ON RATIONAL PAIRINGS OF FUNCTORS

BACHUKI MESABLISHVILI AND ROBERT WISBAUER

ABSTRACT. In the theory of coalgebras C over a ring R, the rational functor relates the
category ¢ M of modules over the algebra C* (with convolution product) with the category
CM of comodules over C. This is based on the pairing of the algebra C* with the coalgebra
C provided by the evaluation map ev : C* @ g C — R. The (rationality) condition under
consideration ensures that M becomes a coreflective full subcategory of oM.

We generalise this situation by defining a pairing between endofunctors 7" and G on any
category A as a map, natural in a,b € A,

Bab : Ala, G(b)) — A(T(a), b),

and we call it rational if these all are injective. In case T = (T, my,er) is a monad and
G = (G,0g,e¢) is a comonad on A, additional compatibility conditions are imposed on
a pairing between T and G. If such a pairing is given and is rational, and T has a right
adjoint monad T®, we construct a rational functor as the functor-part of an idempotent
comonad on the T-modules A7 which generalises the crucial properties of the rational
functor for coalgebras. As a special case we consider pairings on monoidal categories.

CONTENTS
1. Introduction 1
2. Preliminaries 3
3. Pairings of functors 5
4. Rational functors 13
5. Pairings in monoidal categories 17
6. FEntwinings in monoidal categories 21
References 30

1. INTRODUCTION

The pairing of a k-vector space V with its dual space V* = Hom(V, k) provided by the
evaluation map V* ®; V — k can be extended from base fields k to arbitrary base rings
A. Then it can be applied to the study of A-corings C' to obtain a faithful functor from the
category of C-comodules to the category of C*-modules. The purpose of this paper it to
extend these results to (endo)functors on arbitrary categories. We begin by recalling some
facts from module theory.

1.1. Pairing of modules. Let C be a bimodule over a ring A and C* = Homu4(C, A) the
right dual. Then C®4 — and C* ® 4 — are endofunctors on the category 4M of left A-modules
and the evaluation

ev:C"@sC— A, f@cw f(o),

induces a pairing between these functors. For left A-modules X and Y, the map

ay :C®4Y — sHom(C*)Y), ¢y~ [f— flc)y],
1
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induces the map
Bxy : aAHom(X,C®4Y) — sHom(X, 4.Hom(C*,Y)),
xLcoory — XxLoesy 25 sHom(CHY).

Clearly Ox y is injective for all left A-modules X,Y if and only if ay is a monomorphism
(injective) for any left A-module Y, that is, C4 is locally projective (see [1], [8, 42.10]).

Now consider the situation above with some additional structure.

1.2. Pairings for corings. Let C = (C, A, ¢) be a coring over the ring A, that is, C is an
A-bimodule with bimodule morphisms coproduct A : C — C ®4 C and counit € : C — A.
Then the right dual C* = Hom4(C, A) has a ring structure by the convolution product for
frge C* fxg= fo(g®alc)oA (convention opposite to [8, 17.8]) with unit e, and we
have a pairing between the comonad C ® 4 — and the monad C* ® 4 — on 4M. In this case,
Hom 4 (C*,—) is a comonad on 4M and «y considered in 1.1 induces a comonad morphism
a:C®— — Homuy(C*, —). We have the commutative diagrams

(1.1) C*@aC* 04 C 220 0,0 04 Coa 2% cr 0,02 ¢
*®I\L le/
C*®4 C =~ A

The Eilenberg-Moore category MHom(C™.=) of Hom(C*, —)-comodules is equivalent to the
category ¢-M of left C*-modules (see 3.3) and thus « induces a functor

M — M) ~ oM

which is fully faithful if and only if the pairing (C*, C, ev) is rational, that is, cry is monomorph
for all Y € 4M (see [8, 19.2 and 19.3]). Moreover, « is an isomorphism if and only if the
categories “M and ¢-M are equivalent and this is tantamount to C4 being finitely generated
and projective.

Note that for any A-coring C, the right adjoint functor Hom 4 (C, —) is a monad on 4M and
the Kleisli category of C-comodules is equivalent to the Kleisli category of the Hom 4 (C, —)-
modules (contramodules, see [11], [5]). This certainly relates comodules and modules - but the
modules in this context are over the monad Hom4(C, —) whereas algebraists prefer to have
modules over a tensor monad (algebra). The rationality condition imposed on the functor
C® 4 —, that is, conditions on the A-module structure of C, is modelled to match C-comodules
with C*-modules. It does not enforce C4 to be finitely generated (or projective) but allows
to describe C-comodules as special C*-modules.

To the content of the paper. In Section 2 we recall the notions and some basic facts on
natural transformations between endofunctors needed for our investigations.

Weakening the conditions for an adjoint pair of functors, a pairing of two functors T : A — B
and G : B — A is defined in Section 3 (see 3.1) as amap B, : Aa, G(b)) — B(T(a),b), natural
ina € A, be B, and it is called rational if all the 3, are injective maps. For pairings of
monads T with comonads G on a category A, additional conditions are imposed on the defining
natural transformations (see 3.2). These imply the existence of a functor ®” : A — Az from
the G-comodules to the T-modules (see 3.6), which is full and faithful provided the pairing
is rational (see 3.8). Of special interest is the situation that the monad T has a right adjoint
T and the last part of Section 3 is dealing with this case.

Referring to these results, a rational functor Rat” : Ar — Ag is associated with any
rational pairing in Section 4. This leads to the definition of rational T-modules and under
some additional conditions they form a coreflective subcategory of A (see 4.8).

The application of the general notions of pairings to monoidal categories is outlined in
Section 5. The resulting formalism is very close to the module case considered in 1.2.
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In Section 6, we apply our results to entwining structures (A, C, \) on monoidal categories
V = (V,®,I). The objects A and C induce a functor V(— ®C, A) : V°? — Set and if this is
representable we call the entwining representable, that is if V(— ® C, A) ~ V(—, E) for some
object E € V. This F allows for an algebra structure, an algebra morphism A — FE (see
Proposition 6.3), and a functor from the category V() of entwined modules to the category
eV of left E-modules. In case the tensor functors have right adjoints, a pairing on V is related
to the entwining (see 6.8) and its properties are studied. Several results known for the rational
functors for ordinary entwined modules (see, for example, [1], [12] and [13] ) can be obtained
as corollaries from the main result of this section (see Theorem 6.9).

2. PRELIMINARIES

In this section we recall some notation and basic facts from category theory. Throughout
A and B will denote any categories. By I,, I or just by I we denote the identity morphism
of an object a € A, respectively the identity functor of a category A.
2.1. Monads and comonads. For a monad T = (T, mr,er) on A, we write
Ar for the Eilenberg-Moore category of T-modules;
Ur:Ar — A, (a,h,) — a, for the underlying (forgetful) functor;
or A — Ap, a— (T(a),(mr),), for the free T-module functor, and
nr,er : ¢r 1 Up : Ap — A for the forgetful-free adjunction.
Dually, if G = (G, dg,e¢) is a comonad on A, we write
A for the category of the Eilenberg-Moore category of G-comodules;
U%: A% — A, (a,0,) — a, for the forgetful functor;
#% : A — A% a— (G(a), (dg)a), for the cofree G-comodule functor, and
n%,e¢ :U% 4 ¢ : A — AC for the forgetful-cofree adjunction.

2.2. Idempotent comonads. A comonad H = (H,¢,J) is said to be idempotent if one of

the following equivalent conditions is satisfied (see, for example, [9]):
(a) the forgetful functor U : A# — A is full and faithful;
(b) the unit n : I — ¢HUH of the adjunction UH + ¢ is an isomorphism;
(c¢) the natural transformation § : H — HH is an isomorphism;
(d) for any (a,d,) € A”, the morphism 9, : @ — H(a) is an isomorphism and (J,) ™! = &4;
)

(e) He (or eH) is an isomorphism.

When H is an idempotent comonad, then an object a € A is the carrier of an H-comodule if
and only if there exists an isomorphism H (a) ~ a, or, equivalently, if and only if the morphism
g4 : H(a) — a is an isomorphism. In this case, the pair (a, (¢,)7!) is an H-comodule. In fact,
every H-comodule is of this form. Thus the category A is isomorphic to the full subcategory
of A generated by those objects for which there exists an isomorphism H(a) ~ a.

In particular, any comonad H = (H, ¢, ) with € a componentwise monomorphism is idem-
potent (e.g. [9]). In this case, there is at most one morphism from any comonad H' to H.
When H' is also an idempotent comonad, then a natural transformation 7 : H — H is a
morphism of comonads if and only if € - 7 = ¢/, where €’ is the counit of the comonad H’.

We will need the following result whose proof is an easy diagram chase:

2.3. Lemma. Suppose that in the commutative diagram

a b
/ /
a == b

H

%(‘:

H
H
f/
_—
H

~

c,
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the bottom row is an equaliser and the morphism hg is a monomorphism. Then the left square
in the diagram is a pullback if and only if the top row is an equaliser diagram.

2.4. Proposition. Lett: G — R be a natural transformation between endofunctors of A with
componentwise monomorphisms and assume that R preserves equalisers. Then the following
are equivalent:

(a) the functor G preserves equalisers;

(b) for any regular monomorphism i : ag — a in A, the following square is a pullback:

G(ao) 22+ G(a)

R(ao) W R(CL)

When A admits and G preserves pushouts, (a) and (b) are equivalent to:

(¢) G preserves regular monomorphisms, i.e. G takes a reqular monomorphism into a regular
monomorphism.

