
HOMOLOGICAL PROPERTIES OF QUANTUM POLYNOMIALS

VYACHESLAV A. ARTAMONOV AND ROBERT WISBAUER

Abstract. In the paper we study the endomorphim semigroup of a general

quantum polynomial ring, its finite groups of automorphisms and homological
properties of this ring as a module over the skew group ring of a finite group

of automorphisms. Moreover properties of the division ring of fractions are
considered.

Introduction

The study of quantum polynomial rings was initiated by J. C. McConnell and J.
J. Pettit [MP] as multiplicative analog of the Weyl algebra. They are of considerable
interest in non-commutative algebraic geometry.

The action of automorphism groups was studied by J. Alev and M. Chamarie
[AC]. The extended action of finite automorphism groups on division rings of
fractions (for two indeterminates) and its subrings of invariants were studied by J.
Alev and F. Dumas [AD]. Similar topics are considered in [M1], [Kh], [KPS], [OP].
An extensive investigation of various properties of general quantum polynomials
was performed by the first author in [A1], [A2], [A3], [A4].

The purpose of the present paper is to study actions of finite automorphism
groups on such rings under the assumption that the number of indeterminates is
at least 3. In Section 1 basic properties of general quantum rings are collected.
Then the form of ring endomorphisms of such rings is determined in Section 2.
The subsequent section is devoted to the description of invariants under finite au-
tomorphism groups. In this context the trace map is an important tool and related
results are provided is Section 4. More properties of the quantum polynomial rings
as modules over skew group rings are given in the final section.

1. General quantum polynomials

Let D be a division ring with a fixed set α1, . . . , αn, n ≥ 2, of its automor-
phisms. We shall also fix elements qij ∈ D∗, i, j = 1, . . . , n, satisfying the equal-
ities

qii = qijqji = QijrQjriQrij = 1, αi(αj(d)) = qijαj(αi(d))qji, (1)

where
Qijr = qijαj(qir), and d ∈ D.

Put
Q = (qij) ∈ Mat(n,D) and α = (α1, . . . , αn).
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Definition 1.1. The entries qij of the matrix Q form a system of multiparameters.

Definition 1.2. Denote by

Λ = DQ,α[X±1
1 , . . . , X±1

r , Xr+1, . . . , Xn] (2)

the associative ring generated by elements of D and by the elements

X1, . . . , Xn, X
−1
1 , . . . , X−1

r , (3)

subject to the defining relations

XiX
−1
i = X−1

i Xi = 1 , 1 ≤ i ≤ r;
Xid = αi(d)Xi, d ∈ D, i = 1, . . . , n;

XiXj = qijXjXi, i, j = 1, . . . , n. (4)

The ring (2) is called a quantum polynomial ring. If r = n the ring (2) is said to
be a quantum Laurent polynomial ring.

Such rings first appeared in [MP] as a mulitplicative analog of the Weyl algebra.
It is assumed in [MP] that D is a field, α1 = · · · = αn are identical automorphisms of
D and r = n. In this particular case (1) is equivalent to the equalities qii = qijqji =
1 for all i, j = 1, . . . , n. The importance of quantum polynomials in noncommutative
geometry is explained in [D]. It can be viewed as the coordinate ring OQ(An) of the
quantum affine plane An of dimension n [BG], [GL1],[GL2]. A survey of some results
on a structure of projective modules is exposed in [A3]. As it follows from [A1] the
ring (2) is a crossed product Λ = D]tH, where the bialgebra H is a tensor product
of an integral group ring of a free abelian group with the basis {Xi|1 ≤ i ≤ r} and
an integral semigroup ring of a free abelian semigroup with the basis {Xi|i ≤ n}.

Proposition 1.3 ([A3], §2). The ring Λ from (2) is a left and a right vector space
over D whose basis consists of monomials

u = Xm1
1 · · ·Xmn

n ,

where mi ∈ Z if 1 ≤ i ≤ r and mi ∈ N ∪ 0, if i ≤ n. In particular the ring Λ from
(2) is a left and right Noetherian domain with the division ring of fractions

F = DQ,α(X1, . . . , Xn).

Each automorphism αi of D can be extended to F in such a way that

αi(f) = XifX
−1
i

for all f ∈ F .

It is shown in [MP] that if D is a field and α is a set of identical automorphisms
of D, then

DQ,α[X±1
1 , . . . , X±1

n ] ' DQ′,α′ [Y ±1
1 , . . . , Y ±1

n ],

if and only if there exists a matrix M = (mij) ∈ GL(n,Z), such that

q′ij =
∏
r,s

qmrimsjrs .

Definition 1.4. Let N be the subgroup in the multiplicative group D∗ of the
division ring D generated by the derived subgroup [D∗, D∗] and the set of all
elements of the form z−1αi(z), where z ∈ D∗ and i = 1, . . . , n.
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It is fairly obvious that N is a normal subgroup in the multiplicative group
D∗ and D∗/N is a multiplicative abelian group. The normal subgroup N always
appears when we multiply monomials in the ring Λ. The following formulae will be
used throughout the paper. For any two monomials in Λ we have

(Xm1
1 · · ·Xmn

n )(Xs1
1 · · ·Xsn

n ) =

∏
i≤j

q
mjsi
ji

u ·Xm1+s1
1 · · ·Xmn+sn

n . (5)

where u ∈ N / D∗. The proof follows immedialety from (4).

Theorem 1.5. Let F be the division ring of fractions of Λ. Then N = [F ∗, D∗] ∩
D∗. The subgroup of D∗/N generated by the images of qij , 1 ≤ i, j ≤ n, is equal to
[F ∗, F ∗] ∩D∗.

Recall that elements a1, . . . , am of a multiplicative abelian group are independent
if, for any integers s1, . . . , sm, we have

as11 · · · asmm = 1 ⇐⇒ s1 = · · · = sm = 0.

In the paper [A1] the following restriction on the multiparameters is assumed.

(♠) the images of all multiparameters qij , 1 ≤ i ≤ j ≤ n, are independent in the
multiplicative abelian group D∗/N .

The restriction of this form first appeared in the paper [MP]. If the restriction
(♠) is satisfied we call Λ the ring of general quantum polynomials.

The following example shows that rings of general quantum Laurent polynomials
are naturally related to group rings of some soluble groups.

Example 1.6. Let a soluble group W be generated by elements

Y = {Yi|1 ≤ i ≤ n}.
Suppose that W has a normal series

W = W0 > W1 > W2 > . . . > Wt+1 = 1,

with finitely generated free abelian factors Wi/Wi+1, such that the elements

Ỹ = {YiW1| 1 ≤ i ≤ n, Yi ∈W} ⊂W/W1

form a basis of the free abelian group W/W1. Suppose also that the elements

{YijW2|1 ≤ i ≤ j ≤ n, Yij = [Yi, Yj ]} ⊂W1/W2.

form a basis of the free abelian group W1/W2. Let α1, . . . , αn be the inner auto-
morphism of the group W of conjugation by Y1, . . . , Yn. Note in particular that

αi(Ypq) ≡ Ypq (mod W1).

Let k be a field and kW, kW1 group algebras of the groups W,W1, respectively.
According to [B, §11], the multiplicative semigroup S = kW1 \0 is an Ore set in the
group algebra kW . Hence there exists the division ring of fractions D of the group
ring kW1, and therefore we can consider the ring S−1kW as a general quantum
Laurent polynomial ring A from (2) with r = n.

Some other examples of general quantum polynomials can be found in exam-
ple 3.20 and in example 5.4.

In what follows we are going to study the endomorphism semigroup of Λ.
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Notation 1.7. Denote by End Λ the semigroup of all ring endomorphisms of Λ
acting identically on D. Denote by Aut Λ the group of all ring automorphisms of
Λ, identical on D, i.e., the invertible elements of the semigroup End Λ.

We recall some related results on this subject.

Proposition 1.8 ([AC]). Let Λ be a quantum polynomial ring in which r = 0, n =
2, and α1 = α2 are identical automorphisms of D. Denote in this case the corre-
sponding ring Λ by Aq. If q 6= ±1, then Aut(Aq) consists of the torus (D∗)2 with its
natural action on DX1 ⊕DX2. If q = −1, then Aut(Aq) is the semi-direct product
of (D∗)2 and 〈τ〉 where

τ(X1) = X2, τ(X2) = X1.

