ≤R X and X/X ′ is finitely M -cogenerated }

= {Ker(f) | f : X →Mk , k ∈ IN }

is a basis of open neighbourhoods of zero in the M -adic topology on X. This topology

on X is Hausdorff separated if and only if X ∈ Cog(M).

In case RX is finitely generated and M -projective, the set of all open submodules

of X in the M -adic topology is

{Ker(f) | f : X → N , N ∈ σ[M ] } .

For RX = RR we regain the descriptions of FM and BM(R).

1.7 Hausdorff completion. For any RX we shall denote by X̂M (or X̂ if no confu-

sion occurs) the Hausdorff completion, or shortly, the completion of X in the M -adic

topology,

X̂ = lim
←−

X′∈BM (X)

X/X ′ .

The completion X̂ of X is a Hausdorff separated complete left linearly topologized

R-module over the left linearly topologized ring R endowed with the M -adic topology,

the canonical map ηX : X −→ X̂ is continuous, and Im(ηX) is dense in X̂.

Recall that if R is a topological ring and X is a topological left R-module, then X is

said to be a linearly topologized R-module if there exists a basis of open neighbourhoods

of zero in X consisting of submodules of X. In particular, a topological ring R is said

to be left linearly topologized if RR is a linearly topologized R-module.
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1.8 L-topology. Let L be a filter basis (inverse system) of submodules of M , i.e.,

a nonempty set of submodules of RM such that for each M1,M2 ∈ L there exists an

M0 ∈ L with M0 ⊆M1 ∩M2.

Such an L defines a basis for the neighbourhoods of zero for a linear topology on

RM , called the L-topology of M . The resulting topological space, in the sequel denoted

by (M,L), is Hausdorff if and only if
⋂
L∈L L = 0, which implies that M is cogenerated

by the modules of the set {M/L |L ∈ L}. The other implication is not true. Take for

instance R = ZZ , M = ZZ2∞ , and L = {T} , where T is the socle of M . Then (M,L)

is not Hausdorff, but M is M/T -cogenerated.

1.9 (M,L)-adic topology. Any filter basis L of M defines a topology on the ring R,

called the (M,L)-adic topology, by taking as a basis of open neighbourhoods of zero

the set of left ideals of R

BM,L(R) = { (L : F ) |L ∈ L , F ⊆M finite } .

Since ((L : F ) : r) = (L : rF ) for any L, F ⊆M and r ∈ R, it follows that BM,L(R) is

a basis of open neighbourhoods of zero for a left linear topology on the ring R.

Moreover, (M,L) is a linearly topologized module over the ring R endowed with the

(M,L)-adic topology. Note that this topology on R is the coarsest left linear topology

which makes (M,L) a linearly topologized left R-module.

More generally, for any left R-module X, the (M,L)-adic topology on X is defined

by the set of submodules

CM,L(X) := {Ker(f) | f : X →
n⊕
i=1

M/Li , L1, . . . , Ln ∈ L , n ∈ IN }

as a filter basis. This is a Hausdorff topology if and only if X is cogenerated by

{M/L |L ∈ L}. Note that for L = {0} we regain the M -adic topology on X.

In particular, for X = RR (or any finitely generated M -projective module), the

(M,L)-adic topology coincides with the M̃ -adic topology, for M̃ :=
⊕

L∈L (M/L).

In this case the (M,L)-adic topology on X also coincides with the weak topology of

characters of X (see [8]), i.e., the coarsest topology on X such that all elements of

HomR(X,M) are continuous.

This observation does not apply to modules X which are not M -projective. Two

different filter bases L1 and L2 of submodules of M generating the same topology

on M may give rise to different (M,L1)-adic and (M,L2)-adic topologies on X. For

example, take R = M = ZZ , X = ZZ2 , L1 = {0} and for L2 the set of all submodules

of ZZ. Of course, L1 and L2 determine the same topologies on ZZ. However, ZZ2 is

Hausdorff separated in the (ZZ,L2)-adic topology but is not Hausdorff separated in the

(ZZ,L1)-adic topology.
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2 M-density and M-completion of modules

In this section we investigate the completion of an arbitrary left R-module X with

respect to the M -adic topology.