Proof. (b)=(a) Let

k
a——=ph_—_<cC
g9

be an equaliser diagram in A and consider the commutative diagram

G(k) G(f)

G(a) —> G(b) ———= G(c)

G(g)
tai l itc
R(f)
R(a) —— R(b) —————= R(¢) .
R(k) R(g)
Since R preserves equalisers, the bottom row of this diagram is an equaliser. By (b), the left

square in the diagram is a pullback. t. being a monomorphism, it follows from Lemma 2.3
that the top row of the diagram is an equaliser. Thus G preserves equalisers.
(a)=(b) Reconsider the diagram in the above proof and apply Lemma 2.3.
Suppose now that A admits and G preserves pushouts. The implication (a)=-(c) always
holds and so it remains to show
(¢)=>(b) Consider an arbitrary regular monomorphism 4 : ag — a in A. Since A admits
pushouts and 7 is a regular monomorphism in A, the diagram
i i
ay ——a —=Z allg,a,
i2
where i1 and iy are the canonical injections into the pushout, is an equaliser diagram (e.g. [2,
Proposition 11.22]). Consider now the commutative diagram

G(4) G(i1)

G(ao) G(a) ?G(auaoa)

tag l ta \L \Ltauaoa
i R(i1)

R(ao) —— . R(a) R(aUa,a)

R(i2)

in which the bottom row is an equaliser diagram since R preserves equalisers. Since G takes
regular monomorphisms into regular monomorphisms and G preserves pushouts, the top row
of the diagram is also an equaliser diagram. Now, using that taly, e IS a monomorphism,
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one can apply Lemma 2.3 to conclude that the square in the diagram is a pullback showing
(¢)=(b). |

3. PAIRINGS OF FUNCTORS

Generalising the results sketched in the introduction we define the notion of pairings of
functors on arbitrary categories.

3.1. Pairing of functors. For any functors 7' : A — B and G : B — A, there is a bijection
(e.g. [21, 2.1]) between (the class of) natural transformations between functors A°? x B — Set,

Bab A(a,G(0)) — B(T(a),b), a€A beB,
and natural transformations o : TG — Ig, with 0, := Bg(q4),a(Ig(a)) : TG(a) — a and

Bap:a LG — T(a) ™ TG®B) 2.

We call (T, G,0) a pairing between the functors T and G and name it a rational pairing
provided the 3, are monomorphisms for all @ € A and b € B.

Clearly, if all the 3,; are isomorphisms, then we have an adjoint pairing, that is, the
functor G is right adjoint to 7" and o is just the counit of the adjunction. Thus rational
pairings generalise adjointness. We mention that, given a pairing (T, G, o), Medvedev [18]
calls T a left semiadjoint to G provided there is a natural transformation ¢ : I, — GT
such that o7 o Tp = Ip. This means that S_ _ is a bifunctorial coretraction (dual of [18,
Proposition 1]) in which case o is a rational pairing. In case all (3, are epimorphisms, the
functor G is said to be a weak right adjoint to T in Kainen [15]. For more about weakened
forms of adjointness we refer to Borger and Tholen [6].

Similar to the condition on an adjoint pair of a monad and a comonad (see [11]) we define

3.2. Pairing of monads and comonads. A pairing P = (T,G, o) between a monad
T = (T,m,e) and a comonad G = (G, d,¢) on a category A is a pairing o : TG — I between
the functors T' and G inducing - for a,b € A - commutativity of the diagrams

(3.1) A(a,b)
A(a,ep) Aeq,b)
/ BT \
A(a,G(b)) A(T(a),b)

A(a,&b)l iA(ma,b)

A(a, G*(D)) ﬁT?)A(T(a), G(b)) T A(T?(a),b),
where
(3.2) f,b :A(a,G(b)) — A(T(a),b), f:a— G0) — op-T(f):T(a) —b.

The pairing P = (T, G, o) is said to be rational if 571),1; is injective for any a,b € A.
By the Yoneda Lemma, commutativity of the diagrams in (3.1) correspond to commuta-
tivity of the diagrams

(3.3) G-~ 10 26 > 1262 2% 16

RN ia

I, TG I.
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3.3. Adjoints of monads. Consider a monad T = (T, m, e) and an endofunctor G on A that
is right adjoint to T with unit n : I — GT and counit o : TG — I. Then there is a unique
way to make G into a comonad G = (G, 4, ¢) such that G is right adjoint to the monad T.
In this case, the functor K7 g : A7 — AY that takes (a,h) € Az to (a,G(h) - n,) € AY is an
isomorphism of categories inducing a commutative diagram

Ap—Sme
(e.g. [11], [5, Section 3]). Writing Bg.p : A(T(a), b) — A(a,G(D)) for the adjunction bijection,

it follows that the triple P = (T, G, o) is a rational pairing with 87 = 37! (see commutative
diagrams (1) and (2) in [16]).

3.4. Pairings and morphisms. Let P = (T, G, ) be a pairing, T' = (T",m’,e') any monad,
and t : T — T a monad morphism.
(i) The triple P! = (T, G, 0’ := o - tG) is also a pairing.
(ii) If P is rational, then P’ is also rational provided the natural transformation t is a
componentwise epimorphism.
Proof. (i). The diagram

G % 1¢
N
I<=——TG
commutes since ¢ is a monad morphism (thus ¢ - €/ = e) and because of the commutativity of

the triangle in the diagram (3.3.) Thus ¢’ - ¢’'G =0 - tG - /G =0 -eG = ¢.
Consider now the diagram

e T ppga rea rTaG —r% - g
m'G
l“c’ @ m % @ %
e O TTG TTGG TG
k\ lmg (5) /
TG I,

g

in which diagram (1) commutes since ¢ is a morphism of monads, diagrams (2), (3) and (4)
commute by naturality of composition, and diagram (5) commutes by commutativity of the
rectangle in (3.3). It then follows that

o - TdG - T'T'S=0-tG-T'oG -TtGG -T'T'§ =0 - tG-m'G =o' - m'G,
proving that the triple P’ = (T, G, 0’ = 0 - tG) is a pairing.
(ii). It is easy to check that the composite

Aa,GO) 25 AT(a),5) 22 AT (0), )
takes f : a — G(b) to oy - T'(f) : T'(a) — b and thus — since T'(f) - ta = tga) - T'(f)

by naturality of ¢ — f; = A(tq,b) - Zib. If ¢t is a componentwise epimorphism, then ¢, is

A(ta,

an epimorphism, and then the map A(t,,b) is injective. It follows that 6(7:; is also injective
provided that ﬂzb is injective (i.e. the pairing P = (T, G, 0) is rational). a
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Dually, one has
3.5. Proposition. Let P = (T,G,0) be a pairing, G' = (G',d,&') any comonad, and t :
G’ — G a comonad morphism.

(i) The triple P’ = (T,G’', 0’ := 0 - Tt) is also a pairing.

(ii) If P is rational, then P’ is also rational provided the natural transformation t is a
componentwise monomorphism.

3.6. Functors induced by pairings. Let P = (T, G,0) be a pairing on a category A with
ﬁfyb : Ala, G(b)) — A(T(a),b) (see (3.2).
(1) If (a,0,) € AC, then (a,B87 ,(0,)) = (a,0, - T(0,)) € Ap.

(2) The assignments (a,00) +— (a,04-T(6a)),
fra—b — f:a—b,

yield a conservative functor ®F : A¢ — A inducing a commutative diagram

(3.4) ad—2 o

\/

Proof. (1) We have to show that the diagrams

a — T(a) T2(a) > T(a)
\ iﬂl’,awa) T(ﬁl’,a(@a))l lﬁl’,a(%)
a, T(a) ——a
87 a(0a)

are commutative. In the diagram

G(a)

TN

T(a) 5% TCla) 5 a

the square commutes by naturality of e : I — T, while the triangle commutes by (3.3). Thus
Bﬁa(ea) ceqa =04 -T(0,) €4 = €q -0, But e, -0, = I, since (a,0,) € A%, implying that
Bf,a(@a) - eq = I,. This shows that the left hand diagram commutes.

Since 37 ,(0a) = 00 - T(0a), and T(0,) - T(0a) = T(0G(a)) - T?G(6a) by naturality of o, the
right hand diagram can be rewritten as

Mq 9(1
T?%(a) T(a) 100) TG(a)
T (%)i $
2 212 .
T G(a)ITG((Z)T G (a)TH(JG(a))TG(a) —>a

It is easy to sce that 04-T(0a)-ma = (A(ma,a)- 87 ,)(0,) and it follows from the commutativity
of the bottom diagram in (3.1) that

0o -T(0,) -ma = (6’173(11),& : fG(a) A(a, 6a))(0a)
=04 T(0G(a)) - T?(8a) - T?(0a)-
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Recalling that d, - 0, = G(6,) - 0, since (a,0,) € A%, we get
0q-T(0a) Mo =04 T(0G()) - T?G(0,) - T?(6a),
proving that the right hand diagram is commutative. Thus (a, ﬁza(ﬂa)) € Ar.
(2) By (1), it suffices to show that if f : (a,0,) — (b,0;) is a morphism in A%, then f is
a morphism in Ar from the T-module (a, o0, - T(6,)) to the T-module (b, 0y, - T'(6y)). To say
that f: a — b is a morphism in Ap is to say that the outer diagram of

T(a) 2% TG (a) —2*> a

T(f)i TG(f)i lf

is commutative, which is indeed the case since the left square commutes because f is a mor-
phism in A%, while the right square commutes by naturality of . Clearly ®% is conservative.

The commutativity of the diagram of functors is obvious. O

3.7. Properties of the functor ®”. Let P = (T, G,0) be a pairing on a category A with
induced functor ®F : A¢ — Arp (see 3.6).

(1) The functor ®% is comonadic if and only if it has a right adjoint.

(2) Let C be a small category such that any functor C — A has a colimit that is preserved
by T. Then the functor ®F preserves the colimit of any functor C — A% .

(3) When A admits and T preserves all small colimits, the category A has and the functor
®P preserves all small colimits.

