
ON RATIONAL PAIRINGS OF FUNCTORS

BACHUKI MESABLISHVILI AND ROBERT WISBAUER

Abstract. In the theory of coalgebras C over a ring R, the rational functor relates the
category C∗M of modules over the algebra C∗ (with convolution product) with the category
CM of comodules over C. This is based on the pairing of the algebra C∗ with the coalgebra
C provided by the evaluation map ev : C∗ ⊗R C → R. The (rationality) condition under

consideration ensures that CM becomes a coreflective full subcategory of C∗M.

We generalise this situation by defining a pairing between endofunctors T and G on any
category A as a map, natural in a, b ∈ A,

βa,b : A(a,G(b))→ A(T (a), b),

and we call it rational if these all are injective. In case T = (T,mT , eT ) is a monad and
G = (G, δG, εG) is a comonad on A, additional compatibility conditions are imposed on

a pairing between T and G. If such a pairing is given and is rational, and T has a right
adjoint monad T�, we construct a rational functor as the functor-part of an idempotent

comonad on the T-modules AT which generalises the crucial properties of the rational

functor for coalgebras. As a special case we consider pairings on monoidal categories.
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1. Introduction

The pairing of a k-vector space V with its dual space V ∗ = Hom(V, k) provided by the
evaluation map V ∗ ⊗k V → k can be extended from base fields k to arbitrary base rings
A. Then it can be applied to the study of A-corings C to obtain a faithful functor from the
category of C-comodules to the category of C∗-modules. The purpose of this paper it to
extend these results to (endo)functors on arbitrary categories. We begin by recalling some
facts from module theory.

1.1. Pairing of modules. Let C be a bimodule over a ring A and C∗ = HomA(C,A) the
right dual. Then C⊗A− and C∗⊗A− are endofunctors on the category AM of left A-modules
and the evaluation

ev : C∗ ⊗A C → A, f ⊗ c 7→ f(c),

induces a pairing between these functors. For left A-modules X and Y , the map

αY : C ⊗A Y → AHom(C∗, Y ), c⊗ y 7→ [f 7→ f(c)y],
1
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induces the map

βX,Y : AHom(X,C ⊗A Y ) −→ AHom(X,AHom(C∗, Y )),

X
f→ C ⊗A Y 7−→ X

f→ C ⊗A Y
αY−→ AHom(C∗, Y ).

Clearly βX,Y is injective for all left A-modules X,Y if and only if αY is a monomorphism
(injective) for any left A-module Y , that is, CA is locally projective (see [1], [8, 42.10]).

Now consider the situation above with some additional structure.

1.2. Pairings for corings. Let C = (C,∆, ε) be a coring over the ring A, that is, C is an
A-bimodule with bimodule morphisms coproduct ∆ : C → C ⊗A C and counit ε : C → A.
Then the right dual C∗ = HomA(C,A) has a ring structure by the convolution product for
f, g ∈ C∗, f ∗ g = f ◦ (g ⊗A IC) ◦ ∆ (convention opposite to [8, 17.8]) with unit ε, and we
have a pairing between the comonad C ⊗A − and the monad C∗ ⊗A − on AM. In this case,
HomA(C∗,−) is a comonad on AM and αY considered in 1.1 induces a comonad morphism
α : C ⊗− → HomA(C∗,−). We have the commutative diagrams

(1.1) C∗ ⊗A C∗ ⊗A C
I⊗I⊗∆//

∗⊗I
��

C∗ ⊗A C∗ ⊗A C ⊗A C
I⊗ev⊗I // C∗ ⊗A C

ev

��

C
ε⊗Ioo

ε
zzvvvvvvvvvv

C∗ ⊗A C
ev // A .

The Eilenberg-Moore category MHom(C∗,−) of Hom(C∗,−)-comodules is equivalent to the
category C∗M of left C∗-modules (see 3.3) and thus α induces a functor

CM→MHom(C∗,−) ' C∗M
which is fully faithful if and only if the pairing (C∗, C, ev) is rational, that is, αY is monomorph
for all Y ∈ AM (see [8, 19.2 and 19.3]). Moreover, α is an isomorphism if and only if the
categories CM and C∗M are equivalent and this is tantamount to CA being finitely generated
and projective.