Theorem 1.9 ([AC]). Let

Λ = Aq1 ⊗ · · · ⊗Aqm ,
where Aqi are from Proposition 1.8. Then the automorphism group Aut Λ is the
semi-direct product of the torus (D∗)2m and the group of permutations of the vari-
ables X1, . . . , X2m.

Theorem 1.10 ([AC]). Let Λ be a quantum polynomial ring over a field D with
identical automorphisms α1, . . . , αn. Suppose that r = 0 and qij = q for all 1 ≤
i ≤ j ≤ n, where q is not a root of unit.

If n 6= 3, then Aut(Λ) ' (D∗)n.
If n = 3, then Aut(Λ) is isomorphic to the semi-direct product of the additive

group of the field D and the multiplicative group (D∗)3. The additive group of D
has the following action on Λ: an element β ∈ D induces the automorphism

X1 7→ X1, X2 7→ X2 + βX1X3, X3 7→ X3,

of the ring Λ.

Theorem 1.11 ([OP], Proposition 3.2). Let D be a field in which the automor-
phisms α1, . . . , αn are identical. Suppose that r = 0 and the localized ring

DQ[X±1
1 , . . . , X±1

n ] = ΛX1···Xn = DQ[X1, . . . , Xn]X1···Xn

is simple. If γ ∈ Aut Λ, then there exist elements γ1 . . . , γn ∈ D∗ and a permutation
σ ∈ Sn such that

γ(Xi) = γiXσ(i).

Similar problems were considered in [KPS]. The following result is related to the
previous ones. We quote it in a slighty modified way.

Theorem 1.12 ([A2], Theorem 3.7). Let D be a field with a set of identical auto-
morphisms α1, . . . , αn. Suppose that r = 0 and the mutiparameters

qij , 1 ≤ i ≤ j ≤ n, n ≥ 3,

are independent in the multiplicative group D∗. If

γ ∈ End Λ and all γ(X1), . . . , γ(Xn) 6= 0

then
γ ∈ Aut Λ and Aut(Λ) = (D∗)n.

Theorem 1.13 ([A3], Ch 3.). Let Λ be a general quantum polynomial ring with
r = n ≥ 2. Then Λ is a simple ring.
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Although the proof is exposed in [A3] under a slightly weaker setting we present
the proof in the special case of a general quantum polynomial ring.

Proof. Let I be a nonzero two-sided ideal in Λ. Choose in I a nonzero element

f =
∑

al1,... ,lnX
l1
1 · · ·X ln

n , l1, . . . , ln ≥ 0, (6)

whose leading term

as1,... ,snX
s1
1 · · ·Xsn

n , as1,... ,sn ∈ D∗,

is minimal with respect to lexicographic order of multi-indices.
Let, say s1 > 0. Then

X2fX
−1
2 =

∑
α2(al1,... ,ln)(q21X1)l1 · · · (q2nXn)ln

=
∑
α2(al1,... ,ln)ql121 · · · q

ln
2ndl1,... ,lnX

l1
1 · · ·X ln

n ,

where dl1... ,ln ∈ N (the normal subgroup from Definition 1.4). Put

z = α2(as1,... ,sn)qs121 · · · q
sn
2nds1,... ,sna

−1
s1,... ,sn ∈ D

∗.

Then g = zf − X2fX
−1
2 ∈ I and if g 6= 0, the leading term of g is less than the

leading term of f , which is impossible. Hence we have for each multi-index in (6),

zal1,... ,ln = α2(al1,... ,ln)ql121 · · · q
ln
2ndl1,... ,ln . (7)

Suppose that (l1, . . . , ln) ≤ (s1, . . . , sn) with respect to lexicographic order and
al1,... ,ln 6= 0. We obtain from (6), (7)

α2(as1,... ,sn)qs121 · · · q
sn
2nds1,... ,sna

−1
s1,... ,snal1,... ,ln = α2(al1,... ,ln)ql121 · · · q

ln
2ndl1,... ,ln ,

and therefore in D∗/N ,

qs121 · · · q
sn
2nN = ql121 · · · q

ln
2nN.

Since q21 = q−1
12 , q22 = 1 and q12, q23, . . . , q2n are independent in D∗/N , we obtain

s1 = l1, s3 = l3, . . . , sn = ln. Similarly considering the conjugation by X1 we can
also obtain s2 = l2. Thus (l1, . . . , ln) = (s1, . . . , sn), a contradiction.

We have proved that f is a monomial. However, r = n and each variable Xi is
invertible in Λ. Then any monomial is invertible in Λ and I = Λ.

In the next section we shall generalize Theorem 1.12 to arbitrary general quan-
tum polynomial rings Λ, and study finite groups G of automorphisms of Λ.

2. Endomorphisms of general quantum polynomial rings

In this section we shall assume that Λ is a general quantum polynomial ring from
(2), i.e., the images of qij , 1 ≤ i ≤ j ≤ n, are independent in D∗/N .

Theorem 2.1. Suppose that γ ∈ End Λ and there exist at least three distinct in-
dices 1 ≤ i, j, t ≤ n such that γ(Xi), γ(Xj), γ(Xt) 6= 0. Then there exist elements
γ1, . . . , γn ∈ D and an integer ε = ±1 such that γ1, . . . , γr 6= 0, and

γ(Xw) = γwX
ε
w, w = 1, . . . , n. (8)

If r < n, then ε = 1.
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Proof. We shall modify the proof of Theorem 3.7 from [A2]. Consider the natural
lexicographic order on the set of multi-indices Zn and on the set of monomials
in X1, . . . , Xn. Let γ ∈ End Λ and denote by ai, i = 1, . . . , n, the smallest (the
leading) term of γ(Xi) provided γ(Xi) 6= 0.

Suppose that γ(Xi), γ(Xj) 6= 0. Observe that the smallest (the leading) term of
a product of non zero polynomials in Λ is equal to the product of the smallest (the
leading) terms of factors. Thus (4) implies

aiaj = qijajai. (9)

Suppose that

ai = βX l1
1 · · ·X ln

n , aj = ξXt1
1 · · ·Xtn

n , where β, γ ∈ k∗.
Comparing the coefficients and using (5) we obtain

βξ

(∏
r>s

qlrtsrs

)
= βξqij

(∏
r>s

qtrlsrs

)
d,

where d ∈ N , N is from Definition 1.4. Hence in D∗/N we have(∏
r>s

qlrtsrs

)
≡ qij

(∏
r>s

qtrlsrs

)
mod N. (10)

Suppose that i > j. Since the images of qrs, n ≥ r > s ≥ 1 in D∗/N are independent
(10) we have for r 6= s

lrts = δriδsj + trls. (11)

Consider the matrix(
l1 · · · lj · · · li · · · ln
t1 · · · tj · · · ti · · · tn

)
, n ≥ 3.

Let for example lp 6= 0 and p 6= j, i. For each index q 6= p by (11) we have∣∣∣∣lp lq
tp tq

∣∣∣∣ = 0

and therefore tq = tplql
−1
p . In particular

ti = tplil
−1
p , tj = tplj l

−1
p ,

that is
litj − ljti = litplj l

−1
p − ljtplil−1

p = 0,
which contradicts (11). Thus lp = 0 for all p 6= i, j. Similarly one can prove that
tp = 0 if p 6= i, j.

Hence
ai = βX li

i X
lj
j , aj = ξXti

i X
tj
j , where litj − ljti = 1.

By the assumption there exists a third variable Xu such that γ(Xu) 6= 0. The
preceding argument applied to the pairs of indices (i, u), (j, u) shows that

au = δXru
u Xri

i = λXdu
u X

dj
j , where δ, λ ∈ k∗.

Finally ri = dj = 0, that is au = δXru
u . Similarly

ai = βX li
i , aj = ξX

tj
j , litj = 1,

and therefore li = tj = ε = ±1.



QUANTUM POLYNOMIALS 7

If we apply the corresponding argument for the leading term of γ(Xi) we obtain
a similar result with some ε′ = ±1 for the leading terms. Thus if either r < n or
r = n and ε = ε′ the theorem is proved.