(4) Let A be a locally presentable category, suppose that G preserves filtered colimits and T
preserves all small colimits. Then ®F is comonadic.

Proof. (1) Since the functors U and Ur both reflect isomorphisms, it follows from commu-
tativity of Diagram (3.4) that ®” also reflects isomorphisms. Moreover, since U creates
equalisers of G-split pairs and since Up creates all equalisers that exist in A, A® admits
equalisers of ®F-split pairs and ®7 preserves them. The result now follows from the dual of
Beck’s Precise Tripleability Theorem [3, Theorem 3.3.10].

(2) Since T preserves the colimit of any functor C — A, the category Ar admits and the
functor Uz preserves the colimit of any functor C — Az (see [7]). Now, if F : C — AY
is an arbitrary functor, then the composition ®” - FF : C — A7 has a colimit in Ap. Since
Ur - ®F = U and U® preserves all colimits that exist in A“, it follows that the functor Ur
preserves the colimit of the composite ® - F. Now the assertion follows from the fact that an
arbitrary conservative functor reflects such colimits as it preserves.

(3) is a corollary of (2).

(4) Note first that Addmek and Rosicky proved in [2] that the Eilenberg-Moore category
with respect to a filtered-colimit preserving monad on a locally presentable category is locally
presentable. This proof can be adopted to show that if G preserves filtered colimits and A
is locally presentable, then A is also locally presentable. Therefore A is finitely complete,
cocomplete, co-wellpowered and has a small set of generators (see [2]). Since the functor ®”
preserves all small colimits by (3), it follows from the (dual of the) Special Adjoint Functor
Theorem (see [17]) that ®% admits a right adjoint functor. Combining this with (1.ii) gives
that the functor ®” is comonadic. (]

3.8. Properties of rational pairings. Let P = (T, G, o) be rational pairing on A.
(1) The functor ®F : A® — Ar is full and faithful.
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(2) The functor G preserves monomorphisms.

(3) If A is abelian and G is right exact, then G is also left exact, hence exact.
Proof. (1) Obviously, ®% is faithful. Let (a,6,), (b,0,) € A and let
f:®7(a,0,) = (a,00 - T(0,)) — (b,oy, - T(6,)) = © (b, 0))

be a morphism in Ap. We have to show that the diagram
_—

a ! b
eal leb
Gla) 577 G)

(3.5)

commutes. Since f is a morphism in Ar, the diagram

(3.6) T(a) 2 7G(a) 2>

a
T(f)i if
b

T(b) m TG(b) ?

commutes and we have

BryOy-f) = ou-T(Oy- f) =0 -T(0)-T(f)
by 3.6) = 0a-T(0a)
o is a natural = Op° TG(f) . T(€a> =O0p - T(G(f) : ea) = be(G(f) ’ ea)'

Since ﬁzb is injective by assumption, it follows that G(f) -0, = 6, - f, that is, (3.5) commutes.

(2) Let f:a — b be a monomorphism in A. Then for any = € A, the map
A(T(z), f) : A(T(x),a) — A(T(z),b)
is injective. Considering the commutative diagram

P
Be,a

A, Gl0) —— A(T(2)0)
A(ﬂﬁyG(f))i lA(T(I)J’)
A, G) ————= A(T(2), 1),

fekins
one sees that the map A(z, G(f)) is injective for all = € A, proving that G(f) is a monomor-
phism in A.

(3) Here a right exact functor preserving monomorphisms is exact. (]

3.9. Comonad morphisms. Recall (e.g. [3]) that a morphism of comonads t : G — G’
induces a functor

te : AY S AG ) (a,00) — (a,ty - 0,).

The passage t — t, yields a bijection between comonad morphisms G — G’ and functors
Vi AS — AY with US'V = UC.

If V: AS — A% is such a functor, then the image of any cofree G -comodule (G(a),d,)
under V has the form (G(a), s,) for some s, : G(a) — G'G(a). Then the collection {s, |a € A}
constitute a natural transformation s : G — G’G such that G’e - s : G — G’ is a comonad
morphism.
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3.10. Right adjoint for T. Let P = (T, G,0) be a pairing and suppose that there exists
an endofunctor 7 right adjoint to 7" with unit 7 : 1 — T°7T. Then we obtain a comonad
T® = (T°,4°,¢°) that is right adjoint to the monad T (see 3.3). In this situation, the functor
Krqo : Ap — AT’ that takes any (a,h,) € Ar to (a,T°(ha) - 7,), is an isomorphism of
categories and ure Kr 1o = Ur. Since Up®P = U, one gets the commutative diagram

Ko ro

\/

It follows that there is a morphism of comonads ¢t : G — T° with Kp 7o P =1t¢,.

3.11. Lemma. In the situation given in 3.10, t is the composite

G > rorG L% 70
Proof. Since
e for any (a,0,) € A%, ®7(a,0,) = (a,04, - T(0,)), and
e for any (a,h,) € Ap, Krro(a,hy) = (a,T°(hs) - 7).
it follows that for any cofree G-comodule (G(a),d,),
Kr.70®%(G(a),6,) = (G(a), T*(0c(a)) - T°T(0a) - Mg (a))s
thus
ta =T°(ea) - T°(0G(a))  T°T (0a) * N(a)-
But since
T(e0) - T(061a)) = T°(02) - T°TG(<4)
by naturality of o and G(e4) - da = I(q), One has
ta =T°(04) - T°TG(ea) - T°T(0a) * Ng(ay = T°(0a) * TG (a)-
|

3.12. Right adjoint functor of t,. In the setting of 3.10, suppose that the category A®
admits equalisers. Then it is well-known (e.g. [10]) that for any comonad morphism ¢ : G —
T°, the functor t, : A® — AT® admits a right adjoint ¢* : AT - A% which can be calculated
as follows. Recall from 2.1 that, for any comonad G, we denote by 7% and ¢“ the unit and
counit of the adjoint pair (U%, ¢%). Writing a; for the composite

%, 4G o
t*¢G n teg ¢ UT t. ¢G ¢T UG¢G ¢T
and (; for the composite
o G GUT<> 3 o o GUT<> UT<> o o >
¢GUT n"¢ ¢GUG¢GUT _ ¢GUT t*(bGUT [ i ¢GUT (bT UT ,
then t* is the equaliser (we assumed that A has equalisers)
GyT®,T®

t* it > ¢GUT°4>¢GUT°¢T°UT°-

t



ON RATIONAL PAIRINGS OF FUNCTORS 11

Note that the counit &; : t,t* — I of the adjunction ¢, 4 ¢* is the unique natural transfor-
mation that makes the square in the following diagram commute,

. GrrT® t*(lsGUTOT,TQ GrrT® T 77T°
(3.7) bt —> 4, oG U t,0CUT $T°U
« Pt
£t atUToi \LatUTQ ¢T° UT0
TOUTO,WTO

I

¢T<> U'T<> _— d)TO UTO ¢T<> U'T<> .

T°
T,TO ¢T° UTO

It is not hard to see that for any a € A, the a-component of the natural transformation oy
is just the morphism ¢, : G(a) — T°(a) seen as a morphism
t.¢%(a) = (G(a),te(a) - 0a) — ¢ (a) = (T°(a),55)

in AT°. Indeed, since for any a € A, (e%), = &4, while for any (a,v,) € AT, (y
(att)q is the composite T°(e,) - ta(a) - 0a- Considering now the diagram

TQ) = Vg,

(a,vq)

Gla) == GG(a) % T°G(a)

\ icw lmga)

Gla) ——=T°(a),

in which the square commutes by naturality of composition, while the triangle commutes by
the definition of a comonad, one sees that (o), = t4.

3.13. Theorem. Let P = (T,G,0) be a monad-comonad pairing on A. Suppose that A
admits equalisers and that the monad T has a right adjoint comonad T°. Then

(1) the functor ®F : AS — Ap (and hence also t, : AS — AT") is comonadic;

(2) if the pairing P is rational, then AC is equivalent to a reflective subcategory of Ar.

Proof. By 3.7(1), ®% is comonadic if and only if it has a right adjoint.

(1) Since the category A admits equalisers, the functor ¢, : A® — AT has a right adjoint
t* : AT" — A (by 3.12). Then evidently the functor t*Kr ¢ is right adjoint to the functor
®”. Since Kr 1o &P = t,, it is clear that t, is also comonadic. This completes the proof of
the first part.

(2) If P is rational, ®% is full and faithful by 3.8(1), and when ®” has a right adjoint, the
unit of the adjunction is a componentwise isomorphism (see [17]). O

Given two functors F, F’' : A — B, we write Nat(F, F’) for the collection of all natural
transformations from F to F’. As a consequence of the Yoneda Lemma recall:

3.14. Lemma. Let T = (T,m,e) be a monad on the category A with right adjoint comonad
T° = (7°,0°¢°), unit 7 : I — T°T and counit € : TT® — I. Then for any endofunctor
G : A — A, there is a bijection

X : Nat(TG, I) — Nat(G,T°), TG %1 — G 2% rore T2 1°

)

with the inverse given by the assignment
GST — TGS TT 5 1.

3.15. Proposition. Let T be a monad on A with right adjoint comonad T° (as in 3.14) and
let G = (G, 0,¢e) be a comonad on A.

(1) There exists a bijection between

(i) natural transformations o : TG — I for which the triple P = (T, G, 0) is a pairing;
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(ii) natural transformations o : TG — I for which x(o) : G — T° is a morphism of
comonads;

(iii) functors V : A — A such that UpV = UC.

(2) A functor V : A® — Ap with UpV = U is an isomorphism if and only if there exists
an isomorphism of comonads G ~ T°.

Proof. (1) In the light of (3.3) and Lemma 3.14, the bijection between (i) and (ii) follows from
Lemma 3.11 and the dual of 3.4.