Note that for any A-coring C, the right adjoint functor HomA(C,−) is a monad on AM and
the Kleisli category of C-comodules is equivalent to the Kleisli category of the HomA(C,−)-
modules (contramodules, see [11], [5]). This certainly relates comodules and modules - but the
modules in this context are over the monad HomA(C,−) whereas algebraists prefer to have
modules over a tensor monad (algebra). The rationality condition imposed on the functor
C⊗A−, that is, conditions on the A-module structure of C, is modelled to match C-comodules
with C∗-modules. It does not enforce CA to be finitely generated (or projective) but allows
to describe C-comodules as special C∗-modules.

To the content of the paper. In Section 2 we recall the notions and some basic facts on
natural transformations between endofunctors needed for our investigations.

Weakening the conditions for an adjoint pair of functors, a pairing of two functors T : A→ B
and G : B→ A is defined in Section 3 (see 3.1) as a map βa,b : A(a,G(b))→ B(T (a), b), natural
in a ∈ A, b ∈ B, and it is called rational if all the βa,b are injective maps. For pairings of
monads T with comonads G on a category A, additional conditions are imposed on the defining
natural transformations (see 3.2). These imply the existence of a functor ΦP : AG → AT from
the G-comodules to the T-modules (see 3.6), which is full and faithful provided the pairing
is rational (see 3.8). Of special interest is the situation that the monad T has a right adjoint
T� and the last part of Section 3 is dealing with this case.

Referring to these results, a rational functor RatP : AT → AT is associated with any
rational pairing in Section 4. This leads to the definition of rational T -modules and under
some additional conditions they form a coreflective subcategory of AT (see 4.8).

The application of the general notions of pairings to monoidal categories is outlined in
Section 5. The resulting formalism is very close to the module case considered in 1.2.
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In Section 6, we apply our results to entwining structures (A,C, λ) on monoidal categories
V = (V,⊗, I). The objects A and C induce a functor V(− ⊗C,A) : Vop → Set and if this is
representable we call the entwining representable, that is if V(− ⊗ C,A) ' V(−, E) for some
object E ∈ V. This E allows for an algebra structure, an algebra morphism A → E (see
Proposition 6.3), and a functor from the category C

AV(λ) of entwined modules to the category
EV of left E-modules. In case the tensor functors have right adjoints, a pairing on V is related
to the entwining (see 6.8) and its properties are studied. Several results known for the rational
functors for ordinary entwined modules (see, for example, [1], [12] and [13] ) can be obtained
as corollaries from the main result of this section (see Theorem 6.9).

2. Preliminaries

In this section we recall some notation and basic facts from category theory. Throughout
A and B will denote any categories. By Ia, IA or just by I we denote the identity morphism
of an object a ∈ A, respectively the identity functor of a category A.

2.1. Monads and comonads. For a monad T = (T,mT , eT ) on A, we write
AT for the Eilenberg-Moore category of T-modules;
UT : AT → A, (a, ha)→ a, for the underlying (forgetful) functor;
φT : A→ AT , a→ (T (a), (mT )a), for the free T-module functor, and
ηT , εT : φT a UT : AT → A for the forgetful-free adjunction.

Dually, if G = (G, δG, εG) is a comonad on A, we write
AG for the category of the Eilenberg-Moore category of G-comodules;
UG : AG → A, (a, θa)→ a, for the forgetful functor;
φG : A→ AG, a→ (G(a), (δG)a), for the cofree G-comodule functor, and
ηG, εG : UG a φG : A→ AG for the forgetful-cofree adjunction.

2.2. Idempotent comonads. A comonad H = (H, ε, δ) is said to be idempotent if one of
the following equivalent conditions is satisfied (see, for example, [9]):

(a) the forgetful functor UH : AH → A is full and faithful;
(b) the unit ηH : I → φHUH of the adjunction UH a φH is an isomorphism;
(c) the natural transformation δ : H → HH is an isomorphism;
(d) for any (a, ϑa) ∈ AH , the morphism ϑa : a→ H(a) is an isomorphism and (ϑa)−1 = εa;
(e) Hε (or εH) is an isomorphism.
When H is an idempotent comonad, then an object a ∈ A is the carrier of an H-comodule if

and only if there exists an isomorphism H(a) ' a, or, equivalently, if and only if the morphism
εa : H(a)→ a is an isomorphism. In this case, the pair (a, (εa)−1) is an H-comodule. In fact,
every H-comodule is of this form. Thus the category AH is isomorphic to the full subcategory
of A generated by those objects for which there exists an isomorphism H(a) ' a.

