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Abstract

It was shown in Dung-Smith [2] that, for a module M , every module

in σ[M ] is extending (CS module) if and only if every module in σ[M ] is

a direct sum of indecomposable modules of length ≤ 2 or - equivalently

- every module in σ[M ] is a direct sum of an M -injective module and a

semisimple module. Here we characterize these modules by the fact that

every module in σ[M ] is lifting or - equivalently - decompose as a direct sum

of a semisimple module and a projective module in σ[M ]. They are also

determined by the functor ring of σ[M ] being a QF -2 ring with Jacobson

radical square zero.

As a Corollary we obtain a result of Vanaja-Purav [8]: All (left) R-

modules are lifting if and only if R is a generalized uniserial ring with

Jacobson radical square zero.

1 Preliminaries

Let R denote an associative ring with unit, R-Mod the category of unital left R-

modules, and M a left R-module. We call M locally artinian, noetherian, of finite

length if every finitely generated submodule of M has the corresponding property.

The notation K �M means that K is a small (superfluous) submodule of M .
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By σ[M ] we denote the full subcategory of R-Mod whose objects are submod-

ules of M -generated modules.

For any R-module N , E(N) will denote the injective hull of N in R-Mod. For

N ∈ σ[M ], N̂ is the injective hull of N in σ[M ]. N̂ is also called the M-injective

hull of N and is isomorphic to the trace of M in E(N).

N ∈ σ[M ] is injective in σ[M ] if and only if N is M -injective.

1.1 Functor ring. Denote by {Uλ}Λ a representing set of all finitely generated

modules in σ[M ] and U =
⊕

Λ Uλ.

T := ÊndR(U) = {f ∈ EndR(U) | (Uλ)f = 0 almost everywhere }

is called the functor ring of σ[M ]. T has no unit but has enough idempotents.

(1) T is left perfect if and only if every module in σ[M ] is a direct sum of finitely

generated modules. In this case M is called pure semisimple ([10], 53.4).

(2) Assume M is locally of finite length. Then T is semiperfect ([10], 51.7).

(3) Assume for every primitive idempotent e ∈ T , Te is finitely cogenerated.

Then M is locally artinian ([10], 52.1).

A ring T with enough idempotents is called semiperfect if simple T -modules

have projective covers (see [10], 49.10). T is said to be a left (right) QF -2 ring if

it is semiperfect and, for every primitive idempotent e ∈ T , Te (resp. eT ) has a

simple essential socle (e.g., [3], section 4).

1.2 Theorem. For an R-module M with functor ring T the following are equiv-

alent:

(a) For some k ∈ IN , every module in σ[M ] is a direct sum of uniserial modules

of length ≤ k;

(b) T is a left and right QF -2 ring and Jac(T ) is nilpotent.

Proof: Consider a representing set {Uλ}Λ of all finitely generated modules in

σ[M ], U =
⊕

Λ Uλ and T = ÊndR(U).

(a)⇒(b) By condition (a), U is a direct sum of indecomposable modules

of bounded length. Hence, by the Harada-Sai Lemma (e.g., [10], 54.1), T is

semiperfect and Jac(T ) is nilpotent.
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Since M is locally of finite length we know from [10], 53.5 that UT is T -

injective. Now we can use the conclusions (a)⇒(b)⇒(c) of [10], 55.15 to derive

that T is left and right QF -2.

(b)⇒(a) Assume T is a left and right QF -2 ring and Jac(T )n = 0, for some

n ∈ IN . Then M is pure semisimple and locally artinian (see 1.1) and hence

locally of finite length. With the proof of (c)⇒(a) in [10], 55.15 we see that

indecomposable modules in σ[M ] are uniserial.

It remains to show that for every uniserial N ∈ σ[M ], length N ≤ n. Assume

N has a composition series

0 6= N1 ⊂ . . . ⊂ Nn ⊂ Nn+1 = N.