It remains to show that there is a bijective correspondence between comonad morphisms
G — T° and functors V : A — Ap such that UrV = U%. But to give a comonad morphism
G — T° is to give a functor W : AG — AT® with UT°W = U®, which is in turn equivalent
- since KilTo is an isomorphism of categories with UTKilT<> =yuT’ (see 3.10) - to giving a
functor V : A® — Ap with UpV = UC.

(2) According to (1), to give a functor V : A — Ar with UrV = UY is to give a comonad
morphism ¢ : G — T° such that ¢, = Kp poV. It follows - since K7 1o is an isomorphism of
categories - that V' is an isomorphism of categories if and only if ¢, is, or, equivalently, if ¢ is
an isomorphism of comonads. O

3.16. Proposition. Let P = (T, G,0) be a monad-comonad pairing on a category A and
T° = (1°,6° %) a comonad right adjoint to T. Consider the statements:

(i) the pairing P is rational;
(ii) x(o): G — T° is componentwise a monomorphism;
(iii) the functor ®F : A€ — Ar is full and faithful.
Then one has the implications (i) < (ii) = (iii).
Proof. (i) = (iii) is just 3.8(1).
(i) < (ii) For any a € A, consider the natural transformation

P
Ba,— @

A(a,G(-)) ——= A(T(a), ) —— A(a, T°(-))

where « denotes the isomorphism of the adjunction T' - T°. It is easy to see that the induced
natural transformation G — T is just x(o). Since each component of «,, _ is a bijection, it
follows that x(o) is a componentwise monomorphism if and only if each component of ﬁp) is

monomorphism for all a € A. O

To illustrate the situation considered above we describe the details for corings.

3.17. Rational pairing for corings. Let C be an A-coring (as in 1.1). As described in 1.2,
this induces a pairing (C* ® 4 —, C ®4 —, ev). From Lemma 3.14 we obtain that for X € 4M]

(x(ev))x =ax : C®4 X — Homy (C*, X), c@z — [f — f(c)x],
(with « from 1.1) and Proposition 3.16 says that for the assertions
(i) (C*®a —,C®4 —,ev) is a rational pairing,
(ii) ax : C®a X — Homy(C*, X) is injective for any left A-module X,
(iii) the functor M — oM is full and faithful,
we have the implications (1) < (ii) = (iii).

Condition (ii) is sometimes called the (right) a-condition for corings (e.g. [8, 19.2]). It is
equivalent to C'4 being locally projective and implies in particular that C, is flat. For corings
all the assertions (i), (ii) and (iii) are equivalent (e.g. [8, 19.3]).
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4. RATIONAL FUNCTORS
Let A be an arbitrary category admitting pullbacks.

4.1. Throughout this section we fix a rational pairing P = (T, G, o) on the category A with
a comonad T° = (T°,§°,¢°) right adjoint to T, unit 77 : 1 — T°T and counit € : TT°® — 1.
Let t = x(0) (see Lemma 3.14).

For any (a,79,) € AT", write Y (a,,) for a chosen pullback

(4.1) T(a,d,) —=— G(a)

4 ——0—> T°(a).
Since monomorphisms are stable under pullbacks in any category and since ¢, and ¥, are both
monomorphisms, it follows that p; and ps are also monomorphisms.

As a right adjoint functor, T preserves all limits existing in A and thus the category AT
admits those limits existing in A. Moreover, the forgetful functor U T . AT® — A creates
them; hence these limits (in particular pullbacks) can be computed in A.

Now, ¥, : a — T°(a) is the (a,9,)-component of the unit 7" : I — ¢T°UT" and thus it
can be seen as a morphism in AT from (a,9,) to (T°(a), (6°),), while t, : G(a) — T°(a)
is the UT" (a, ¥, )-component of the natural transformation oy : t,¢7  — ¢T° (see 3.12) and
thus it can be seen as a morphism in AT® from ¢, (G(a), d,) = (G(a), ta(a) - 0a) to (T°(a), 03).
It follows that the diagram (4.1) underlies a pullback in AT®. In other words, there exists
exactly one T°-coalgebra structure ¥y (q,9,) : T(a,9q) — T°(Y(a,Y4)) on Y(a,,) making the
diagram

(4.2) (Y(a,0a), Vr(a,0,)) —— > (G(a), te(a) - (0c)a)

(T°(a), (6%)a)

Yq

a pullback in AT®, Moreover, since in any functor category, pullbacks are computed compo-
nentwise, it follows that the diagram (4.2) is the (a,d,)-component of a pullback diagram in
AT,

(4.3) T2 g, 4Gt

P1i l(xtUTO

T°r7T°
I—=>¢" U .

Since the forgetful functor Uy : Ar — A respects monomorphisms and U T° Kppo = Up, it
follows that the forgetful functor UT° : AT® — A also respects monomorphisms. Thus, the
natural transformations o, U7° and nTO are both componentwise monomorphisms and hence
so too is the natural transformation P; : ¥ — 1.

Summing up, we have seen that for any (a,9,) € AT*, T(a,9,) is an object of AT yielding
an endofunctor

T:AT S AT (a,9,) — Y(a,9.).

As we shall see later on, the endofunctor Y is - under some assumptions - the functor-part

of an idempotent comonad on AT".
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4.2. Proposition. Under the assumptions from 4.1, suppose that A admits and G preserves
equalisers. Then the category AC also admits equalisers and the functor t, : A — AT®
preserves them.

Proof. Since the functor G preserves equalisers, the forgetful functor U¢ : A® — A creates
and preserves equalisers. Thus A admits equalisers.

Since the forgetful functor UT* : AT® — A also creates and preserves equalisers, it follows
from the commutativity of the diagram

AG tH* ATO

A

that the functor ¢, : A — AT’ preserves equalisers. O

Note that when A is an abelian category, and G is right exact, then G is left exact by
Proposition 2.4 and by 3.8(3).

Note also that it follows from the previous proposition that if A admits and G preserves
equalisers, then the category A® admits equalisers. In view of Proposition 4.2, it then follows
from 3.12 that the functor ¢, : A¢ — AT* has a right adjoint ¢* : AT" — AC.

4.3. Proposition. Under the conditions of Proposition 4.2, the functor T : AT — AT s
isomorphic to the functor part t.t* of the AT’ -comonad generated by the adjunction t, - t* :
AT® — ACG.

Proof. Since the functor G preserves equalisers, the functor ¢, : A¢ — AT also preserves
equalisers by Proposition 4.2. Then the top row in the diagram (3.7) is an equaliser, and
since the bottom row is also an equaliser and the natural transformation oy : t,¢% — quo
is a componentwise monomorphism (since (), = t, for all a € A, see 3.12), it follows from
Lemma 2.3 that the square in the diagram (3.7) is a pullback. Comparing this pullback with
(4.3), one sees that T is isomorphic to t.t* (and P; to &;). O

Note that in the situation of the previous proposition, ¢; : T — [ is componentwise a
monomorphism.

For the next results we will assume that the A has and G preserves equalisers. This implies

in particular that the category A admits equalisers.

4.4. Proposition. With the data given in 4.1 assume that A has and G preserves equalisers.
Let (a,9,) be an any object of AT, Then

(i) T is idempotent, that is, T(T(a,¥4)) = T(a,ds).

(ii) For every regular T°-subcomodule (ag, V) of (a,94), the following diagram is a pullback,

T(ao, 19&0) & T(a, 79(1,19&)

(€t)(a0,0a0)l l(&)m,ﬁa)

apy ——a.
i

Proof. (i) As observed after Proposition 4.3, the natural transformation &; : T — I is compo-
nentwise monomorph. Thus Y is an idempotent endofunctor.
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(i) For any regular monomorphism i : (ag, ¥4,) — (a,9,) in AT", consider the commutative
diagram

Y(i
(4.4) Y (ag, ay) © T(a,90)
(it) (ag,Yag) wﬂa)
G(i

(64)(ag.9ag) G(ap) © G(a)

(Et)(a,ﬂa)
Qo LSS OO > ZL B ta

t e

Yag 0 o (s k

T*(a) 0 T°(a)

We claim that the square (£¢)(q,0,) - T(i) =i - (6,5)((10719@0) is a pullback. Indeed, if f : z — ag
and g : ¢ — T(a,9,) are morphisms such that i - f = (ft)(ao,ﬁao) - g, then we have

To(i) '19(10 . f =Uq-1- f =Yg (gt)(ao,ﬁao) cg=tq- (it)(a,ﬂa) 9,

and since the square t, - G(i) = T°(i) - t4, is a pullback, there exists a unique morphism
k:x — G(ag) with ty, -k = Vg, - f and (it)(q,9,) -9 = G(i) - k. Since the functor 7°, as a right
adjoint functor, preserves regular monomorphisms, the forgetful functor UT . AT — A also
preserves regular monomorphisms. Thus i : ap — a is a regular monomorphism in A. Then
the square t,, - (Z‘t)(aoﬂgao) = Vq, - (6})(,10719&0) is a pullback by Proposition 2.4. Therefore, there
exists a unique morphism &' : x — Y(ag, ¥q,) with k = (Z.t)(aoﬂao) - k" and (st)(awgao) K=
To show that Y (i) - ¥’ = g, consider the composite

(Et)(a,ﬂa) : T(Z) : kl =1- (€t)(a0,19a0) : k, =1 f = (gt)(a,ﬂa) °g.

Since (¢¢)(a,9,) i @ monomorphism, we get k- k' = g. This completes the proof of the fact
that the square (£¢)(a,0,) - T(¢) =7 (€¢) (a0, IS a pullback. O

4.5. Proposition. Assume the same conditions as in Proposition 4.4. The functort, : A —
AT corestricts to an equivalence between AC and the full subcategory of AT° generated by
those T°-coalgebras (a,9,) for which there exists an isomorphism Y(a,9,) ~ (a,9,). This
holds if and only if there is a (necessarily unique) morphism x : a — G(a) with t, - x = 9,.