In particular, any comonad H = (H, ε, δ) with ε a componentwise monomorphism is idem-
potent (e.g. [9]). In this case, there is at most one morphism from any comonad H′ to H.
When H′ is also an idempotent comonad, then a natural transformation τ : H′ → H is a
morphism of comonads if and only if ε · τ = ε′, where ε′ is the counit of the comonad H′.

We will need the following result whose proof is an easy diagram chase:

2.3. Lemma. Suppose that in the commutative diagram

a

h1

��

k // b

h2

��

g
//

f // c

h3

��
a′

k′
// b′

g′
//

f ′ // c′,
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the bottom row is an equaliser and the morphism h3 is a monomorphism. Then the left square
in the diagram is a pullback if and only if the top row is an equaliser diagram.

2.4. Proposition. Let t : G→ R be a natural transformation between endofunctors of A with
componentwise monomorphisms and assume that R preserves equalisers. Then the following
are equivalent:

(a) the functor G preserves equalisers;
(b) for any regular monomorphism i : a0 → a in A, the following square is a pullback:

G(a0)
G(i) //

ta0
��

G(a)

ta

��
R(a0)

R(i)
// R(a).

When A admits and G preserves pushouts, (a) and (b) are equivalent to:
(c) G preserves regular monomorphisms, i.e. G takes a regular monomorphism into a regular

monomorphism.

Proof. (b)⇒(a) Let

a
k // b

g
//

f // c

be an equaliser diagram in A and consider the commutative diagram

G(a)

ta

��

G(k) // G(b)

tb

��

G(g)
//

G(f) // G(c)

tc

��
R(a)

R(k)
// R(b)

R(g)
//

R(f) // R(c) .

Since R preserves equalisers, the bottom row of this diagram is an equaliser. By (b), the left
square in the diagram is a pullback. tc being a monomorphism, it follows from Lemma 2.3
that the top row of the diagram is an equaliser. Thus G preserves equalisers.

(a)⇒(b) Reconsider the diagram in the above proof and apply Lemma 2.3.
Suppose now that A admits and G preserves pushouts. The implication (a)⇒(c) always

holds and so it remains to show
(c)⇒(b) Consider an arbitrary regular monomorphism i : a0 → a in A. Since A admits

pushouts and i is a regular monomorphism in A, the diagram

a0
i // a

i2
//

i1 // ata0a ,

where i1 and i2 are the canonical injections into the pushout, is an equaliser diagram (e.g. [2,
Proposition 11.22]). Consider now the commutative diagram

G(a0)

ta0
��

G(i) // G(a)

ta

��

G(i2)
//

G(i1) // G(ata0a)

tata0a

��
R(a0)

R(i) // R(a)
R(i2)

//
R(i1) // R(ata0a) ,

in which the bottom row is an equaliser diagram since R preserves equalisers. Since G takes
regular monomorphisms into regular monomorphisms and G preserves pushouts, the top row
of the diagram is also an equaliser diagram. Now, using that tata0a is a monomorphism,
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one can apply Lemma 2.3 to conclude that the square in the diagram is a pullback showing
(c)⇒(b). �

3. Pairings of functors

Generalising the results sketched in the introduction we define the notion of pairings of
functors on arbitrary categories.

3.1. Pairing of functors. For any functors T : A → B and G : B → A, there is a bijection
(e.g. [21, 2.1]) between (the class of) natural transformations between functors Aop×B→ Set,

βa,b : A(a,G(b))→ B(T (a), b), a ∈ A, b ∈ B,

and natural transformations σ : TG→ IB, with σa := βG(a),a(IG(a)) : TG(a)→ a and

βa,b : a
f→ G(b) 7−→ T (a)

T (f)→ TG(b) σb→ b.

We call (T,G, σ) a pairing between the functors T and G and name it a rational pairing
provided the βa,b are monomorphisms for all a ∈ A and b ∈ B.