Let RM be a fixed R-module and denote S = End(RM) , B = Biend(RM). Then

M becomes in a canonical way a bimodule RMS . For any module RX we use the

notation

X∗S = HomR(RX , RMS) and RX
∗∗ = HomS(X∗S , RMS) .

By ΦX we denote the canonical R-morphism

ΦX : X −→ X∗∗ , ((x)ΦX)(f) := (x)f , x ∈ X, f ∈ X∗ .

Note that for RX = RR we have

R∗∗ = Biend(RM) = B and ΦR = µ ,

where µ denotes the canonical ring morphism

µ : R −→ B , µ(r)x = rx , r ∈ R , x ∈M .

In the sequel we shall endow R and X with the M -adic topology, and X∗∗ with the

finite topology, by considering X∗∗ as a subset of the topological space MX∗ endowed

with the direct product topology, where M is endowed with the discrete topology. As

mentioned before, a basis of open neighbourhoods of zero in the finite topology of X∗∗

consists of the sets

VF (0) = { h ∈ HomS(X∗, M) | Ker(h) ⊇ F } ,

where F ranges over the finite subsets of X∗.

It is known (see e.g. [12, Proposition 1.5]) that R is a topological ring, X and X∗∗

are topological R-modules, ΦX is a continuous map, Ker(ΦX) is the closure of 0 ∈ X
in the M -adic topology, and the topology on (X)ΦX induced by the finite topology of

X∗∗ coincides with the direct image topology under ΦX of the M -adic topology on X.

It is easily verified that the M -adic topology on X∗∗ is finer than the finite topology

on X∗∗. We do not know under which condition they coincide.

Recall that X̂ denotes the completion of an R-module RX in the M -adic topology.

For any Z ⊆ X∗∗ we shall denote by Z the closure of Z in the topological space X∗∗

endowed with the finite topology.

Proposition 2.1 Let RX be a module. Then the M-adic completion of X is precisely

the closure of (X)ΦX in X∗∗, and is described explicitly as

X̂ = {h ∈ X∗∗ | ∀n ∈ IN, ∀ f1, . . . , fn ∈ X∗, ∃x ∈ X, h(fi) = (x)fi , ∀ i , 1 ≤ i ≤ n } .



M-density and M-subgeneration 7

Proof : First, note that the abelian group MX∗ endowed with the finite topology is a

complete group, being a direct product of discrete topological groups. But X∗∗ ⊆MX∗ ,

and it is easily checked that X∗∗ is a closed subset of MX∗ , which implies that X∗∗ is

complete. For another proof of the completeness of X∗∗ see [12, Proposition 1.5 (iii)].

Denote by X̃ the right part of the equality from the statement of the proposition.

Looking at the form of elements of X̃ it is clear that X̃ ⊆ (X)ΦX . To prove the

opposite inclusion, let z ∈ (X)ΦX , and take finitely many f1, . . . , fn ∈ X∗. Then

U = {h ∈ X∗∗ |h(fi) = z(fi) , ∀ i , 1 ≤ i ≤ n }

is a neighbourhood of z, hence U ∩ (X)ΦX 6= ∅ , and so there exists an x ∈ X such

that (x)ΦX ∈ U . It follows that

((x)ΦX)(fi) = (x)fi = z(fi) , ∀ i , 1 ≤ i ≤ n ,

which shows that z ∈ X̃ . Thus, we have proved that X̃ = (X)ΦX . But, as we already

have shown, X∗∗ is complete, and consequently X̃ = X̂ . 2

Corollary 2.2 [5, 2.3] The M-adic completion R̂ of the ring R is the subring

{ b ∈ B | ∀n ∈ IN , ∀x1, . . . , xn ∈M , ∃ r ∈ R , bxi = rxi , ∀ i , 1 ≤ i ≤ n }

of B = Biend(RM). It coincides with the closure µ(R) of µ(R) in B.

Hence R̂ = Biend(RM) if and only if µ(R) is M-dense in B.

Proof : Apply 2.1 for RX = RR. 2

In order to give some sufficient conditions on the given R-module M which ensure

the M -density of µ(R) in B, we need some definitions:

Definitions 2.3 The module RM is said to be a self-generator (self-cogenerator) if it

generates all its submodules (cogenerates all its factor modules).

RM is said to be c-self-cogenerator (’c’ from cyclic) if Mn/X is M-cogenerated for

each n ∈ IN and each cyclic submodule X of RM
n.