Let now r = n, ε = −1, ε′ = 1. We have now to show that the least and the
leading terms of γ(Xi) coincide and therefore they are equal to ai.

From above we know that if i = 1, . . . , n, then

γ(Xi) = γ′iX
−1
i +

∑
s

γ′′i (s)Xmi1(s)
1 · · ·Xmin(s)

n (12)

where γ′i, γ
′′
i (s) ∈ D∗ and the sum is taken over some multi-indices

(mi1(s), . . . ,min(s)) ∈ Zn

such that

(0, . . . , 0,
i
−1, 0, . . . , 0) < (mi1(s), . . . ,min(s)) ≤ (0, . . . , 0,

i
1, 0, . . . , 0).

Thus

mi1(s) = · · · = mi,i−1(s) = 0, mii(s) = −1, 0, 1;

mi,i+1(s)

{
> 0, i < n, if mii(s) = −1,
≤ 0, i < n, if mii(s) = 1.

(13)

Pick for each index i = 1, . . . , n the least monomial γ′′i X
mii
i · · ·Xmin

n in (12). Then
γ(Xi)γ(Xj) = qijγ(Xj)γ(Xi), i < j, implies

γ′iX
−1
i γ′jX

−1
j + γ′iX

−1
i γ′′jX

mjj
j · · ·Xmjn

n + (14)

γ′′i X
mii
i · · ·Xmin

n γ′′j γ
′
jX
−1
j + · · · =

qijγ
′
jX
−1
j γ′iX

−1
i + qijγ

′
jX
−1
j γ′′i X

mii
i · · ·Xmin

n + (15)

qijγ
′′
jX

mjj
j · · ·Xmjn

n γ′′i γ
′
iX
−1
i + · · · , (16)

where + · · · is a sum of monomials δX l1
1 · · ·X ln

n , δ ∈ D∗ such that

(l1, . . . , ln) > min((0, . . . , 0,mii, . . . ,mi,j−1,mij − 1,mi,j+1, . . . ,min),

(0, . . . , 0,
i
−1, 0, . . . , 0,mjj , . . . ,mjn)).

Since γ′iX
−1
i γ′jX

−1
j = qijγ

′
jX
−1
j γ′iX

−1
i we deduce from (14) that

γ′iX
−1
i γ′′jX

mjj
j · · ·Xmjn

n + γ′′i X
mii
i · · ·Xmin

n γ′′j γ
′
jX
−1
j + · · ·

qijγ
′
jX
−1
j γ′′i X

mii
i · · ·Xmin

n + qijγ
′′
jX

mjj
j · · ·Xmjn

n γ′′i γ
′
iX
−1
i + · · · . (17)

Suppose first that

(0, . . . , 0,mii, . . . ,mi,j−1,mij − 1,mi,j+1, . . . ,min) ≤

(0, . . . , 0,
i
−1, 0, . . . , 0,mjj , . . . ,mjn).

Then mii = −1. Moreover if i + 1 ≤ j − 1 then mi,i+1 = 0, a contradiction with
(13). Thus if i ≤ j − 2, then

(0, . . . , 0,mii, . . . ,mi,j−1,mij − 1,mi,j+1, . . . ,min) >

(0, . . . , 0,
i
−1, 0, . . . , 0,mjj , . . . ,mjn),
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and therefore in (17)

γ′iX
−1
i γ′′jX

mjj
j · · ·Xmjn

n = qijγ
′′
jX

mjj
j · · ·Xmjn

n γ′′i γ
′
iX
−1
i .

Applying (5) we obtain
1 = q−1

ji

∏
r≥j>i

q
−mjr
ri .

Thus

mjr =

{
−1, r = j,

0, r > j,

a contradiction with (13).
Thus we have proved that if 1 ≤ i ≤ j − 2 < j ≤ n then either γ(Xi) or γ(Xj)

has the form (8) for ε = −1 and for w = i, j. Suppose that (8) holds for some
w = 1, . . . , n. Then by the previous considerations the leading term of any γ(Xr)
has the form γrX

−1
r , that is (8) holds for any variable.

Corollary 2.2. If γ(Xr+1), . . . , γ(Xn) 6= 0, in the situation of Theorem 2.1, then
γ is an automorphism of Λ. In particular any injective endomorphism of Λ is an
automorphism.

Remark 2.3. The assumption in Theorem 2.1 of the existence of three variables
with non-zero images is essential. For example, let D be a field, r = 0, n = 2
and α1, α2 identical on D. Then there exists a nontrivial endomorphism of the
coordinate algebra Λ of the quantum plane, for example,

X1 7→ X2
1X2, X2 7→ X3

1X
2
2 .

Observe also that there exist automorphisms of the ring Λ which are not identical on
D. In fact if d ∈ D is a noncentral element then the automorphism of conjugation
by d is an automorphism of the ring Λ which is not identical on D.

Remark 2.4. Let S be the set of all γ ∈ End Λ such that γ(Xi) 6= 0 for at most
two indices i ∈ {1, . . . , n}. If S is nonempty, then the ring Λ is not a simple one
and therefore we have, by Theorem 1.13, n.

We claim that S is an ideal in the semigroup End Λ. In fact let δ ∈ End Λ. Then
δγ(Xi) 6= 0 implies γ(Xi) 6= 0. Thus δγ ∈ S. If δ /∈ S, then by Theorem 2.1, since
n,

δ(Xi) = δiXi, δi ∈ D for all i.
Thus

γδ(Xi) = γ(δiXi) = δiγ(Xi),
and therefore γδ ∈ S.

Starting from now we shall always assume the number of variables n ≥ 3, al-
though some of results are valid for n = 2.

Theorem 2.5. Let γ ∈ Aut Λ be of the form (8).
If ε = 1, then the elements γ1, . . . , γn are central in D and

γiαi(γj) = γjαj(γi), i, j = 1, . . . , n. (18)

If ε = −1, then

αiαj(qji)αi(γj)γi = qijαj(γi)γj (19)

α2
i (d) = γidγ

−1
i . (20)
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In particular, the elements αi(γi)γ−1
i are central in D.

Proof. By definition γ respects the defining relations (4), namely,

(γiXε
i )(γjX

ε
j ) = qij(γjXε

j )(γiX
ε
i );

(γiXε
i )d = αi(d)(γiXε

i ), d ∈ D.
This means that

γiα
ε
i(γj)X

ε
iX

ε
j = qijγjα

ε
j(γi)X

ε
jX

ε
i ;

γiα
ε
i(d) = αi(d)γi, d ∈ D.

If ε = 1, then

γiαi(γj) = qijγjαj(γi)qji; (21)
γiαi(d) = αi(d)γi, d ∈ D. (22)

If ε = −1, then

γiα
−1
i (γj) = qijγjα

−1
j (γi)α−1

i α−1
j (qji); (23)

γiα
−1
i (d) = αi(d)γi, d ∈ D. (24)

Suppose that ε = 1. Then (22) means that each coefficient γi is central, since αi
is an automorphisms of D. Moreover, from (21) one can easily deduce (18), since
qijqij = 1 and all γt are central.

Consider now the case ε = −1. Then r = n ≥ 3 and the ring Λ is simple by
Theorem 1.13. Hence each endomorphism has a trivial kernel. This means that
each coefficient γi 6= 0. Applying (24) we obtain in (23)

αi(γj)γi = qijαj(γi)γjγ−1
i αi(γj)−1αiαj(qji)αi(γj)γi,

or
1 = qijαj(γi)γjγ−1

i αi(γj)−1αiαj(qji),
and (19) holds. Moreover from (24) one can easily deduce (20).

Note that

γ2(Xi) = γ(γiX−1
i ) = γiγ(Xi)−1

= γi(γiX−1
i )−1 = γiXiγ

−1
i = γiαi(γi)−1Xi.

Hence
αi(γi)γ−1

i = [γiαi(γi)−1]−1

is central in D.

Notation 2.6. Denote by End+ Λ the subsemigroup of all γ ∈ End Λ of the form
(8) with ε = 1. Put Aut+ Λ = End+ Λ ∩Aut Λ.

Corollary 2.7. The group Aut+ Λ is commutative.