Clearly, if all the βa,b are isomorphisms, then we have an adjoint pairing, that is, the
functor G is right adjoint to T and σ is just the counit of the adjunction. Thus rational
pairings generalise adjointness. We mention that, given a pairing (T,G, σ), Medvedev [18]
calls T a left semiadjoint to G provided there is a natural transformation ϕ : IA → GT
such that σT ◦ Tϕ = IT . This means that β−,− is a bifunctorial coretraction (dual of [18,
Proposition 1]) in which case σ is a rational pairing. In case all βa,b are epimorphisms, the
functor G is said to be a weak right adjoint to T in Kainen [15]. For more about weakened
forms of adjointness we refer to Börger and Tholen [6].

Similar to the condition on an adjoint pair of a monad and a comonad (see [11]) we define

3.2. Pairing of monads and comonads. A pairing P = (T,G, σ) between a monad
T = (T,m, e) and a comonad G = (G, δ, ε) on a category A is a pairing σ : TG→ I between
the functors T and G inducing - for a, b ∈ A - commutativity of the diagrams

(3.1) A(a, b)

A(a,G(b))

A(a,δb)

��

βPa,b //

A(a,εb)
77nnnnnnnnnnnn

A(T (a), b)

A(ma,b)

��

A(ea, b)
hhPPPPPPPPPPPP

A(a,G2(b))
βPa,G(b)

// A(T (a), G(b))
βPT (a),b

// A(T 2(a), b),

where

(3.2) βPa,b : A(a,G(b))→ A(T (a), b), f : a→ G(b) 7→ σb · T (f) : T (a)→ b.

The pairing P = (T,G, σ) is said to be rational if βPa,b is injective for any a, b ∈ A.
By the Yoneda Lemma, commutativity of the diagrams in (3.1) correspond to commuta-

tivity of the diagrams

(3.3) G
eG //

ε
  BBBBBBBB TG

σ

��
I ,

T 2G
T 2δ //

mG

��

T 2G2 TσG // TG

σ

��
TG σ

// I .
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3.3. Adjoints of monads. Consider a monad T = (T,m, e) and an endofunctor G on A that
is right adjoint to T with unit η : I → GT and counit σ : TG → I. Then there is a unique
way to make G into a comonad G = (G, δ, ε) such that G is right adjoint to the monad T.
In this case, the functor KT,G : AT → AG that takes (a, h) ∈ AT to (a,G(h) · ηa) ∈ AG is an
isomorphism of categories inducing a commutative diagram

AT
KT,G //

UT   AAAAAAAA AG

UG~~}}}}}}}}

A

(e.g. [11], [5, Section 3]). Writing βa,b : A(T (a), b)→ A(a,G(b)) for the adjunction bijection,
it follows that the triple P = (T,G, σ) is a rational pairing with βP = β−1 (see commutative
diagrams (1) and (2) in [16]).

3.4. Pairings and morphisms. Let P = (T,G, σ) be a pairing, T′ = (T ′,m′, e′) any monad,
and t : T′ → T a monad morphism.

(i) The triple P ′ = (T′,G, σ′ := σ · tG) is also a pairing.
(ii) If P is rational, then P ′ is also rational provided the natural transformation t is a

componentwise epimorphism.

Proof. (i). The diagram

G

eG
CCCC

!!CCCCε

��

e′G // T ′G

tG

��
I TGσ
oo

commutes since t is a monad morphism (thus t · e′ = e) and because of the commutativity of
the triangle in the diagram (3.3.) Thus σ′ · e′G = σ · tG · e′G = σ · eG = ε.

Consider now the diagram

T ′T ′G
T ′T ′δ //

ttG

��

m′G

zzvvvvvvvvv
T ′T ′GG

ttGG %%LLLLLLLLLL
T ′tGG // T ′TGG

(4)
tTGGyyssssssssss

T ′σG // T ′G

tG||yyyyyyyy

T ′G

tG ##HHHHHHHHH (1) TTG

mG

��

(2)

TTδ
// TTGG

(3)

TσG
// TG

σ
zzvvvvvvvvvv

TG

(5)

σ
// I ,

in which diagram (1) commutes since t is a morphism of monads, diagrams (2), (3) and (4)
commute by naturality of composition, and diagram (5) commutes by commutativity of the
rectangle in (3.3). It then follows that