According to [13, 15.5] we have

σ[M ] = Gen(M)⇐⇒M (IN) is a self-generator =⇒M is a self-generator .

An example, due to F. Dischinger, of a self-generator which is not a generator in σ[M ]

can be found in [15, Example 1.2].

Notice that another notion of ’self-cogenerator’, apparently different from those

in 2.3, was introduced by Sandomierski in [9, Definition 3.1]: He calls RM a ’self-

cogenerator’ if for any n ∈ IN and X ≤ RM
n, Mn/X ∈ Cog(M). It is obvious that

this condition implies that M is a self-cogenerator as well as a c-self-cogenerator.

According to [5, Satz 2.8] or [13, 15.7], µ(R) is M -dense in B = Biend(RM) = R∗∗

if M is a generator in σ[M ] or M is a c-self-cogenerator. Hence we have from 2.2:
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Corollary 2.4 [5, 2.9] If M is either a generator in σ[M ] or a c-self-cogenerator, then

Biend(RM) is the M-adic completion of R.

We shall say that an R-module RX is M -dense if (X)ΦX is a dense topological

subspace of X∗∗. It is easily checked that this happens if and only if, in the terminology

of [13], ΦX is dense, that is, for any h ∈ X∗∗ and finitely many f1, . . . , fn ∈ X∗ there

exists x ∈ X such that

h(fi) = ((x)ΦX)(fi) = (x)fi , ∀ i , 1 ≤ i ≤ n .

As already noticed, for RX = RR , R∗∗ = Biend(RM) and ΦR = µ; thus RR is

M -dense if and only if µ(R) is M -dense in B.

Lemma 2.5 [13] Let X and M be left R-modules satisfying

(]) for all k ∈ IN and f ∈ HomR(X,Mk) , Coker(f) ∈ Cog(M).

Then X is M-dense.

Proof : See [13, 47.7 (1)]. 2

Remarks 2.6 (1) For RX = RR , condition (]) means that M is a c-self-cogenerator.

(2) The condition (]) is sufficient for RX to be M -dense (not necessary, see [13,

47.7]).

Corollary 2.7 For any RX , X̂ = X∗∗ if and only if X is M-dense.

In particular, X̂ = X∗∗ whenever the condition (]) is satisfied.

Proof : Apply 2.1 and 2.5. 2

The next observation relates the condition (]) to Vámos’ condition in [12, Proposi-

tion 1.5 (iv)].

Corollary 2.8 Suppose that each finitely M-generated module is Hausdorff separated

in the M-adic topology. Then any left R-module X satisfies the condition (]), hence

X̂ = X∗∗ .

Proof : Let RX be an R-module, k ∈ IN , and f ∈ HomR(X,Mk) . Then Coker(f) is

a factor module of Mk, and so, by assumption, it is a Hausdorff separated space in the

M -adic topology. But, as mentioned in section 1, a module RY is Hausdorff separated

in the M -adic topology if and only if Y ∈ Cog(M) . 2
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3 σ[M ] and M-density of R

Recall that for the left R-module RM we use the notation E = End`(ZZM) and B =

Biend(RM). The canonical left E-module structure of M and the scalar multiplication

by R defines the ring morphism

λ : R −→ End`(ZZM) , λ(r)x = rx , r ∈ R , x ∈M .

If A is an arbitrary unital subring of E containing λ(R), then M has also a canonical

structure of left A-module, and we shall denote by

λA : R −→ A

the corestriction of λ to A. Note that according to this notation, the canonical ring

morphism µ : R −→ B considered in the preceding section is precisely λB .

For any X ∈ A-Mod we write λA∗ (X) for the left R-module obtained from AX by

restriction of scalars via λA. If X is a nonempty class of left A-modules, then we shall

also use the notation

λA∗ (X ) = {λA∗ (X) |X ∈ X } .

In this section we show that for a unital subring A of the ring E containing λ(R),

any module in σ[RM ] has a left A-module structure induced by the A-module structure

of M if and only if λ(R) is M -dense in A, or equivalently, if A is a subring of the M -adic

completion R̂ of R.

Proposition 3.1 Let RM , E = End`(ZZM), R̂ the completion of R in the M-adic

topology, and A a unital subring of E containing λ(R), with λ : R −→ E defined

above. Then

σ[RM ] = λA∗ (σ[AM ]) ⇐⇒ A ⊆ λ(R) = R̂ .