Proof. Since the category A® admits equalisers, it follows from Theorem 3.13 that the functor
t, is comonadic. Thus A% is equivalent to (A7°)Y. But since &, : T — I is a componentwise
monomorphism, the result follows from 2.2.

Next, Y(a,?,) ~ (a,¥,) if and only if the morphism p; in the pullback diagram (4.2) is an
isomorphism. In this case the composite x = py - (p1)~! : @ — G(a) satisfies the condition of
the proposition. Since t, is a monomorphism, it is clear that such an z is unique.

Conversely, suppose that there is a morphism z : ¢ — G(a) with ¢, - © = ¥,. Then it is
easy to see — using that ¢, is a monomorphism— that the square

a—"=G(a)

1k

a——>T%(a)

a

is a pullback. It follows that Y (a,?d,) =~ (a,9,). O
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4.6. Rational functor. Assume the data from 4.1 to be given and that A has and G preserves
equalisers. Define the functor

-1
K 1o T Kr 1o

Rat” : Ap AT® AT® Ar.

Then the triple (RatP,fsP, §7), where e¥ = K;,ITO ~&r - Kp e and oF = KilTo <0 - Kppo, is
a comonad on Ap. Moreover, for any object (a, hy) of Ar,

(i) Rat”(Rat” (a,hq)) ~ Rat” (a, h,);

(i) for any regular T-submodule (ag, ha,) of (a,hy), the following diagram is a pullback,

P Rat” (4) P
Rat” (ag,9ag) — Rat” (a, ¥4,9,)

(EP)(ao,ﬂ%)i l(sp)(a,ﬂa)

ap - a.
3

Proof. Observing that (Rat”,e”, %) is the comonad obtained from the comonad (Y, &, d;)

along the isomorphism K:F}FO : AT" — Ar (see [23]), the results follow from Proposition
4.4. ]

We call a T-module (a,h,) rational if Rat” (a,hs) ~ (a,he) (which is the case if and
only if (573)(&,;%) is an isomorphism, see 2.2), and write Rat” (T) for the corresponding full
subcategory of Ar. Applying Proposition 4.5 gives:

4.7. Proposition. Under the assumptions of Proposition 4.6, let (a,hy) € Ar. Then (a,h,) €
Rat” (T) if and only if there exists a (necessarily unique) morphism x : a — G(a) inducing
commutativity of the diagram

a —T%(a).

a

Putting together the information obtained so far, we obtain as main result of this section:
4.8. Theorem. Let P = (T,G,0) be a rational pairing on a category A with a comonad
T° = (1°,0°,e%) right adjoint to T. Suppose that A admits and G preserves equalisers.

(1) Rat”(T) is a coreflective subcategory of Ap, i.e. the inclusion ip : Rat” (T) — Ap has
a right adjoint rat® : Ar — Rat” (T).
(2) The idempotent comonad on Ar generated by the adjunction ip - rat” is just the idem-
potent monad (Rat” ).
(3) The functor
OF AY = Ap,  (a,94) — (a,04 - T(V,)),

corestricts to an equivalence of categories RF : AS — Rat” (T).
For illustration we write this theorem out for the case of corings.

4.9. Rational functor for corings. For an A-coring C, there is a pairing P = (C*,C,ev)
on the category sM. Assume this to be rational. Then C ® 4 — is an exact functor and hence
preserves equalisers. Hence, by Theorem 4.8,

(1) Rat”(C* @4 —) is a coreflective subcategory of ¢-M, i.e. the inclusion
ip : Rat” (C* @4 —) — oM has a right adjoint rat” : oM — Rat” (C* @4 —).

(2) The idempotent comonad on c~M generated by the adjunction ip | rat” is just the
idempotent monad (Rat™ ”).
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(3) The functor

®7 M — oM, (MLC(X)AM) — (C*®AM@>C*®AC®AMW;®>IM),

leaving the morphisms unchanged, corestricts to an equivalence of categories
R” : M — RatP(C* ®a—).

It is straightforward to see, that every C-comodule is a subcomodule of a C-generated
comodule, that is, C' is a subgenerator in “M (e.g. [8, 18.9]). As a consequence, if P is
rational, then the left C-comodules are precisely the C*-modules subgenerated by C, and
this subcategory is denoted by o[c+C] (e.g. [8, 19.3]). (This type of subcategories of module
categories over any ring are thoroughly studied in [24].) Thus the rational functor can be
written as a trace functor, that is, for M € 4M,

rat” (M) =Y {Im f| f € Hom(N, M), N € o[c-C]}.

5. PAIRINGS IN MONOIDAL CATEGORIES

We begin by reviewing some standard definitions associated with monoidal categories.

Let V = (V,®,I) be a monoidal category with tensor product ® and unit object I. We
will freely appeal to MacLane’s coherence theorem (see [17]); in particular, we write as if the
associativity and unitality isomorphisms were identities. Thus X @ (Y @ Z) = (X ®Y)® Z
and I®@ X = X ®1 for all X,Y, X € V. We sometimes collapse ® to concatenation, to save
space.

Recall that an algebra A in V (or V-algebra) is an object A of V equipped with a mul-
tiplication my : A® A — A and a unit e4 : I — A satisfying associativity and unitality
conditions.

Dually, a coalgebra C in V (or V-coalgebra) is an object C' of V equipped with a comul-
tiplication d¢ : C — C ® C, a counit ¢ : C' — I subject to coassociativity and counitality
conditions.

5.1. Definition. A triple P = (A, C,t) consisting of a V-algebra A, a V-coalgebra C and a
morphism ¢ : A ® C' — I, for which the diagrams

AR AR ARtRC ea®C

(5.1) ApAdeC—222%C g9 aeceC A®C c
7nA®C\L tl/
e
A C I

commute, is called a left pairing.

A left action of a monoidal category V = (V,®,1I) on a category X is a functor
-O—: ¥V x X=X,

called the action of V on X, along with invertible natural transformations

QA BX - (A® B)<>X — A<>(B<>X) and )\X : HQX — X,
called the associativity and unit isomorphisms, respectively, satisfying two coherence axioms
(see Bénabou [4]). Again we write as if & and A\ were identities.

5.2. Example. Recall that if B is a bicategory (in the sense of Bénabou [4]), then for any
A€ Ob(B), the triple (B(A, A),0,I4), where o denotes the horizontal composition operation,
is a monoidal category, and that, for an arbitrary B € B, there is a canonical left action
of B(A,A) on B(B, A), given by f{g = fog for all f € B(A,A) and all g € B(B,A). In
particular, since monoidal categories are nothing but bicategories with exactly one object,
any monoidal category V = (V,®,1) has a canonical (left) action on the category V, given by
AOB = A® B.
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5.3. Actions and pairings. Given a left action —{— : V x X — X of a monoidal category
V on a category X and an algebra A = (A,e4,m4) in V, one has a monad Tx on V defined
on any X €V by

o TX(X) = A0X,

. (eTﬁ)X =esdX X =10X — AOX = T (X),

o (mrg)x = ma0X : TE(TE(X)) = AO(AOX) = (A8 A)OX — AOX = TE(X),
and we write AX for the Eilenberg-Moore category of Ta-algebras. Note that in the case of
the canonical left action of V on itself, AV is just the category of (left) A-modules.

Dually, for a V-coalgebra C = (C,e¢,6c), a comonad GE = (CO—, ecd—, 6cO—) is
defined on X and one has the corresponding Eilenberg-Moore category ©X; for X = V this is
just the category of (left) C-comodules.

It is easy to see that if P = (A, C,t) is a left pairing in V, then the triple Px = (Ta, GS,0y),
where o; is the natural transformation

tO—:Ta - GC = AQG(CO-) = (A C)O— - 1@ — =1,

is a pairing between the monad T and comonad G¢.
We say that a left pairing (A, B, o) is X-rational, if the corresponding pairing Pk is rational,
i.e. if the map
Ty 1 X(X,C0Y) — X(A0X,Y)
taking f: X — COY to the composite

AOX 2L A0(CoY) = (Aw )0y 2y,
is injective.
We will generally drop the X from the notations Tff, Gg and Px when there is no danger
of confusion.

5.4. Closed categories. A monoidal category V = (V,®,7,1) is said to be right closed if
each functor — ® X : V — V has a right adjoint [X,—]: V — V. So there is a bijection

(5.2) 7TY7X,ZZV(Y®X,Z)2V(Y, [X,Z]),

with unit n¥ : X — [Y, X ® Y] and counit e}, : [V, Z] ®Y — Z.
We write (—)* for the functor [—, 1] : V°? — V that takes X € V to [X,I] and f: Y — X to
the morphism [f,1] : [X,I] — [Y,I] that corresponds under the bijection (5.2) to the composite
eX
Symmetrically, a monoidal category V = (V,®, 7,1) is said to be left closed if each functor
X ® — : V — V has a right adjoint {X,~} : V — V. We write 7% : X — [V,Y ® X] and
ey Y ®{Y,Z} — Z for the unit and counit of the adjunction X ® — - {X, —}. One calls

a monoidal category closed when it is both left and right closed. A typical example is the
category of bimodules over a non-commutative ring R, with @ as ®.

5.5. Actions with right adjoints. Suppose now that —$— : V x X — X is a left action
of a monoidal category V on a category X and that A = (A,es,m4) is an algebra in V such
that the functor AG— : X — X has a right adjoint {4, —}x : X — X (as it surely is when
V = B(A, A) and X = B(B, A) for some objects A, B of a closed bicategory B, see Example
5.2.)