Proof. Let γ, δ be from Aut+ Λ and

γ(Xi) = γiXi, δ(Xi) = δiXi, γi, δi ∈ D∗.
Then

(γδ)(Xi) = γ(δiXi) = (δiγi)Xi = (γiδi)Xi = (δγ)(Xi),
since γi, δi are central.

Corollary 2.8. If r < n , then Aut Λ is commutative.

Proof. If n, then Aut Λ = Aut+ Λ by Theorem 2.1
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Corollary 2.9. Let G be a subgroup in Aut+ Λ of order d and γ ∈ G of the form
(8). Then γdi = 1 for any i.

Proposition 2.10. Let p = charD > 0. Then Aut+ Λ has no elements of order p.

Proof. Let γ ∈ Aut+ Λ have order p and γ has the representation (8). Then γpi = 1
by Corollary 2.9, for any i. Therefore γi = 1 and γ is the identical automorphism.

Proposition 2.11. Let r = n. Then End Λ = Aut Λ ∪ 0. If ζ ∈ Aut Λ \ Aut+ Λ,
then ζ has the form (8) with ε = −1 and

ζ2 ∈ Aut+ Λ, ζ(Aut+ Λ)ζ−1 = Aut+ Λ, Aut Λ = Aut+ Λ ∪ ζ Aut+ Λ.

Proof. Since the ring Λ is simple by Theorem 1.13, any nonzero endomorphism has
zero kernel. Thus if γ 6= 0, then each coefficient γi 6= 0, for any i. In this case γ is
an automorphism.

Remark 2.12. It follows from Corollary 2.8 and Proposition 2.11 that the group
Aut Λ is metabelian, i.e., it is a soluble group of a class at most 2.

Proposition 2.13. Let r = n and G a finite subgroup in Aut Λ. If

ζ ∈ G \Aut+ Λ,

then G = (G ∩Aut+ Λ) ∪ ζ(G ∩Aut+ Λ).

Proposition 2.14. Let p = charD > 2 and r = n. Then Aut Λ has no non-
identical elements of order p.

Proof. If ζ ∈ Aut Λ has order p > 2, then ζ2 ∈ Aut+ Λ has also order p, a contra-
diction to Proposition 2.10.

Corollary 2.15. Let p = charD > 0 and G a finite subgroup in Aut Λ such that
|G| is divisible by p. Then p = 2, r = n, and G 6⊆ Aut+ Λ.

Definition 2.16. Let Zn be the free addivite abelian group of a rank n, whose
elements are identified with vectors (l1, . . . , ln), lj ∈ Z. We consider the ring Λ
with the natural Zn-grading

Λ = ⊕(l1,... ,ln)Λl1,... ,ln ,

where

Λl1,... ,ln =

{
DX l1

1 · · ·X ln
n , if lr+1, . . . , ln ≥ 0,

0, otherwise.

Remark 2.17. Let p = charD and

k =

{
Q, the field of rationals, if p = 0;
Fp, the residue field of Z modulo p, if p > 0.

Let H be a group k-algebra of a free abelian group with the basis X1, . . . , Xn with
comultiplication ∆(Xi) = Xi ⊗Xi for any i. Thus Λ is kH-comodule by

ρ : Λ→ Λ⊗k kH, ρ(dX l1
1 · · ·X ln

n ) = dX l1
1 · · ·X ln

n ⊗X
l1
1 · · ·X ln

n , d ∈ D. (25)

Then Aut+ Λ coincides with the automorphism group of Λ as a right kH-comodule
algebra, since these automorphisms - and only these - preserve the grading from
Definition 2.16 (see [M2, example 4.1.7]).
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Remark 2.18. For a left ideal (a subring) I in Λ the following are equivalent (see
[M2]):

1. I is homogeneous with respect to the grading from Definition 2.16;
2. if f ∈ I, then all monomials occuring in f belong to I;
3. if ρ is the structure map from (25) for Λ as a right the kH-comodule Λ, then
I is a subcomodule, that is, ρ(I) ⊆ I ⊗ kH.

4. I is generated as a left ideal (as a ring) by some monomials.

Corollary 2.19. Let G be a subgroup of Aut+ Λ. If I is a homogeneous left ideal
with respect to the grading from Definition 2.16, then I is G-invariant.

Definition 2.20. An automorphism γ ∈ Aut Λ is inner if there exists an invertible
element u ∈ Λ such that γ(x) = uxu−1 for all x ∈ Λ.

Remark 2.21. Because of the grading from Definition 2.16 an element u ∈ Λ is
invertible if and only if

u = gX l1
1 · · ·X lr

r , g ∈ D∗, l1, . . . , lr ∈ Z. (26)

Notice that an automorphism γ ∈ Aut Λ is inner if and only if, for some u ∈ Λ∗,

γ(z) = uzu−1, γ(Xi) = uXiu
−1, (27)

for every z ∈ D and each index i = 1, . . . , n. In fact elements of D and the variables
from (3) generate the ring Λ.

Theorem 2.22. Let γ ∈ Aut Λ be of the form (8). If γ is inner, then for any
index i = 1, . . . , n and every z ∈ D we have

γi ∈ ql11i · · · q
lr
riN, αl11 · · ·αlrr (z) = g−1zg, (28)

where N is the normal subgroup of D∗ from Definition 1.4.

Proof. Let γ be of the form (27), where u from (26). We have for each index
i = 1, . . . , n,

γiX
ε
i = uXiu

−1 = gX l1
1 · · ·X lr

r XiX
−lr
r · · ·X−l11 g−1

= ql11i · · · q
lr
rig
′Xi, g′ ∈ N.

Hence ε = 1 and for each index i = 1, . . . , n we have

γi ∈ ql11i · · · q
lr
riN.

Moreover, if z ∈ D, then

γ(z) = gX l1
1 · · ·X lr

r zX
−lr
r · · ·X−l11 g−1 = gαl11 · · ·αlrr (z)g−1 = z,

because γ acts identically on D.

Corollary 2.23. Let γ ∈ Aut+ Λ be inner of the form (27), where u from (26).
Suppose that γ has finite order. Then u = g is a central element of D and γi =
gαi(g)−1 is a root of 1, for every i = 1, . . . , n.

Proof. Let γ have order d ≥ 1. By Corollary 2.9, γdi = 1 for every i = 1, . . . , n.
Thus by (28), qdl11i · · · q

dlr
ri ∈ N. From Definition 1.4 we know that in this case

l1 = . . . = lr = 0 and therefore u = g ∈ D∗.
Also from (28) we have z = g−1zg, for any z ∈ D, that is the element g belongs

to the center of D. Now

γ(Xi) = gXig
−1 = gαi(g)−1Xi,
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and so γi = gαi(g)−1.

Corollary 2.24. Suppose that the automorphisms α1, . . . , αn act identically on the
center of D, and let G be a finite subgroup in Aut Λ. Then any inner automorphism
in G is identical.

Proof. Let γ ∈ G be inner. By Theorem 2.22, γ is of the form (8) with ε = 1 and
by Corollary 2.23,

γi = gαi(g)−1, i = 1, . . . , n,

where g is a central element of D. By the assumption αi(g) = g and therefore
γi = 1, for any i = 1, . . . , n.

3. Invariants of groups of automorphisms

In this section we study invariants of various subgroups G of Aut Λ, where Λ is
a general quantum polynomial ring as in the previous section.

Notation 3.1. If G is a subgroup of Aut Λ then by ΛG we denote the subring of
all elements a ∈ Λ which are stable under the action of any element g ∈ G, that is
g(a) = a for each g ∈ G.

Proposition 3.2. Let f ∈ Λ \ 0 and γ ∈ Aut Λ have the form (8) with ε = 1. If
γ(f) = f , then γ(g) = g for every monomial g occuring in f .

Proof. Let γ be of the form (8) with ε = 1 and

f =
∑

βl1,... ,lnX
l1
1 · · ·X ln

n , βl1,... ,ln ∈ D. (29)

Then

γ(f) =
∑

βl1,... ,ln(γ1X1)l1 · · · (γnXn)ln

=
∑

βl1,... ,lnγl1,... ,lnX
l1
1 · · ·X ln

n , γl1,... ,ln ∈ D∗.

Since γ(f) = f , we have

βl1,... ,lnX
l1
1 · · ·X ln

n = βl1,... ,lnγl1,... ,lnX
l1
1 · · ·X ln

n

= γ(βl1,... ,lnX
l1
1 · · ·X ln

n ).