In this case, for any X, Y ∈ σ[RM ] , HomR(X, Y ) = HomA(X, Y ) .

Proof : Suppose that σ[RM ] = λA∗ (σ[AM ]), and let {x1, . . . , xn} be an arbitrary

finite subset of M . Then R(x1, . . . , xn) ≤ RM
n, hence R(x1, . . . , xn) ∈ σ[RM ]. By

assumption, any module in σ[RM ] has an A-module structure (induced by the left

A-module structure of M), hence A(x1, . . . , xn) ⊆ R(x1, . . . , xn) , i.e., for any a ∈ A
there exists an r ∈ R such that

axi = rxi for each i , 1 ≤ i ≤ n .

This means precisely that λ(R) is M -dense in A.

Conversely, suppose that λ(R) is M -dense in A, and let U ≤ RM
(Λ) for an arbitrary

nonempty set Λ. But M (Λ) is also a left A-module, because M is so. Let u ∈ U . Then
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u = (xi)i∈Λ , and xi = 0 for all i ∈ Λ \ F , where F is a finite subset of Λ. Since λ(R)

is M–dense in A, we deduce that for any a ∈ A there exists r ∈ R such that

axi = rxi for each i ∈ F ,

and so au = ru ∈ U , which shows that U is an A–submodule of AM
(Λ). Arbitrary

R-modules in σ[RM ] have the form U/V with V ≤ U R-submodules of RM
(Λ), for

some set Λ. Because U and V are A-modules, so is also U/V . It follows that σ[RM ] =

λA∗ (σ[AM ]).

Let now X, Y ∈ σ[RM ] and f ∈ HomR(X, Y ). Then X⊕Y ∈ σ[RM ] = λA∗ (σ[AM ]),

hence for any x ∈ X one has (x, (x)f) ∈ X ⊕ Y , and so, there exist (x1, . . . , xk) ∈Mk

and an A-morphism

ϕ : A(x1, . . . , xk) −→ A(x, (x)f) , a(x1, . . . , xk) 7→ a(x, (x)f) , a ∈ A .

Since λ(R) is dense in A, for any a ∈ A there exists r ∈ R such that

a(x1, . . . , xk) = r(x1, . . . , xk) .

Applying the A-morphism ϕ, we obtain

(a(x1, . . . , xk))ϕ = a(x, (x)f) = r((x1, . . . , xk)ϕ) = r(x, (x)f) ,

and consequently

a((x)f) = r((x)f) = (rx)f = (ax)f ,

which proves that f ∈ HomA(X, Y ) .

Finally, since B is a closed subset of E, the closure of µ(R) in B is the same as the

closure of λ(R) in E, and consequently, by 2.2, we obtain λ(R) = µ(R) = R̂ . 2

Corollary 3.2 [13, 15.8] For the R-module M , let B = Biend(RM), and R̂ the com-

pletion of R in the M-adic topology. Then

σ[RM ] = λB∗ (σ[BM ]) ⇐⇒ B = λ(R) = R̂ .

In this case, for any X, Y ∈ σ[RM ], HomR(X, Y ) = HomB(X, Y ) .

Proof : Apply 3.1 for A = Biend(RM). 2

Corollary 3.3 [8, 6.5] For the R-module M , denote by R̂ the completion of R in the

M-adic topology. Then

σ[RM ] = λR̂∗ (σ[
R̂
M ]) ,

and for any X, Y ∈ σ[RM ], HomR(X, Y ) = Hom
R̂

(X, Y ) .

Proof : By 2.2, R̂ is a subring of B containing λ(R). Now apply 3.1 for A = R̂. 2

Corollary 3.4 For any R-module M , the ring R̂ is the largest unital subring A of

End`(ZZM) containing λ(R) for which σ[RM ] = λA∗ (σ[AM ]) .

Proof : Apply 3.1 and 3.3. 2
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4 L-invariant endomorphisms

Motivated by ideas from Leptin [6], the aim of this section is to introduce and study

the set of all L-invariant endomorphisms of a bimodule RMD with respect to a given

filter basis L of R-submodules of M . Putting for L the set L(RM) of all submodules

of RM we obtain alglat(RMD) (of [2, 3]). In case L is the set of all open submodules

of a linearly topologized R-module we obtain some of the results from [6].