Since the functor {A, —}x : X — X is right adjoint to the functor A$— : X — X and since
A$— is the functor-part of the monad Ta, there is a unique way to make {A, —}x into a
comonad G(A) = ({4, —}x, dg(a), Ec(a)) such that the comonad G(A) is right adjoint to
the monad Ta (see 3.3).
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Dually, for any coalgebra C = (C,d¢,e¢) in V such that the functor CO— : X — X has
a right adjoint {C, —}x : X — X, there exists a monad T(C) whose functor-part is {C, —}x
and which is right adjoint to the comonad G©.

5.6. Pairings with right adjoints. Consider a left action of a monoidal category V on a
category X and a left pairing P = (A, C, o) in V, such that there exist adjunctions
AO—4{A, —}x, —QCAHI[A -]x, CO—4{C,—}x, and —{OC HI[C,—]x.
Since the comonad G(A) is right adjoint to the monad T a, the following are equivalent by
Proposition 3.16:
(a) the pairing P is X-rational;
(b) for every X € X, the composite

Wcox {A O X }x

COX —= {4, AQ(COX)Ix ={4, (A C)OX Ix {4, X }x,

where ﬁéox is the C'GX-component of the unit of the adjunction AO— - {A, —}x, is a
monomorphism.

If these conditions hold, then the functor
OP : OX — AX, (X, X 25 COX) — (X, 40X 295 A0(00X) = (40 0)0X 5 X)
is full and faithful.

Writing Rat” (resp. Rat” (A)) for the functor Rat™ (resp. the category Rat™*(Ty)), one
gets:

5.7. Proposition. Under the conditions given in 5.6, assume the category X to admit equalis-
ers. If P is an X-rational pairing in V such that either
(i) the functor CO— : X — X preserves equalisers, or
(ii) X admits pushouts and the functor CO— : X — X preserves regular monomorphisms, or
(iil) X admits pushouts and every monomorphism in X is regular,
then
(1) the inclusion ip : Rat” (A) — aX has a right adjoint rat” : AX — Rat” (A);
(2) the idempotent comonad on aX generated by the adjunction is just Rat” : AX — AX;
(3) the functor ®F : X — AX corestricts to an equivalence RP : Rat” (A) — €X.

Proof. For condition (i), the assertion follows from Theorem 4.8. We show that (iii) is a
particular case of (ii), while (ii) is itself a particular case of (i). Indeed, since P is an X-rational
pairing in V, it follows from 3.8(2) that the functor C{$— : X — X preserves monomorphisms,
and if every monomorphism in X is regular, then C{$— : X — X clearly preserves regular
monomorphisms. Next, since the functor C$— : X — X admits a right adjoint, it preserves
pushouts, and then it follows from Proposition 2.4 that C{)— : X — X preserves equalisers.
This completes the proof. O

5.8. Nuclear objects. We call an object V € V is (left) X-prenuclear (resp. X-nuclear) if
e the functor — ® V : V — V has a right adjoint [V, —]: V =V,
e the functor V*$— : X — X, with V* = [V,I], has a right adjoint {V*, —}x : X — X, and

e the composite
V¥, el OX

ax  VOX VS VOV OX)} = (17, (V2 9 V)OX} 0 v X},

is a monomorphism (resp. an isomorphism), where ((7)x)v¢x is the (V< X)-component

of the unit nx : — — {V*,V*$—} of the adjunction V*O— 4 {V*, —}.
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Note that the morphism ax : VX — {V* X} is the transpose of the morphism e/ $X :
(V*®@V)OX — X under the adjunction VO— 4 {V, —}x.

Applying Proposition 5.7 and 6.10, we get:

5.9. Proposition. Let V be a monoidal closed category and C = (C,ec,d¢c) a V-coalgebra
with C X-prenuclear, and assume X to admit equalisers. If either
(i) the functor CO—: X — X preserves equalisers, or
(ii) X admits pushouts and the functor CO— : X — X preserves regular monomorphisms, or
(iii) X admits pushouts and every monomorphism in X is regular,

then Ratp(c)(C*) is a full coreflective subcategory of c=X and the functor ®P(C) : CX — ¢.X
corestricts to an equivalence RP(C) : X — Rat”(©)(C).

Specialising the previous result to the case of the left action of the monoidal category
oMe+ of C*-bimodules on the category of left C*-modules, one sees that the equivalence
of the category of comodules “M and a full subcategory of ¢«M for 4C locally projective
addressed in 1.2 is a special case of the preceding theorem.

Recall (e.g. from [17]) that a monoidal category V = (V,®,1) is said to be symmetric if for
all X,Y €V, there exists functorial isomorphisms 7xy : X ® Y — Y ® X obeying certain
identities. It is clear that if V is closed, then {X, —} ~ [X,—] for all X € V.

5.10. Pairings in symmetric monoidal closed categories. Let V = (V,®,1, 7, [—, —]) be
a symmetric monoidal closed category and P = (A, C,t) a left pairing in V. For any X € V,
we write
vx:AT®X — [A, X]
for the morphism that corresponds under 7 (see (5.2)) to the composition
Tax, x®A eIA
A RX®A XA ®A—X.

Since the functor [A, —], as a left adjoint, preserves colimits, it follows from [14, Theorem 2.3]
that there exists a unique morphism 7(t) : C — A* such that the diagram

Y(H)®X

(5.3) Cox —1 L argx
\ \L’YX
ax

(4, X]
commutes. Hereby the morphism ~(¢) corresponds under 7 to the composite o - 7¢ 4.

5.11. Proposition. Consider the situation given in 5.10.
(1) If P is a rational pairing, then the morphism ~(t) : C — A* is pure, that is, for any
X €V, the morphism v(t) ® X is a monomorphism.
(2) If A is V-nuclear, then P is rational if and only if v(t) : C — A* is pure.
(3) ®F : €V — AV is an isomorphism if and only if A is V-nuclear and y(t) : C — A* is
an isomorphism. In this case C is also V-nuclear.

Proof. (1) To say that P is a rational pairing is to say that ax is a monomorphism for all
X €V (see Proposition 5.6). Then it follows from the commutativity of the diagram (5.3)
that v(t) ® X is also a monomorphism, thus y(¢t) : C' — A* is pure.

(2) follows from the commutativity of diagram (5.3).

(3) One direction is clear, so suppose that the functor ® is an isomorphism of categories.
Then it follows from Proposition 3.15(2) that ax is an isomorphism for all X € V. It implies
that the functor [A, —] preserves colimits and thus the morphism vx is an isomorphism (see
[14, Theorem 2.3]). Therefore A is V-nuclear. Since ax and yx are both isomorphisms,
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it follows from the commutativity of diagram (5.3) that the morphism () ® X is also an
isomorphism. This clearly implies that y(t) : C' — A* is an isomorphism.
It is proved in [22, Corollary 2.2] that if A is V-nuclear, then so is A*. a

6. ENTWININGS IN MONOIDAL CATEGORIES

Recall (for example, from [19]) that an entwining in a monoidal category V = (V,®,1) is a
triple (A, C,\), where A = (A,eq,my) is a V-algebra, C = (C,e¢, d¢) is a V-coalgebra, and
A A®C — C ® A is a morphism inducing commutativity of the diagrams

C A C
6A®C‘LX®E:: ,\l Wic

AeCc 2 pgcec X% coanc A9A0C 2 AgceA b coiasA

/\l \LC@)\ mA®Ci lC@mA

CoA CoCoA, A C CoA.

e ®A

For any entwining (A, C, \), the natural transformation
N=A@—-:TaoG’=A0C® - —-CRAR®—-=G%0Tx

is a mixed distributive law from the monad Ta to the comonad GC. We write C for the
AV-comonad GC, that is, for any (V,hy) € AV,

C(V,hy)=(CoV,AeCoV 2L cgAe Vv £ c o V),

and write {V()\) for the category V%ﬁ (N). An object of this category is a three-tuple
(V,0v, hy), where (V,0y) € ©V and (V, hy) € 4V, with commuting diagram

(6.1) AoV sy Y L cgv

A®9vl Tc®hv

The assignment ((V, hv),0v,ny)) = (V,0(v,ny ), hv) yields an isomorphism of categories
A (4V)C = GV(N).

6.1. Representable entwinings. For objects A, C' in a monoidal category V = (V,®,1),
consider the functor

V(-®C,A) : VP — Set
taking an arbitrary object V € V to the set V(V & C, A). Suppose there is an object £ € V
that represents the functor, i.e. there is a natural bijection

w: V(= C/A) ~V(—,E).

Writing 3: E® C — A for the morphism w™!(Ig), it follows that for any object V € V and
any morphism f: V ® C' — A, there exists a unique 3y : V — E making the diagram

Vec ! A

o A

ExC
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commute. It is clear that w™1(8y) = f.
We call an entwining (A, C,\) representable if the functor V(— ® C, A) : VP — Set is
representable.

6.2. Examples.

(i) If the functor — ® C' : V — V has a right adjoint [C,—] : V — V, then it follows from
the bijection V(V @ C, A) ~ V(V,[C, A]) that the object [C, A] represents the functor
V(- ®C, A). In particular, when V is right closed, each entwining in V is representable.

(ii) If C is a right V-nuclear object, the functor V(— ® C, A) : V°P — Set is representable.
Indeed, to say that C' is right V-nuclear is to say that the functor C® —:V — V has a

right adjoint {C, -} : V — V| the functor — ® *C = — @ {C,1} : V — V also has a right
adjoint [*C,—]: V — V, and the morphism
ay Vel —["C,V|
is a natural isomorphism. Considering then the composition of bijections
V(=®*C,?7) ~V(—,["C,7) ~V(—,?7x0),
one sees that the functor — ® C admits the functor — ® *C as a left adjoint. The same
arguments as in the proof of Theorem X.7.2 in [17] then show that there is a natural
bijection
V(- ®C,A) ~V(—, A® *C).
Thus the object A ® *C' represents the functor V(— @ C, A) : V°P — Set.
6.3. Proposition. Let (A, C,\) be a representable entwining in V = (V,®,1) with represent-
ing object E (see 6.1). Let eg = B, : 1 — E and mg = B, : E® E — E, where T is the
composite
IC~C =514 4,

while o is the composite

E®E®C Z28%%, poEgcec 2227, Eo Ao C 22
(i) The triple (E,eg, mg) is a V-algebra.