From this we obtain a sequence of n morphisms in Jac(T ),

Nn → N → N/N1 → · · · → N/Nn−1,

whose product is not zero, contradicting Jac(T )n = 0. 2

2 Lifting modules

An R-module M is called extending or CS module if every submodule is essential

in a direct summand of M .

M is said to be lifting if every submodule K ⊂M lies above a direct summand,

i.e., there is a direct summand X ⊂ M with X ⊂ K and K/X � M/X. For

characterizations of this condition refer to [10], 41.11 and 41.12.

A family {Nλ}Λ of independent submodules of M is said to be a local direct

summand of M if any finite (direct) sum of Nλ’s is a direct summand in M ,

and we say it is a direct summand if
⊕

ΛNλ is a direct summand in M (see [4],

Definition 2.15).

A module is called continuous if it is extending and direct injective. In par-

ticular, self-injective modules are continuous.

Recall two results about these modules:

2.1 Lemma. Let M be a continuous R-module.

(1) Assume every local direct summand of M is a direct summand. Then M is

a direct sum of indecomposable submodules.
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(2) Assume M is lifting. Then local direct summands of M are direct sum-

mands.

Proof: (1) See [5], Lemma 2.4 or [4], Theorem 2.17.

(2) This is shown in [5], Lemma 2.5. 2

A ring R is called a left H-ring if every injective module in R-Mod is lifting.

Some of the characterizations of H-rings (see [5], Theorem 1) can be extended to

modules. For this we need the

Definition. A module K ∈ σ[M ] is said to be small in σ[M ] if it is a small

submodule in its M -injective hull, i.e., K � K̂.

2.2 Theorem For any R-module M , the following are equivalent:

(a) Every injective module in σ[M ] is lifting;

(b) M is locally noetherian and every non-small module in σ[M ] contains an

M-injective submodule;

(c) every module in σ[M ] is a direct sum of an M-injective module and a small

module.

Proof: (a)⇒(b) By 2.1, every injective module in σ[M ] is a direct sum of in-

decomposable submodules. This implies that M is locally noetherian (see [10],

27.5).

Assume N is not small in its M -injective hull N̂ . Since N̂ is lifting there is a

direct summand X ⊂ N̂ with X ⊂ N and N/X � N̂/X. By assumption, X is

not zero.

(b)⇒(a) Referring to [10], 27.3, apply the proof of Proposition 2.7 in [5].

(a)⇒(c) Consider N ∈ σ[M ] with M -injective hull N̂ . Since N̂ is lifting, by

[10], 41.11, a direct summand X ⊂ N̂ is contained in N and N = X + Y with

Y � N̂ . This implies that Y is small in σ[M ].

(c)⇒(a) With respect to [10], 41.11, this is obvious. 2

It was pointed out in Osofsky [6], Lemma B (also in the proof (1)⇒(3) of

Vanaja-Purav, Proposition 2.13) that, for a uniserial module M with composition

series 0 6= V ⊂ U ⊂ M , M ⊕ U/V is not an extending module. For the same

situation we observe:
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2.3 Lemma. Assume M is a uniserial module with composition series 0 6= V ⊂
U ⊂M . Then the module M ⊕ U/V is not lifting.

Proof: Assume M ⊕ U/V is lifting. Then, by Theorem 1 in [1], U/V is M -

projective. However, the diagram

U/V

↓
M −→ M/V −→ 0

cannot be extended commutatively by any h : U/V → M , since the image of

such a morphism always is contained in V . 2

The main purpose of this note is to prove:

2.4 Theorem. For any R-module M the following are equivalent:

(a) Every module in σ[M ] is lifting;

(b) every module in σ[M ] is a direct sum of a semisimple module and a projec-

tive module in σ[M ];

(c) every module in σ[M ] is a direct sum of modules of length ≤ 2;

(d) T is a left and right QF -2 ring and Jac(T )2 = 0.

If this conditions hold, there is a projective generator in σ[M ] and all indecom-

posable modules of length ≤ 2 are M-projective.