Throughout this section we assume that M is an (R,D)-bimodule RMD for some

ring D (e.g. D = ZZ), such that MD is a topological module over the discrete ring D,

having as a basis of neighbourhoods of zero the given filter basis L of R–submodules

of M (this means precisely that for any d ∈ D and any L ∈ L there exists K ∈ L such

that Kd ⊆ L, in other words, for any d ∈ D the map ρd : M −→ M , x 7→ xd is a

continuous endomorphism of RM endowed with the L-topology).

Endowing End(MD) with the point-wise convergence topology, where M is consid-

ered as the topological space (M,L) by means of the given filter basis L, we have as a

basis of open neighbourhoods of zero the subsets

W (F,L) = {α ∈ End(MD) |α(F ) ⊆ L } ,

where F is a finite subset of M and L ∈ L. Denote by W the set of all these W (F,L).

Observe that in case (M,L) is Hausdorff, then End(MD) is a closed subgroup of

MM endowed with the point-wise convergence topology.

We are interested in the ring

A(RMD,L) := {α ∈ End(MD) | α(L) ⊆ L for any L ∈ L} .

These are the hypercontinuous (hyperstetigen) functions considered in Leptin [6, p.250].

Taking for L the set L(RM) of all submodules of RM we obtain alglat(RMD) (of [2, 3]).

Notice that A(RMD,L) depends on the filter L and not on the topology on M

defined by this filter. For instance, the filters L1 = {0} and L2 = L(RM) both define

the discrete topology on M but in general

A(RMD,L1) = End(MD) 6= alglat(RMD) = A(RMD,L2) .

Clearly A(RMD,L) is a unital subring of the ring Cend(MD) of all endomorphisms

of MD which are continuous in the L-topology of M .

For any finite subset F of M and any L ∈ L let us denote

W̃ (F,L) = A(RMD,L) ∩W (F,L) .

Then, the set W̃ = { W̃ (F,L) |W (F,L) ∈ W } is a basis of open neighbourhoods

of zero in the topology on A(RMD,L) induced by the point-wise convergence topology

on End(MD).
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Moreover, W̃ consists of left ideals of A(RMD,L). Indeed, if α ∈ A(RMD,L) and

β ∈ W̃ (F,L) then (α ◦ β)(F ) = α(β(F )) ⊆ α(L) ⊆ L. Since for any W̃ (F,L) ∈ W
and α ∈ A(RMD,L) one has W̃ (αF,L) ⊆ (W̃ (F,L) : α) we deduce that A(RMD,L)

is a left linearly topologized ring.

Note that the canonical morphism

ν : R −→ A(RMD,L) , r 7→ νr ,

is a continuous ring morphism, where νr(x) = rx , r ∈ R , x ∈M .

Clearly M has a canonical left A(RMD,L)-module structure (since it is a left

End(MD)-module), and any L ∈ L is an A(RMD,L)-submodule of M . It is easily

verified that the map

A(RMD,L)×M −→M , (α, x) 7→ α(x) , α ∈ A(RMD,L) , x ∈M ,

is continuous, so (M,L) becomes a linearly topologized left A(RMD,L)-module.

We will consider the topologies on the subspaces induced by the product topology

(i.e., point-wise convergence topology) on MM ,

ν(R) ⊆ A(RMD,L) ⊆ A(RMZZ ,L) ⊆MM .

The next two results are similar to observations in Leptin [6].

Proposition 4.1 If (M,L) is Hausdorff separated and complete, then A(RMD,L) is

a complete topological ring in the point-wise convergence topology.

Proof : It is sufficient to show that A(RMD,L) is a closed subspace of the Hausdorff

separated complete topological space MM (or End(MD), because this last one is a

closed subspace of MM , as we already have noted above). Put C := A(RMD,L).

Let β ∈ C , where C denotes the closure of C in End(MD). Then, for any neigh-

bourhood W ({x1, . . . , xn}, L) of zero in End(MD), with {x1, . . . , xn} an arbitrary

finite subset of M and L ∈ L, one has

(W ({x1, . . . , xn}, L) + β) ∩ C 6= ∅ .