B3 BoCcoA 24 AgA ™4, A

(ii) The morphism i := Bage. : A — E is a morphism of V-algebras.

Proof. (i) First observe commutativity of the diagrams

(6.2) E®E®C H®C C
260 \ 260 \
®C%A E®C

To prove that mg is associative, i.e. mg - (mg ® E) = mg - (E ®mpg), it is to show
B-(mp®C) (mp@E®C)=p-(mpeC) (E®mg®C).
This can be achieved by standard arguments which are left to the reader.
To prove that eg is the unit for the multiplication mg, it is to show
B-(mpRC) (eg@ERC)=0 and p-(mgC) - (E®Qer®C)=_,.
Again this can be done by straightforward computation completing the proof of ().
(ii) We have to show i-eq = ig and mg - (i ® i) = i - m4. For this consider the diagram

A% Ao B EeC

o e /

I—=4
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Since the square commutes by naturality of composition, while the triangle commutes by
definition of 7, the outer diagram is also commutative, meaning G ,.c, = i-ea. But fe,.cc = €E.
Thus i-eq = eg.

Next, consider the diagram

A9 AR CeC 2812 foawc 22X AgcwA

ARA®I
IRARCKRC

A®AR®C E®A®CeC i®ABC  i®CEA ARec®A
o l . J/ W

1QIQC EQi®CC
E®E®CE®E®6E®E®O®CWE®A®C*>E®C®AWA®A

in which the two triangles commute by definition of ¢, and the quadrangles commute by
naturality of composition. We have

wllme - (i®i) = ma-(BRA)-(Ex)N) (EQBRC)- (EE®ic)-(i®ixC)
= ma (ARec®A)- (AN - (AR ARec®C) (AR A®dc)
since (ec ® C) - dc =1 = mA~(A®€C®A)~(A®)\)

by definition of A ma- (AR A®ec)
nat. of composition = (A (024] €C) . (mA (4 C)
since AQec =6-(1E®C) ﬂ(z@C)(mA(X)C’)
= B-((t-ma)®0C)

= w (i -ma).

Thus mg - (i ®4) =i - m4. This completes the proof. O
6.4. Proposition. Assume the data from Proposition 6.3 to be given,
(1) For any (V,0v,hy) € GV(N), the composite

BRIV

w EoVEE, peoceov 22 Ay iy

provides an E-module structure on V.
(2) There is a functor

E:9VN) = gV, (V.0v,hy) — (Vw),

leaving the morphisms unchanged.

(3) The diagram
S

is commutative where QU : GV(X) — V is the evident forgetful functor.

(6.3)

Proof. (1) can be verified by direct computation.
(2) Let f: (V,0v,hy) — (V',0v:, hy) be in GV()). Then the diagram

(6.4) AoV ey Yo ogv

o1 fl |ees

A®Vlh4>V'T>C®V/
v/ v/
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is commutative. It is to show that f is also a morphism in gV. In the diagram

0 174
EavE pecev 2% Aoy Y sy

E®fi E®C®fi A®fi J/f

E@Vb—»E®C®Vﬁ§?A®Vb—»Vﬂ

E®9V/ hV’

the middle square commutes by naturality of composition, while the other squares commute
by (6.4). This proves our claim and shows that the assignment given in (1) yields a functor
2:GV(\) — gV.

(3) Tt is clear that = makes the diagram (6.3) commute. O

In order to proceed, we need the following result.

6.5. Lemma. Let T = (T,er,mr) and H = (H,ey,mpy) be monads on a category A, i :
T — H a monad morphism and i, : Ay — Ap the functor that takes an H-algebra (a,ha) to
the T-algebra (a, hq - iq). Suppose that T® = (T°,e®,m°) (resp. H® = (H®, ego,mpyeo)) is a
comonad that is right adjoint to T (resp. H). Write i : H> — T° for the mate of i. Then

(1) i is a morphism of comonads.

(2) We have commutativity of the diagram

KH,Hol lKT'TO

AFT ——= AT
()«

(3) If A admits both equalisers and coequalisers, then
(i) the functors i, and (i). admit both right and left adjoints;
ii) . is monadic and (i). is comonadic.

(
Proof. (1) This follows from the properties of mates (see, for example, [20]).
(2) An easy calculation shows that for any (a, h,) € Ay, one has

(1)« © Kp, o (a, he) = (a,()q - H°(hy) - 04) and

Koo ois(a,hy) = (a,T°(he) - T®(4) - Ta),
where o : I — H°®H is the unit of the adjunction H 4 H®, while 7 : I — T°T is the unit of
the adjunction 7'+ T°. Considering the diagram

Oqa ¢ ha
a e (a) 2 1o (a)

Tai \LiH(a) l(i)a

T7°T(a) =i T°H(a) T°(a),

—
T°(ha)

in which the right square commutes by naturality of 7, while the left one commutes by Theorem
IV.7.2 of [17], since i is the mate of i. Thus (i)g - H°(ha) - 00 = T°(hg) - T°(ia) - Ta, and hence
(%)* e} KH,H° = KT,TO e} i*.

(3)(i) If the category A admits both equalisers and coequalisers, then Ay admits equalisers,
while A#° admits coequalisers. Since K H,me is an isomorphism of categories, it follows that
the category Ay as well as the category A ° admit both equalisers and coequalisers. Then,
according to 3.12 and its dual, the functor (i), admits a right adjoint (7)*, while the functor
i, admits a left adjoint i*. Then clearly the composite 1 = (Kg go)™ ' - (i)* - Kp 1o is right
adjoint to i,, while the composite (i), = Kp pgo - i* - (Kr.10) 71 is left adjoint to ()..
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(3)(ii) Since the functors i, and (7). are clearly conservative, the assertion follows by a
simple application of Beck’s monadicity theorem (see, [17]) and its dual. ]

6.6. Left and right adjoints to the functor .. In the setting considered in Proposition
6.3, suppose now that V admits both equalisers and coequalisers and that there are adjunctions
A —4{A,—-}:V—>Vand E® — 41{F,—} : V — V. Then, according to Lemma 6.5, the
functor i, : gV — 4V has both left and right adjoints i* and 4,. It follows from 3.12 and its
dual that for any (V,hy) € 4V, i*(V, hy) is the coequaliser

hE®V Q(v,hv),*
EQA®V E®@V —=1*(V,hy),
E®hy
while i(V, hy ) is the equaliser
e {nt,,v
(6.6) (V. hy) —E VY ———2 {AQ E,V},
k

where b, = mpg - (E®1), hYy = mp - (i ® E) and k is the transpose of the composition

SE
AQE®{E V) 22, agy v,

We write £ ® 4 — for the functor i* (as well as for the 4V-monad generated by the adjunction
i* 44,) and write {E, —} 4 for the functor 4, (as well as for the 4V-comonad generated by the
adjunction i, —14).

According to Lemma 6.5, the comparison functor K;« : gV — (4V)gg ,— is an equivalence
of categories. It is easy to check that for any (V,hy) € gV, Ki-(V,hy) = (V,vv), Ev,hy)),
where vy = hy - (i®@V), while k(y,4,) : E®4V — V is the unique morphism with commutative
diagram

adQv,vy)

(6.7) EQV—— > E@4V

k %ﬂv)

v

Such a unique morphism exists because the morphism hy : E® V — V coequalises the pair
of morphisms (hg ® V, E ® vy).

6.7. Pairing induced by the adjunction E ®4 — 4 {E,—}4. We refer to the setting
considered in 6.6. Writing § for the composition

~ = - K — —
(uV)IC L8y 2 oV B2 (4 V) g, —22am B4 y){E—ta,
one easily sees that § makes the diagram

3§

(AV)G (AV){E,—}A
R %AU
AV

commute, were UC is the evident forgetful functor. Then, according to 3.9, there is a unique
morphism of comonads a : C — {E, —} 4 such that o, = §.

Since the triple (E®4 —, {E, —} 4, %), where €” is the counit of the adjunction F ®4 — -
{E, -} a4, is a pairing (see 3.1), it follows from Proposition 3.5 that the triple

(6.8) P\ = (E®4s —{E,~}a,0:=¢F (E®4q))

is a pairing on the category AV.
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A direct inspection shows that for any ((V,vv),0wv,..,)) € (,L;V)é7 EA(V,vv),0vpy)) =
(V,€), where £ is the composite

Eov 22 pecev 2. Agv 2V
Then
K EA(Virv), 0vuny) = Ki=(V,§) = (Vv ), kv : E®@aV = V),
and thus

(Vo). 0wun) = Kpe -, (5,1 (Virv), 5v) = (V,ov), O v,
where 5(\/7,,‘/) is the composite

{E,kv,e)ta
_

VI (B EoaVia (E, V4.

Here ¥ : I — {E,E ®4 —} 4 is the unit of the adjunction E ®4 — 4 {E, -} 4.
Since for any object (V,vy) € V4, the pair
(CV.v), (6&)(van)) = (C @ V. 1), 6c ® V),
where h is the composite (C®@vy)-(A®@V): A®C®V — C®V, is an object of the category
(4V)%, one has

F(CoV,h),bc@V)=(CoV,(Cow)- (AR V),0cevn)

where §(cgvp) : C @V — {E,E®4 V}.4 is the composite

~E "
CoV I (B Eo,(CoV)ia 5ol (p 0o V)L,

Here £ is the composite

ARV

E8icgV, A0V 22, 040V &, caV.