Proposition 3.3. Let γ ∈ Aut Λ \ Aut+ Λ, r = n, and f ∈ Λ \ 0. Then the
following are equivalent:

1. γ(f) = f ;
2.

f =
∑

l1,... ,ln∈Z

(β′l1,... ,lnX
l1
1 · · ·X ln

n + β′′l1,... ,lnX
−l1
1 · · ·X−lnn ),

where

γ(β′l1,... ,lnX
l1
1 · · ·X ln

n ) = β′′l1,... ,lnX
−l1
1 · · ·X−lnn ,

γ(β′′l1,... ,lnX
−l1
1 · · ·X−lnn ) = β′l1,... ,lnX

l1
1 · · ·X ln

n
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Proof. We need only to prove that 1) implies 2). Let f be from 1) and suppose
that f has representation (29). Then

f = γ(f) =
∑

βl1,... ,ln(γ1X
−1
1 )l1 · · · (γnX−1

n )ln

=
∑

β̂l1,... ,lnX
−l1
1 · · ·X−lnn , β̂l1,... ,ln ∈ D.

Now the proof follows.

Proposition 3.4. Let γ ∈ Aut+ Λ have finite order d. Then

γ(Xφ(d)d
i ) = X

φ(d)d
i ,

where φ is the Euler function.

Proof. Let
γ(Xi) = γiXi, γi ∈ D.

From Theorem 2.5 and Corollary 2.9 we know that γi is a central element of D and
γdi = 1.

Let γi be a primitive root of one with degree m dividing d. Then for any j ∈ Z
the element αji (γi) is again a primitive root of one with degree m. The set T of
these roots consists of all elements {γti |(t,m) = 1} and |T | = φ(m). Put

αi(γi) = γri , (r,m) = 1, 1 ≤ m.
The cyclic group generated by the automorphism αi acts on T and the orbits of this
action have length t, where t is the smallest positive integer such that γi = αti(γi).
Thus φ(m) = tw,w ∈ N. The number t is equal to the minimal positive integer
such that m|(rt − 1).

Claim. φ(m)|φ(d).

Proof. Consider the prime decompositions of m and d,

m = pl11 · · · p
lk
k , d = pv1

1 · · · p
vk
k , 0 ≤ li ≤ vi.

Suppose that l1, . . . , lj > 0 and lj+1 = · · · = lk = 0. Then

φ(m) = pl1−1
1 · · · plj−1

j (p1 − 1) · · · (pj − 1),

φ(d) = pv1−1
1 · · · pvk−1

k (p1 − 1) · · · (pk − 1),

and the proof follows.

Now we are able to complete the proof of the Proposition. We have

γ(Xφ(d)d
i ) = (γiXi)φ(d)d = γiαi(γi) · · ·αφ(d)d−1

i (γi)X
φ(d)d
i

and
γiαi(γi) · · ·αφ(d)d−1

i (γi) = γMi ,

where

M = 1 + r + · · ·+ rφ(d)d−1. (30)

By the Claim we have φ(d) = φ(m)h, h ∈ N, and φ(m) = tw, m|(rt − 1). Thus
φ(d)d = twhd, and in (30) we can write

M = (1 + r + · · ·+ rt−1)(1 + rt + · · ·+ rt(whd−1)).

But γr
t

i = γi and γdi = 1. Thus

γMi = γ
(1+rt+···+rt(whd−1))(1+r+···+rt−1)
i = γ

whd(1+r+···+rt−1)
i = 1.
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Corollary 3.5. Let G be a finite subgroup of Aut+ Λ of order d. Then ΛG con-
tains the subring Φ generated by D and by all elements Xφ(d)d

i , i = 1, . . . , n. In
particular, Λ is a finitely generated left and right Φ-module.

Corollary 3.6. Let G be a finite subgroup of Aut+ Λ. Then ΛG is left and right
Noetherian.

Proof. By Proposition 3.4 we know that ΛG ⊇ Φ, where Φ is from Corollary 3.5.
The ring Φ is again a quantum polynomial ring with variables Xφ(d)d

i , i = 1, . . . , n,
and their inverses if 1 ≤ i ≤ r. Hence Φ is left and right Noetherian by Proposi-
tion 1.3.

The ring Λ is a finitely generated free Φ-module. In fact the monomials

X l1
1 · · ·X ln

n , 0 ≤ li ≤ φ(d)d for every i,

form a basis of Λ as a free finitely generated Φ-module. Thus ΛG is a finitely
generated left and right Φ-module too, and therefore it is left and right Noetherian.

The following Corollary is related to [P], Proposition 5, p. 60 and Proposition
5, p. 68.

Corollary 3.7. Let I be a nonzero left ideal in Λ and G,Φ from Corollary 3.5.
Then I ∩ Φ 6= 0.

Proof. As already mentioned above the ring Φ is a quantum polynomial ring over
D with the variables Xφ(d)d

i and their inverses if 1 ≤ i ≤ r. Thus the ring Φ is left
and right Noetherian. The ring Λ is a finitely generated Φ-module and therefore it
is a Noetherian Φ-module.

Let f ∈ I \ 0. Put

Mj =
j∑
s=0

Φfs.

Thus we obtain in Λ an ascending chain of Φ-submodules

M0 ⊆M1 ⊆M2 ⊆ . . . .
Then there exists an integer k > 1 such that Mk−1 = Mk. It means that fk ∈Mk−1

and therefore there exist elements a0, . . . , ak−1 ∈ Φ such that

fk =
k−1∑
j=0

ajf
j .

Since Λ is a domain we can always assume that a0 6= 0. Then

a0 = fk −
k−1∑
j=1

ajf
j ∈ Φ ∩ Λf ⊆ Φ ∩ I.

Remark 3.8. Up to now we considered finite subgroups of ring automorphisms G
which are contained in Aut+ Λ. The next step is to study subgroups G ⊆ Aut Λ
which are not contained in Aut+ Λ. Observe that if Aut Λ 6= Aut+ Λ, then by
Theorem 2.1, r = n. The subgroup Aut+ Λ has index 2 in Aut Λ and any element
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of the coset Aut Λ \ Aut+ Λ has the form (8) with ε = −1, see Proposition 2.11.
Thus if G is a subgroup of Aut Λ which is not in Aut+ Λ, then G contains an element
ζ of the form (8) with ε = −1. Moreover G∩Aut+ Λ is a subgroup of index 2 in G.
There are two cosets of G with respect to the subgroup G ∩ Aut+ Λ, namely, the
subgroup itself and ζ(G ∩Aut+ Λ). In particular the order of G is always even.

Proposition 3.9. Let γ ∈ Aut Λ\Aut+ Λ and r = n. Suppose that γ has the form
(8) with ε = −1 and

f = βX l
i + δX−li , β, δ ∈ D∗, l > 0.

If l = 2s, then γ(f) = f if and only if

δ = βγsi αi(γi)
s.

If l = 2s+ 1, then γ(f) = f if and only if

γi = αi(γi), δ = βγli.

Proof. Let γ(f) = f . By Proposition 3.3 we have

β(γ(Xi))l = δX−li , δ(γ(Xi))−l = βX l
i .

Then

β(γ(Xi))l = β(γiX−1
i )l = βγiα

−1
i (γi) · · ·α−(l−1)

i (γi)X−li ;

δ(γ(Xi))−l = δ(γiX−1
i )−l = δ(Xiγ

−1
i )l = δαi(γi)−1 · · ·αli(γi)−1X l

i .

Thus

β = δαi(γi)−1 · · ·αli(γi)−1, δ = βγiα
−1
i (γi) · · ·α−(l−1)

i (γi),

and therefore

αli(γi) · · ·αi(γi) = γiα
−1
i (γi) · · ·α−(l−1)

i (γi). (31)

From (20) we have α2k
i (γi) = γi for any integers k. Hence α−ki (γi) = αki (γi), for any

k. Moreover since αi(γi)γ−1
i is central in D, the elements αi(γi) and γi commute.

Thus in (31) we have

αli(γi) · · ·αi(γi) = γiαi(γi) · · ·α(l−1)
i (γi),

or γi = αli(γi). This means that if l = 2s + 1, then γi = αi(γi), and the assertion
follows.