We show that β ∈ C . Let L ∈ L and x ∈ L. There exists γ ∈ (W ({x}, L) + β) ∩ C ,
that is, (γ − β)(x) ∈ L . But γ(x) ∈ γ(L) ⊆ L since γ ∈ C and L ∈ L, hence β(x) ∈ L
for any x ∈ L, in other words, β(L) ⊆ L. This proves that β ∈ C. 2

Recall that a linearly topologized left R-module N is said to be linearly compact

if N has the following property: for any set F of closed cosets (i.e., cosets of closed

submodules) in N having the finite intersection property (any finite number of elements

of F has a nonempty intersection), the cosets in F have nonempty intersection (see

e.g. [7]).
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Proposition 4.2 If (M,L) is a Hausdorff separated linearly compact R-module, then

A(RMD,L) is a left linearly compact ring.

Proof : We adopt ideas from the proof of [6, Satz 7]. First notice that any Hausdorff

separated linearly compact module is complete (see e.g. [7, 3.11]), so in particular

RM is a complete module. By 4.1, the ring C := A(RMD,L) is complete, hence it is

isomorphic to the direct limit of the family of left C-modules C/W̃ (F,L) , where F

is a finite subset of M , L ∈ L, and W̃ (F,L) = C ∩ W (F,L) . It is well-known (see

e.g. [7, 3.7]) that an inverse limit of linearly compact modules is also linearly compact,

so it is sufficient to prove that any such discrete left C-module C/W̃ (F,L) is linearly

compact.

We know that M is a left C-module, and any L ∈ L is a C-submodule of CM . For

F = {x1, . . . , xn}, consider the canonical C-morphism

ψ : C −→ (M/L)n , ψ(α) = (α(x1) + L, . . . , α(xn) + L) ,

which has as kernel the left ideal W̃ (F,L) of C. Thus, the left C-module C/W̃ (F,L)

is embedded into the discrete linearly compact C-module (M/L)n. It follows that the

discrete left C-module C/W̃ (F,L) is linearly compact, which finishes the proof. 2

Remark 4.3 As in [6], one can show that if (M,L) is strictly linear compact, then so

is also A(RMD,L)

5 alglat(M) and M-adic completion

In this section we present some connections between our results from the previous

sections and the concept of alglat(M). First recall some definitions from [2, 3].

Definitions 5.1 For any (R,D)-bimodule RMD we define

alglat(M) = alglat(RMD) = { α ∈ End(MD) | α(L) ⊆ L for all L ≤ RM } .

For n ∈ IN , denote by alglatn(M) the set of all α ∈ alglat(M) such that for all

(x1, . . . , xn) ∈Mn there exists an r ∈ R with α(xi) = rxi for all i , 1 ≤ i ≤ n ; by [2],

this is canonically isomorphic to alglat(Mn).

With our previous notation we have alglat(RMD) = A(RMD,L(RM)) .

The behaviour of ’alglat’ with respect to finite direct sums was investigated in [2,

Section 2]. The general case of arbitrary direct sums is considered below.

Lemma 5.2 If (Mi)i∈I is an arbitrary family of (R,D)-bimodules, then for each α ∈
alglat(

⊕
i∈IMi) there exist αi ∈ alglat(Mi) , i ∈ I such that

α((xi)i∈I) = (αi(xi))i∈I ,
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for each (xi)i∈I ∈
⊕
i∈IMi .

In case Mi = M for each i ∈ I, then αi = αj for all i, j ∈ I.

Proof : For each i ∈ I denote by εi : Mi −→
⊕

j∈IMj the canonical injection and

M ′
i = (Mi)εi . Then M ′

i ' Mi as R-D bimodules, hence alglat(Mi) ' alglat(M ′
i) and

(M ′
i)α ⊆M ′

i for any i ∈ I because α ∈ alglat(
⊕

i∈IMi) . For any i ∈ I, denote by αi the

element in alglat(Mi) corresponding to α′i = α|M ′
i ∈ alglat(M ′

i) by the isomorphism

alglat(Mi) ' alglat(M ′
i). Then for any (xi)i∈I ∈

⊕
i∈IMi,

α((xi)i∈I) = α(
∑
i∈I

(xi)εi)) =
∑
i∈I

α′i((xi)εi)) = (αi(xi))i∈I .