BRICRV
Sy

E@CeV EpCCV

Now, according to 3.9, the (V, vy )-component oy, of the comonad morphism o : C —
{E, —}4 is the composite

{E,xccov.e} {E,ec®V}a
- -

CoV B E@s(COV)ia (E.CoV}a {E,V}a,

i.e. a(v,,) is the transpose of the composite (ec ® V) - k(cgv,e). By (6.7), the diagram

ERC®V

q(ce@cv,s)l \

E@A(CRV)———=>CQV —=>V

R(cev.) ec®V
commutes. In the diagram

ExCoV =2 pocecoviiascev % codev & cay

E®Qec®@CRV EcRARV ec®V
ARQec®

E®CQV v AQV ———V,

the left triangle commutes since C is a coalgebra in V), the middle triangle commutes since the
triple (A, C, ) is an entwining, and the trapeze and the rectangle commute by naturality of
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composition, hence (ec ® V) -§ = vy - (B® V). Thus, kcgv,) is the unique morphism that
makes the diagram

(6.9) EoCcaov —"  _ agv

‘hcggv,h)l ll/v

E,(CRV)——— >V

(ec®V)-kcgv,n)
commute. (Recall that here h=(C@uvy) - (AQ@V): ACQV -CaV.)

6.8. Proposition. For any (V,vy) € 4V, consider the morphism O/(VVV) 0V = {E,V}

that is the transpose of the composition E® C @V —— POV, A @V L5 V. Then the diagram
(B V}s— " (B V)
a:/,u\ 4‘/)
cCeV

is commutative.
Proof. We show first that
(610) {hE; V} a(VyV) k- a(VVv)

(see the equaliser diagram (6.6)). Since the transpose of the morphism k is the composite

Agey hy
AREQR{E,V} —— AQV —V,
while the transpose of the morphism {h%,, V'} is the composite

1 —A®E
AESe VY Ao Eo{A0E, V) YV

A®E®{E,V}
and this is easily seen to be the composite

l =E
PEEVY R (B VY 2LV

AQE®{E,V}
Thus, since
(hp @ {E,V}) - (A® E @ a{y,,)) = (E@(y,,,)) (g ®CoV)

by naturality of composition, it is enough to show that the diagram

ARE®a(y, ) el
A®E®C®V4>A®E®{EV} ARV
[
h%@C@Vl RLe{E,V}I iw
4
ECV - Ex{EV} \%4
X(V,uy) v

is commutative. Since e¥ - (F ® a(v Vv)) =vy - (B®V), the diagram can be rewritten as

AR (vy - (BRV
(6.11) ApECoV 2w BV) 4oy

hlE@C@VJ/ luv

ECeV v B3V
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Consider now the diagram

AeE0 % o re e A0 A0c 22 Agc oA

ARec®A
IQERQC IQERCRC IQARC iIQCRA

EQE®Cyp=ERE®CRC;—>E8ARC 3 >EaC8Ao—2ARA,

in which the three rectangles commute by naturality of composition, while the triangle com-
mutes since w H(A®ec) = B (i ® C). Recalling now that hl, = mpg - (i ® E), we have
B-(h,oC) = B-(mpeaC) (ie E®C)
= ma-(BRA)-(E@N - (E®BeC) (EQE®RI) - (i®E®C)

= ma- (ARec®A)- (A®N) - (A®B®C) (A® E®dc)
since X is an entwining = mA(A®A®€C)(A®ﬁ®C)(A®E®(5c)
nat. of composition = M4 - (A®ﬂ) . (A®E®C®6c) . (A@E@(SC)
since (C®ec) - -0c =1Ic = mA(A®,6’)

Therefore, ma - (A® ) = 3 - (h; ® C), and hence
(ma®V) - (A®BeV)=(BaV) - (hpeCaV).
Using now that vy - (AQuvy) =vy - (ma @ V), since (V,vy) € AV, one has
v (A@vy) (A V)=vy - (V) (e CaV).
Thus the diagram (6.11) commutes. It follows that {h%,, V} - O‘/(V,z/v) =k- aEV,vv)’ and since

the diagram (6.6) is an equaliser, there exists a unique morphism y(y,,,) : C ®V — {E,V}4
that makes the diagram

(B V}s— " (B V)
cCRV

commute. We claim that v(v,,,,) = a(v,,,,). To see this, consider the diagram

E®ywv.vy) E®ewv vy

Q(C®V,h)l Q{E,V}A\L \Le‘E/

®AY(V,vy)

where e is the counit of the adjunction —®4 E - [E, —] 4. In this diagram, the left rectangle
commutes by naturality of ¢ (recall that vy, ): C®V — {E,V}, is a morphism in V),
while the right one commutes by definition of €Z. Since

ey (EQewu)) (E®@Ywvun) =& - (E® (evuy) - Yvan))) = € - (B @ aly,0))s
and since % - (E ® a(vyv)) =vy - (B®V), it follows that the diagram

ExCoV —22" . Agv

lhcqov,h)l ll/v

E®s(VeC)- e a——
eV (E®aY(v.vy))

commutes. Comparing this diagram with (6.9), one sees that

eV - (E®aY(vu)) = (Ec ®V) - Kcavn)-
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Thus vy, ) : C®V — {E,V}4 is the transpose of the morphism (ec ® V') - k(cgv,). Thus
Y(Vywy) 18 just oy, ). This completes the proof. (Il

When the pairing P()) (6.8) is rational, we write Rat” ™ (E) for the full subcategory of
the category gV generated by those objects whose images under the functor K« lie in the
category Rat? N (E @4 —).

The following result extends [1, Theorem 3.10], [12, Proposition 2.1], and [13, Theorem 2.6]
from module categories to monoidal categories.

6.9. Theorem. LetV = (V,®,1) be a monoidal category with V admitting both equalisers and
coequalisers, and (A, C,\) a representable entwining with representable object E. Suppose
that

(1) the functors A® —, E® —:V — V have right adjoints {A,—} and {E, -},

(2) for any (V,vy) € AV, the transpose O‘/(V,VV) :C RV — {E,V} of the composite

ECeV BEV, 4 @V 25V is a monomorphism, and

(3) (i) the functor C ® —: V — V preserves equalisers, or

(i) the category V admits pushouts and the functor C ® — : V — V preserves reqular
monomorphisms and has a Tight adjoint, or

(iii) the category V admits pushouts, every monomorphism in V is regular and the
functor C @ —:V — 'V has a right adjoint.

Then the pairing P(\) is rational and there is an equivalence of categories
SV(\) ~ Rat”™M(E).

Proof. Since ey, ) : {E,V}a — {E,V} is an equaliser for all (V,vy) € AV, oy, is a
monomorphism if and only if OéZV,Dv) is so. Thus, the pairing P(\) is rational if and only if
for any (V,vy) € 4V, the morphism O/(VWV) :C®V — {E,V} is a monomorphism. Thus,
condition (2) implies that the pairing P(\) is rational.

Next, since the forgetful functor 4U : 4V — V preserves and creates equalisers, the functor
C:aV — 4V preserves equalisers if and only if the composite AUC : 4V — V does so. But
for any (V,vy) € 4V, sUC(V,vy) = C ® V. It follows that if the functor C @ — : V — V
preserves equalisers, then the functor C: AV — 4V does so. Since each of the conditions in
(3) implies that the functor C ® — : V — V preserves equalisers (see the proof of Proposition
5.7) and since the functor £ ® 4 — :4V —gV has a right adjoint {E,—}4 :4V —gV, one can
apply Theorem 4.8 to get the desired result. (|

Since for any V-coalgebra C = (C,e¢, d¢), the identity morphism I : C®I=C — C =
I® C is an entwining from the trivial V-algebra Z = (I, I, I) to the V-coalgebra C, it follows
from Example 6.2(1) that this entwining is representable with representable object C* = [C,T].
Applying Proposition 6.3 gives:

6.10. Coalgebras in monoidal closed categories. Assume the monoidal category V to be
closed and consider any V-coalgebra C = (C,ec,0¢c). Then the triple
C* — (C* — [07 H]’ €C*;mC*)

is a V-algebra, where ec» = w(e¢), while me« is the morphism C*@C* — C* that corresponds
to the composite

* * *el el
CroCreC 8%, vt e ST v 0 LT
under the bijection (see (5.2))

T =Te*C*,Cl - V(C* ®C*®C, ]I) ~ V(C* ® C*,C*)
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6.11. Proposition. In the situation of 6.10, the triple
P(C)=(C*,C,t=¢ef:C*@C —1)
is a left pairing in V.
Proof. We just note that the equalities 77! (ec+) = ¢ and
7 Y me) =ef - (C*@ef @ C)- (C* 0 C* @ dc)
imply commutativity of the diagrams

C*RC*®6 C*®ef ®C «*®C
et %% g0 — s v o< o

mes ®Ci eﬂcl %

C*®C _ I

i

Applying now either Proposition 5.9 or Proposition 6.11 yields

6.12. Theorem. Let Let V = (V,®,1,[—,—]) be a monoidal closed category, C = (C,ec,d¢)
a V-coalgebra with C V-prenuclear, and assume V to admit equalisers. If either

(i) the functor C ® —:V — V preserves equalisers, or

(ii) V admits pushouts and the functor C @ — : V — V preserves regular monomorphisms,
or

(iil) V admits pushouts and every monomorphism in V is regular,

then RatP(C)(C*) is a full coreflective subcategory of c+V and the functor ®P(©) : €V — .V
corestricts to an equivalence RP(©) : ©V — Rat(C*).

A special case of the situation described in Theorem 6.12 is given by a locally projective
A-coalgebra C' over a commutative ring A and V the category of A-modules (see also (4.9)).
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