If l = 2s, then δ = β(γiαi(γi))s.

Theorem 3.10. Let G be a finite subgroup of order 2d in Aut Λ and G 6⊆ Aut+ Λ.
As noticed in Remark 3.8, there exists an element

ζ ∈ G \Aut+ Λ, such that ζ(Xi) = ζiX
−1
i , ζi ∈ D∗ for all i = 1, . . . , n. (32)

Then

X
2φ(d)d
i + [ζiαi(ζi)]2φ(d)dX

2φ(d)d
i ∈ ΛG. (33)

Proof. The group H = G ∩Aut+ Λ has order d. Hence

X
2φ(d)d
i , X

−2φ(d)d
i ∈ ΛH

by Proposition 3.4. Apply Proposition 3.9.



16 VYACHESLAV A. ARTAMONOV AND ROBERT WISBAUER

Corollary 3.11. Let G be a finite subgroup of order d in Aut Λ, G 6⊆ Aut+ Λ, and
r = n. Denote by Ψ the subring in Λ, generated by D and by all elements of the
form (33), i = 1, . . . , n, where ζ is from (32). Then Ψ ⊆ ΛG and Λ is a finitely
generated left and right Ψ-module.

To prove that the ring Ψ is Noetherian we need two technical observations.

Lemma 3.12. Let ζ1, . . . , ζn be from (32), and ξi = ζiαi(ζi). Then αi(ξi) = ξi.

Proof. By (20) we have

αi(ξi) = αi[ζiαi(ζi)] = α(ζi)α2
i (ζi) = αi(ζi)ζi.

But by Theorem 2.5 the elements α(ζi), ζi commute.

Lemma 3.13. Let R be a left Noetherian ring with an automorphism β. Consider
in a skew Laurent polynomial extension R[Y ±1;β] a subring Γ generated by R and
by an element Z = Y + νY −1 such that ν = β(ν) is an invertible element of R.
Then Γ is left Noetherian.

Proof. Observe first that

Zm = Y m +
m−1∑
j=2‘1

(
m

j

)
νjY m−jY −j + νmY −m.

This means that if aY m is the leading term of some f ∈ Γ, then aνmY −m is the
smallest term of f .

Let I be a left ideal in Γ and let Im be the set consisting of zero and all leading
coefficients of polynomials of degree m in I. It is clear that Im ⊆ β−1(Im+1)
for any m, and each Im is a left ideal in R. Since R is left Noetherian, the set
of left ideals βi(Ij), i ≥ 0, j > 0, has a maximal element, say βs(IM ). Then
βk+s(IM ) = IM+k+s for all k ≥ 0.

Since R is left Noetherian, the ideal βs(IM ) is finitely generated. Let a1, . . . , at
be a set of generators of the left R-module IM+s, and let f1, . . . , ft ∈ I have leading
coefficients a1, . . . , at , respectively.

If g ∈ I has degree M + s + k, k ≥ 0, and b is the leading coefficient of g, then
b = βk(c) for some c ∈ IM+s. So c = c1a1 + · · ·+ ctat for some ai ∈ R, and

g − Y k(c1f1 + · · ·+ ctft) ∈ I
has degree less then g. Thus finally,

I =
t∑
i=1

Γfi +

I ∩ (
m∑

j=−m+1

RY j)

 .
Since R is left Noetherian, the ideal I is finitely generated.

Theorem 3.14. The ring Ψ from Corollary 3.11 is left and right Noetherian.

Proof. The ring Ψ is contained in the subring K of Λ generated by D and by the
elements

Yi = X
2φ(d)d
i , i = 1, . . . , n.

Then K itself is a quantum polynomial ring with variables Y ±1
1 , . . . , Y ±1

n . Thus we
have to prove that in

K = DQ′,α′ [Y ±1
1 , . . . , Y ±1

n ]
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for the corresponding Q′, α′, the subring Ψ generated by D and by

Zi = Yi + νiY
−1
i , i = 1, . . . , n, νi = ξ

2φ(d)d
i ,

is left and right Noetherian. Observe that by Lemma 3.12, Yiνi = νiYi.
We shall proceed by induction on the number of variables n. The case n = 0 is

trivial, since in this case Ψ = D.
In order to apply induction we refer to Lemma 3.13. Now the proof of Theorem

follows.

With the same proof as for Corollary 3.6, Corollary 3.7 we obtain

Corollary 3.15. Let G be a finite subgroup of Aut Λ. Then ΛG is left and right
Noetherian.

Corollary 3.16. Let I be a nonzero left ideal in Λ and G,Ψ from Corollary 3.11.
Then I ∩Ψ 6= 0.

The next theorem and its corollaries contain in some sense a converse statement
to Corollary 3.7, Theorem 3.14, Corollary 3.15.

Theorem 3.17. Let Λ be a quantum polynomial ring, not necessarily a general
one, with the grading from Definition 2.16. Let R be a homogeneous subring in Λ,
containing D. If Λ is a finitely generated left R-module, then there exists a positive
integer m such that

X±m1 , . . . , X±mr , Xm
r+1, . . . , X

m
n ∈ R.

Proof. Let U be the set of all n-tuples

(l1, . . . , ln) ∈ Zr × (N ∪ 0)n−r such that X l1
1 · · ·X ln

n ∈ R.
Since R is a ring, the set U is a subsemigroup in the additive semigroup

Z
r × (N ∪ 0)n−r.

By assumption there exist elements f1, . . . , fs ∈ Λ such that

Λ = Rf1 + · · ·+Rfs. (34)

Without loss of generality we can assume that f1, . . . , fs are monomials with co-
efficient 1. If g ∈ Λ is a monomial, then by (34) it can be represented in the
form

g =
s∑
i=1

∑
j

ujifi

for some monomials uji. But g is itself a monomial. Hence g = ufi for some fi and
for some monomial u ∈ R. It we apply (5) and look at the set of corresponding
multi-indices, we can observe that if G is the multi-index of g then G ∈ Fi + U ,
where Fi is the multi-index of fi. Thus

Z
r × (N ∪ 0)n−r = (U + F1) ∪ · · · ∪ (U + Fs). (35)

In particular for any index i = 1, . . . , s there exists an index i′ = 1, . . . , s such that

2Fi = Fi′ + u(i), u(i) ∈ U. (36)

By induction we set i(0) = i, i(k + 1) = i(k)′.

Claim. For any k ≥ 1 we have

2kFi(m) = Fi(k+m) + w, w = w(i,m, k) ∈ U.
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Proof. By (36) the affirmation is valid for k = 1. If it holds for some k then by (36)
we have

2Fi(k+m) = Fi(k+m+1) + u, u ∈ U.
Then by induction

2k+1Fi(k+m) = 2Fi(k+m) + 2w = Fi(k+m+1) + u+ 2w, u+ 2w ∈ U.

We now start with an arbitrary index i = 1, . . . , s, and consider the sequence
i = i(0), i(1), . . . . Then i(t) = i(r) for some t ≤ r. By the Claim we have

2r−tFi(t) = Fi(r) + w, w ∈ U.

It follows that (2r−t − 1)Fi(t) ∈ U . Then by the Claim,

(2r−t − 1)2tFi = (2r−t − 1)(Fi(t) + u) = (2r−t − 1)Fi(t) + (2r−t − 1)u ∈ U.

If we take now

ej = (0, . . . , 0,
j

1, 0, . . . , 0) ∈ Zr × (N ∪ 0)n−r,

then ej = Fi + vij , for some vij ∈ U . By the preceding considerations mej ∈ U for
some m > 0. Similarly, if 1 ≤ i ≤ r, then −mei ∈ U for some m > 0.

Starting from now we shall again assume that Λ is a general quantum polynomial
ring.

Corollary 3.18. Let G be a subgroup in Aut+ Λ such that Λ is a finitely generated
ΛG-module. Then there exists an integer m > 0 such that

X±m1 , . . . , X±mr , Xm
r+1, . . . , X

m
n ∈ ΛG.

Proof. By Proposition 3.2, ΛG is a homogeneous subring in Λ contaning D. Apply
Theorem 3.17.