Now consider the particular case when Mλ = M for each λ ∈ I, and take arbitrary

two elements i 6= j in I. For an arbitrary x ∈M consider the element (xλ)λ∈I ∈M (I)

defined as follows: xi = xj = x and xλ = 0 for all λ ∈ I \{i, j}. Since α ∈ alglat(M (I)),

we deduce that there exists an r ∈ R such that

α((xλ)λ∈I) = (αλ(xλ))λ∈I = r(xλ)λ∈I ,

and consequently we deduce that αi(x) = αj(x) = rx , i.e., αi = αj for all i, j ∈ I. 2

Corollary 5.3 With the notation from 5.2, the map α 7−→ (αi)i∈I defines a ring

monomorphism

alglat(
⊕
i∈I

Mi) −→
∏
i∈I

alglat(Mi) .

The next result is the discrete variant of Proposition 4.1. Note that for any bimodule

RMD , alglat(RMD) is a subring of End(MD) which is a subset of MM , so it makes

sense to consider the finite topology on alglat(RMD).

Proposition 5.4 For any bimodule RMD the ring alglat(RMD) is complete in the

finite topology.

Proof : This is a special case of 4.1 for L = L(RM). 2

For an arbitrary R-module RN , alglat(N) will denote throughout the remainder of

this section alglat(RNT ) , where T = End(RN) .

Proposition 5.5 For any module RM ,

R̂ =
⋂
n≥1

alglatn(M) ' alglat(M (IN)) ,

where R̂ is the M-adic completion of R.
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Proof : If we denote D = End(RM) , then clearly End(MD) = Biend(RM) = B , and⋂
n≥1 alglatn(M) is precisely the set

{ b ∈ B | ∀n ∈ IN , ∀x1, . . . , xn ∈M , ∃ r ∈ R , bxi = rxi , ∀ i , 1 ≤ i ≤ n } .

Apply 2.2 to conclude that
⋂
n≥1 alglatn(M) = R̂ .

Let b ∈ ⋂
n≥1 alglatn(M) , and denote by b the endomorphism of the right D-module

M (IN) defined by

b((xn)n∈IN) = (bxn)n∈IN .

Since xn = 0 for n sufficiently large, it follows that b((xn)n∈IN) = r(xn)n∈IN for some

r ∈ R, hence b ∈ alglat(RM
(IN)
D ) . By 5.2 and 5.3, the map b 7−→ b defines a ring

isomorphism

Θ :
⋂
n≥1

alglatn(M)
∼−→ alglat(RM

(IN)
D ) .

It remains to prove that

alglat(RM
(IN)
D ) ' alglat(M (IN)) .

Recall that alglat(M (IN)) denotes alglat(RM
(IN)

G) , where G = End(RM
(IN)) . But

End(M (IN)
G) = Biend(RM

(IN)), and there is a ring isomorphism ([1, 4.2])

ρ : Biend(RM) −→ Biend(RM
(IN)) , ρ(b)((xn)n∈IN) = (bxn)n∈IN .

On the other hand,

alglat(RM
(IN)

G) = { b ∈ Biend(RM
(IN)) | bz ∈ Rz for all z ∈M (IN) } .

We conclude that the endomorphism b of the right D-module M (IN) corresponding

to b ∈ ⋂
n≥1 alglatn(M) by Θ, belongs to alglat(M (IN)) , which finishes the proof.

Notice that the isomorphism stated in the proposition also follows from [10, Theo-

rem 1]. 2

Corollary 5.6 The M-adic completion R̂ of R is a subring of alglat(M).

Corollary 5.7 If RR is M-dense (in particular, if M is generator in σ[M ] or a c-

self-cogenerator) then

alglat(M (IN)) ' Biend(RM) = R̂ .

Proof : Apply 2.4 and 5.5. 2

Proposition 5.8 Suppose the bimodule RMD is such that RM is discrete linearly

compact. Then alglat(RMD) is a left linearly compact ring in the finite topology.
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Proof : Apply 4.1 for L = L(RM). 2

Notice that by [13, 15.6], for any self-generator RM , alglat(M) ' Biend(RM). In

view of 5.6 and 5.7 we end with the problem:

When is alglat(M) the M-adic completion of R, or more generally, if L is a filter

basis of submodules of RM , when is A(RMD,L) , with D = End(RM), the completion

of R in the (M,L)-adic topology of the ring R ?
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