Proof: (a)⇒(d) Assume every module in σ[M ] is lifting. Then by Theorem 2.2,

M is locally noetherian. It is easy to see that finitely generated uniform lifting

modules are local modules, i.e., their factor modules are indecomposable.

Consider an indecomposable injective module Q ∈ σ[M ]. Then for any finitely

generated submodule K ⊂ Q, K/Rad(K) is simple and hence Q is uniserial (see

[10], 55.1). In particular, every uniform module in σ[M ] is uniserial of length ≤ 2

(by Lemma 2.3). So the M -injective hull M̂ of M is a direct sum of modules

of length ≤ 2 and hence M̂ (and M) is locally of finite length. This implies

that every finitely generated module in σ[M ] is a direct sum of indecomposable

modules (of length ≤ 2).
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Denote by {Uλ}Λ a representing set of all finitely generated modules in σ[M ]

and U =
⊕

Λ Uλ. By the Harada-Sai Lemma, the functor ring T := ÊndR(U) has

the properties that T/Jac(T ) is semisimple and Jac(T ) is nilpotent.

In particular, M is pure-semisimple, i.e., every module in σ[M ] is a direct sum

of finitely generated modules and these are direct sums of uniserial submodules

of length ≤ 2. Now the assertion follows from Theorem 1.2.

Since T is right perfect, there exists a projective generator in σ[M ] by [10],

51.13.

Consider an indecomposable module N of length 2. This is a factor module

of a supplemented projective module in σ[M ] and hence has a projective cover

P (see [10], 42.1), which again is indecomposable and hence of length ≤ 2. This

implies P = N , i.e., N is M -projective.

(c)⇔(d) This is clear by Theorem 1.2.

(c)⇒(a) Consider any module N =
⊕

ANα in σ[M ], with Nα uniserial of

length ≤ 2. By Theorem 1 in [1], N is lifting if and only if {Nα}A is locally semi

T -nilpotent and Nα is almost Nβ-projective for any α 6= β in A.

The first condition is satisfied by the Harada-Sai Lemma (see [10], 54.1). Any

Nα of length 2 is projective in σ[M ] (as noted above) and hence is almost K-

projective for any K ∈ σ[M ].

Assume Nα has length 1 and consider any diagram with exact line

Nα

↓f
Nβ

p→ L → 0,

with length Nβ ≤ 2. If p is not an isomorphism and f 6= 0, there exists an

epimorphism g : Nβ → Nα with p = gf . From this we see that Nα is almost

Nβ-projective and N is lifting.

(c)⇒(b) It is clear from the above that modules of length 2 are M -projective.

Recall that finitely generated M -projective modules are projective in σ[M ]. From

this the assertion is obvious.

(b)⇒(c) Consider a finitely generated N ∈ σ[M ]. Then every factor module

of N is a direct sum of a projective module and a noetherian module and hence

N is noetherian by [7], section 3. This implies that M is locally noetherian.
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Now let K ∈ σ[M ] be any indecomposable M -injective module. Assume K

is not semisimple. Then it is projective in σ[M ]. Since EndR(K) is local, K is

a local module, i.e., every factor module is indecomposable (see [10], 19.7) and

hence simple. From this we deduce that K has length ≤ 2.

Since every M -injective module in σ[M ] is a direct sum of indecomposables

the assertion follows. 2

From Theorem 2.4 together with Theorem 11 in Dung-Smith [2] we obtain a

characterization of rings with all modules lifting which extends Proposition 2.13

in Vanaja-Purav [8]:

2.5 Corollary. For any ring R the following are equivalent:

(a) Every left R-module is lifting;

(b) every left R-module is extending;

(c) every left R-module is a direct sum of a semisimple module and a projective

module;

(d) every left R-module is a direct sum of modules of length ≤ 2;

(e) R is a generalized uniserial ring with Jac(R)2 = 0.

It follows from (e) that the conditions (a)− (d) are left right symmetric.
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