Theorem 3.19. Let G be a subgroup in Aut Λ, G 6⊆ Aut+ Λ and r = n. Suppose
that Λ is a finitely generated left ΛG-module. Then there exist an integer m > 0
and elements τ1, . . . , τn ∈ D∗ such that

Xm
1 + τ1X

−m
1 , . . . , Xm

n + τnX
−m
n ∈ ΛG.

Proof. Let H = G∩Aut+ Λ. Then ΛH ⊇ ΛG and therefore Λ is a finitely generated
left ΛH -module. By Corollary 3.18 there exists a positive integer m such that

X±m1 , . . . , X±mr , Xm
r+1, . . . , X

m
n ∈ ΛH .

Let ζ ∈ G be of the form (32). Then

ζ(Xm
i ) = τiX

−m
i , τi ∈ D∗.

But ζ2 ∈ H, so Xm
i = ζ(τiX−mi ) and therefore

Xm
i + τiX

−m
i ∈ ΛG.
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Example 3.20. Let D = C be the field of complex numbers with automorphisms
α1(z) = · · · = αn(z) = z, the complex conjugation. Suppose that qij ∈ N, 1 ≤
i ≤ j ≤ n, are different primes and Λ is the corresponding quantum polynomial
ring from (2). Observe that the equations (1) are satisfied and the subgroup N in
C
∗ from Definition 1.4 is generated by all complex numbers of the form z−1z, i.e.

it consists of all complex numbers with absolute value 1. It means that qij , 1 ≤
i ≤ j ≤ n, are indepedent in C∗/N and Λ is a general quantum polynomial ring.

Let ξ ∈ C∗, |ξ| = 1 and ξ 6= 1. Denote by ζ the automorphims of Λ such
that ζ(Xi) = ξXi i = 1, . . . , n, and G = 〈ζ〉. Then we have, for any i, j =
1, . . . , n and εi, εj = ±1.

ζ(Xεi
i X

εj
j ) = ξξXεi

i X
εj
j = Xεi

i X
εj
j .

Hence ΛG contains the subring Γ, generated by

Xεi
i X

εj
j , 1 ≤ i, j ≤ n, εi, εj = ±1.

Claim. Γ = ΛG.

Proof. If f ∈ ΛG then f has a unique representation of the form

f = a0 +
n∑
i=1

aiXi, ai ∈ Γ.

Then

f = ζ(f) = a0 +
n∑
i=1

aiξXi.

Hence aiξ = ai and ai = 0 for each i = 1, . . . , n, which means that f ∈ Γ.

This example shows that taking different ξ ∈ C∗ \ 1 with absolute value 1 we
obtain the same G-invariant subring ΛG. If ξ is not a root of 1, then G is infinite.
However Λ is obviously a finitely generated ΛG-module and ΛG is left and right
Noetherian.

Example 3.21. Let D,α1, . . . , αn, qij ,Λ be from example 3.20 and λ ∈ C∗, with
|λ| > 1. Suppose that r = 0 and γ is automorphism of Λ such that γ(Xi) =
λXi, i = 1, . . . , n. Then for any monomial

X l1
1 · · ·X ln

n , l1 + · · ·+ ln > 0,

we have

γ(X l1
1 · · ·X ln

n ) = λsλ
t
X l1

1 · · ·X ln
n , s+ t = l1 + · · ·+ ln > 0.

This means by Proposition 3.2 that ΛG = D and Λ is not a finitely generated left
ΛG-module.

4. The trace map

As before we assume in this section that Λ is a general quantum polynomial ring.
Let G be a finite subgroup of Aut Λ. Consider the trace map (e. g. [W2], p. 309)

trG : Λ→ ΛG, a 7→
∑
γ∈G

γ(a).

Theorem 4.1. Let a be a monomial in Λ and G a finite subgroup in Aut+ Λ. If
a /∈ ΛG, then trG a = 0. If a ∈ ΛG, then trG a = |G|a.
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Proof. Let

a = X l1
1 · · ·X ln

n /∈ ΛG.

Then there exists γ ∈ G such that γ(a) 6= a. It suffices to prove the affirmation in
the case when G = 〈γ〉 is a cyclic group of order d > 1. Let γ be of the form (8)
with ε = 1. Then

γ(a) = (γ1X1)l1 · · · (γnXn)ln = τX l1
1 · · ·X ln

n ,

where

τ =
n∏
i=1

(
αl11 · · ·α

li−1
i−1 [γnαn(γn) · · ·αln−1

n (γn)]
)

is a central element of D. Observe that γs(a) = τ sa for any integer s. Thus τd = 1
since γd = 1. If a /∈ ΛG, then τ 6= 1 and therefore

1 + τ + · · ·+ τd−1 = 0.

It follows that
trG a = (1 + τ + · · ·+ τd−1)a = 0.

Corollary 4.2. If G is a finite subgroup in Aut+ Λ, then trG Λ = ΛG.

Proof. Apply Theorem 4.1 and Proposition 2.10.

Definition 4.3. Let G be a subgroup in Aut Λ. Then the group G acts on Λ.
Denote by Λ′G the corresponding skew group ring. This is a free left Λ-module
with the basis {g|g ∈ G} and multiplication (e. g. [W2, §37]).

(ag)(bh) = ag(b)gh, a, b ∈ Λ, g, h ∈ G.

Corollary 4.4. Let G be a finite subgroup in Aut+ Λ. Then the ring Λ is a pro-
jective left Λ′G-module.

Proof. By Proposition 2.10 the order of G is invertible in D, and by [W2], 39.17,
Λ is a projective left Λ′G-module.

Theorem 4.5. Let G be a finite subgroup in Aut Λ not contained in Aut+ Λ and
a monomial

a = X l1
1 · · ·X ln

n , lj ∈ Z. (37)

Put H = G ∩Aut+ Λ. If a /∈ Λ \ ΛH , then trG a = 0.
If a ∈ ΛH and ζ ∈ G \Aut+ Λ from Remark 3.8, then

trG a = |H|(a+ ζ(a)),

ζ(a) = τX−l11 · · ·X−lnn , τ ∈ D∗.

Proof. If a /∈ ΛH , then by Theorem 4.1 we have trH a = trG a = 0.
Let a ∈ ΛH . Then G = H ∪ ζH. Thus trG a = |H|(a+ ζa) and

ζ(a) = (ζ1X−1
1 )l1 · · · (ζnX−1

n )ln = τX−l11 · · ·X−lnn , τ ∈ D∗.

Corollary 4.6. Let G be a finite subgroup in Aut Λ, not contained in Aut+ Λ.
Then the following are equivalent:

1. trG Λ = ΛG;
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2. 1 ∈ trG Λ;
3. charD 6= 2.

Proof. If a is a monomial from (37) and (l1, . . . , ln) 6= (0, . . . , 0), then trG a =
|H|(a+ ζ(a)). By Proposition 2.10, we have (|H|, charD) = 1 and therefore

a+ ζ(a) =
trG a
|H|

∈ trG Λ.

But if a = 1 then trG a = |G|a. Thus by Corollary 2.15

1 ∈ trG Λ ⇐⇒ (|G|, charD) = 1 ⇐⇒ charD 6= 2.

Corollary 4.7. Let G be a finite subgroup in Aut Λ, not contained in Aut+ Λ.
Then the ring Λ is a projective left Λ′G-module if and only if charD 6= 2.

Proof. By Corollary 4.6, trG Λ = ΛG if and only if charD 6= 2. By [W2], 39.17, Λ
is a projective left Λ′G-module if and only if trG Λ = ΛG.

5. Homological properties

In this section, as before, we shall assume that Λ is a general quantum polynomial
ring. If r = n, Λ is a simple ring and hence by [M1, Theorem 2.4], for any outer
automorphism group G, Λ is a generator for the Λ′G-modules (see also [W2, 40.7]).
The next theorem characterizes the projectivity of Λ in this case.

Theorem 5.1. Let r = n and G be a finite subgroup in Aut Λ of outer automor-
phisms, i.e., any inner automorphism in G is identical. Then the following are
equivalent:

1. Λ projective (and a generator) in the category of left Λ′G-modules;
2. Λ is a generator in the category of right ΛG-modules;
3. ΛG is a simple ring;
4. Λ′G and ΛG are Morita-equivalent (by HomΛ′G(Λ,−));
5. G ⊆ Aut+ Λ or charD 6= 2.

Proof. By Theorem 1.13, the ring Λ is simple in the case r = n. Apply [W2], 40.8,
and Corollary 4.4, Corollary 4.7. See also [M1, Theorem 2.5].

Corollary 5.2. Let r = n and α1, . . . , αn act identically on center of D. Suppose
that G is a finite subgroup of Aut Λ. The the following are equivalent:

1. Λ is projective (and a generator) in the category of left Λ′G-modules;
2. Λ is a generator in the category of right ΛG-modules;
3. ΛG is a simple ring;
4. Λ′G and ΛG are Morita-equivalent (by HomΛ′G(Λ,−));
5. G ⊆ Aut+ Λ or charD 6= 2.

Proof. By Corollary 2.24 any inner automorphism in G is identical. So we have
only to apply Theorem 5.1.

Remark 5.3. It follows from condition 1 in Theorem 5.1 that Λ′G ' EndΛG Λ
(see [M1, Theorem 2.4]).
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Example 5.4. If n, Λ may not be a (self-) generator as a left Λ′G-module.
In fact, let 0 ≤ n and D = C be the field of complex numbers. Suppose that

qij , 1 ≤ i ≤ j ≤ n, are different primes and α1 = · · · = αn are identical automor-
phisms of C. It is routine to check that the equations (1) are satisfied.

Denote by Λ the corresponding quantum polynomial ring (2). Put ξ = exp(
2π
10
i)

and denote by γ the automorphism of Λ such that

γ(Xi) =

{
Xi, if i ≤ n;
ξYn, if i = n.

Then the homogeneous ideal I = ΛXn is invariant under the action of the cyclic
group G = 〈γ〉. By Proposition 3.2, IG is spanned by all monomials

X l1
1 · · ·X ln

n , ln > 0, 10|ln.
However, Xn /∈ IG and I 6= ΛIG.

From [W2, 39.5], it follows that Λ is not a self-generator as a left Λ′G-module.

Now we shall turn our attention to a division ring ∆ of fractions of an Ore
domain R and an action of ring automorphism groups G ⊆ AutR on ∆. These
results can be applied to the case D = Λ, the quantum polynomial ring and ∆ = F ,
the division ring of fractions of Λ.

The action of group G of group automorphisms of R can be extended to an
action on ∆. It means that we can look at ∆ as a left R′G-module, where R′G is
the skew group ring from Definition 4.3.

Proposition 5.5. Let I be a G-invariant left ideal of R and φ : I → ∆ an R′G-
module homomorphism. Then φ can be extended to R′G-module homomorphim
ψ : R→ ∆.

Proof. Let a, b ∈ I \ 0. By the Ore condition there exist elements u, v ∈ R \ 0 such
that ua = vb. Then

uφ(a) = vφ(b); (38)
v−1u = ba−1 ∈ ∆. (39)

If φ(a) = 0, then vφ(b) = 0 by (38) and therefore φ(b) = 0 since ∆ is a division
ring. Thus if φ(a) = 0, then φ = 0 and in this case we can put ψ = 0.

Suppose that φ(a) 6= 0. Then we have by (38), (39)

ba−1 = v−1u = φ(b)φ(a)−1.

This means that

a−1φ(a) = b−1φ(b). (40)

Define ψ : R→ ∆ by setting

ψ(x) = xa−1φ(a). (41)

Clearly ψ is an R-module homomorphism. If b ∈ I \ 0, then by (40) and (41),

ψ(b) = ba−1φ(a) = bb−1φ(b) = φ(b).

We need to show that ψ is a R′G-module homomorphism. If σ ∈ G, then we obtain,
taking b = σ(a) in (40),

a−1φ(a) = (σ(a))−1φ(σ(a)) = σ(a−1φ(a)).
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Thus we have for any x ∈ R
ψ(σ(x)) = σ(x)a−1φ(a) = σ(x)σ(a−1φ(a)) = σ(ψ(x)).

We shall now apply these results to the case R = Λ - a general quantum polyno-
mial ring with n ≥ 3 variables, and ∆ = F its division ring of fractions. The action
of G in Λ can be extended to the action on F .

Corollary 5.6. Let Λ be a general quantum polynomial ring with n ≥ 3 variables,
G a finite group of automorphisms such that Λ is a faithful left Λ′G-module. Then
Λ is injective as left Λ′G-module.

Proof. We know from Corollary 3.5 and Corollary 3.11 that Λ is a finitely generated
left and right ΛG-module. Therefore Λ is a subgenerator in the category of Λ′G-
modules. By Proposition 5.5 the division ring of fractions F is Λ-injective as Λ′G-
module. Apply [W1, 16.3].

The next theorem is well know and its proof follows from Corollary 3.7 and
Corollary 3.16,

Theorem 5.7. Let G be a finite subgroup in Aut Λ. Then FG is the division ring
of fractions of ΛG.

Notice that Theorem 5.7 can be considered as a special case of [W2, 11.6]. The
forthcoming theorem is inspired by the main results of [AD].

Theorem 5.8. Let G be a finite subgroup in Aut+ Λ. Put

Γ = ΛXr+1···Xn = DQ,α[X±1
1 , . . . , X±1

n ].

There exist monomials Y1, . . . , Yn ∈ ΓG such that
1. the subalgebra Ω in ΓG generated by D,Y ±1

1 , . . . , Y ±1
n is a general quantum

polynomial algebra DQ′,α′ [Y ±1
1 , . . . , Y ±1

n ] which coincides with ΓG;
2. if F is the division ring of fraction of Λ then FG is the division ring of

fractions of Ω.

Proof. Without loss of generality we can assume that r = n and Λ = Γ. By
Corollary 3.6, the ring Λ is a finitely generated left (right) ΛG-module, and by
Proposition 3.2, the subring ΛG is homogeneous with respect to Zn-grading from
Definition 2.16. Denote by U the set of all multi-indicies (m1, . . . ,mn) ∈ Zn such
that Xm1

1 · · ·Xmn
n ∈ ΛG. It is not difficult to observe that U is a subgroup in Zn.

By Corollary 3.18, there exists an integer m > 0 such that Xm
1 , . . . , X

m
n ∈ ΛG.

This means that U is a free Abelian subgroup in Zn, of rank n. Let monomials
Y1, . . . , Yn in X1, . . . , Xn have multi-indices in Zn which form a base of U . Then
ΛG is generated by D,Y ±1

1 , . . . , Y ±1
n . Moreover, by (5) we have

YiYj = q′ijYjYi,

where the image of q′ij in D∗/N belongs to the subgroup L generated by images of
all qst, 1 ≤ s < t ≤ n. On the other hand each Xm

i , i = 1, . . . , n, is a product of
Y ±1

1 , . . . , Y ±1
n , and

Xm
i X

m
j = qm

2

ij n
′Xm

j X
m
i , n′ ∈ N.

By (5) the image of qm
2

ij in D∗/N belongs to the subgroup L′ generated by images
of all q′ij , 1 ≤ i < j ≤ n. According to the assumption the group L is a free Abelian
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group of rank n(n−1)
2 and the subgroup L′ in L has the same rank. This means that

the multiparameters q′ij , 1 ≤ i < j ≤ n, form a set of free generators of L′. Taking
α′ = (α′1, . . . , α

′
n), where each α′i is the automorphism of D induced by conjugation

by Yi (i = 1, . . . , n), we see that Ω is a general quantum polynomial algebra.

Corollary 5.9. Let r = n and α1, . . . , αn be identical on the center of D. Suppose
that G is a finite subgroup in Aut Λ. Then the left and right global dimensions of
Λ′G are equal to 1.

Proof. By Theorem 5.8 the ring Ω = ΛG is a general quantum polynomial ring.
So the global dimension of Ω is equal to 1 by [MP, Corollary in 3.10] (and [A1]).
Apply Morita-equivalence of the rings Λ′G and Ω (see Corollary 5.2).

The paper was prepared during a visit of the first author at the Mathematical
Institute of the Heinrich Heine Universität Düsseldorf. He expresses his thanks to
this Institute for the hospitality and to the Deutsche Forschungsgemeinschaft for
financial support.

The authors thank the referee for useful suggestions which helped to improve
the paper.
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