σ′ · Tσ′G · T ′T ′δ = σ · tG · T ′σG · T ′tGG · T ′T ′δ = σ · tG ·m′G = σ′ ·m′G,

proving that the triple P ′ = (T′,G, σ′ = σ · tG) is a pairing.
(ii). It is easy to check that the composite

A(a,G(b))
βPa,b−−→ A(T (a), b)

A(ta,b)−−−−→ A(T ′(a), b)

takes f : a → G(b) to σ′b · T ′(f) : T ′(a) → b and thus − since T (f) · ta = tG(a) · T ′(f)
by naturality of t − βP

′

a,b = A(ta, b) · βPa,b. If t is a componentwise epimorphism, then ta is
an epimorphism, and then the map A(ta, b) is injective. It follows that βP

′

a,b is also injective
provided that βPa,b is injective (i.e. the pairing P = (T,G, σ) is rational). �
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Dually, one has

3.5. Proposition. Let P = (T,G, σ) be a pairing, G′ = (G′, δ′, ε′) any comonad, and t :
G′ → G a comonad morphism.

(i) The triple P ′ = (T,G′, σ′ := σ · Tt) is also a pairing.

(ii) If P is rational, then P ′ is also rational provided the natural transformation t is a
componentwise monomorphism.

3.6. Functors induced by pairings. Let P = (T,G, σ) be a pairing on a category A with
βPa, b : A(a,G(b))→ A(T (a), b) (see (3.2).

(1) If (a, θa) ∈ AG, then (a, βPa,a(θa)) = (a, σa · T (θa)) ∈ AT .

(2) The assignments (a, θa) 7−→ (a, σa · T (θa)),
f : a→ b 7−→ f : a→ b,

yield a conservative functor ΦP : AG → AT inducing a commutative diagram

(3.4) AG
ΦP //

UG !!CCCCCCCC AT

UT}}{{{{{{{{

A .

Proof. (1) We have to show that the diagrams

a
ea //

CCCCCCCCC

CCCCCCCCC T (a)

βPa,a(θa)

��
a,

T 2(a)
ma //

T (βPa,a(θa))

��

T (a)

βPa,a(θa)

��
T (a)

βPa,a(θa)

// a

are commutative. In the diagram

a
θa //

ea

��

G(a)

eG(a)

��

εa

!!DDDDDDDDD

T (a)
T (θa)

// TG(a)
σa

// a

the square commutes by naturality of e : I → T , while the triangle commutes by (3.3). Thus
βPa,a(θa) · ea = σa · T (θa) · ea = εa · θa. But εa · θa = Ia since (a, θa) ∈ AG, implying that
βPa,a(θa) · ea = Ia. This shows that the left hand diagram commutes.

Since βPa,a(θa) = σa · T (θa), and T (θa) · T (σa) = T (σG(a)) · T 2G(θa) by naturality of σ, the
right hand diagram can be rewritten as

T 2(a)
ma //

T 2(θa)

��

T (a)
T (θa) // TG(a)

σa

""DDDDDDDDD

T 2G(a)
T 2G(θa)

// T 2G2(a)
T (σG(a))

// TG(a)
σa
// a .

It is easy to see that σa ·T (θa)·ma = (A(ma, a)·βPa,a)(θa) and it follows from the commutativity
of the bottom diagram in (3.1) that

σa · T (θa) ·ma = (βPT (a),a · β
P
a,G(a) · A(a, δa))(θa)

= σa · T (σG(a)) · T 2(δa) · T 2(θa).
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Recalling that δa · θa = G(θa) · θa since (a, θa) ∈ AG, we get

σa · T (θa) ·ma = σa · T (σG(a)) · T 2G(θa) · T 2(θa),

proving that the right hand diagram is commutative. Thus (a, βPa,a(θa)) ∈ AT .
(2) By (1), it suffices to show that if f : (a, θa) → (b, θb) is a morphism in AG, then f is

a morphism in AT from the T-module (a, σa · T (θa)) to the T-module (b, σb · T (θb)). To say
that f : a→ b is a morphism in AT is to say that the outer diagram of

T (a)
T (θa) //

T (f)

��

TG(a)
σa //

TG(f)

��

a

f

��
T (b)

T (θb)
// TG(b)

σb
// b

is commutative, which is indeed the case since the left square commutes because f is a mor-
phism in AG, while the right square commutes by naturality of σ. Clearly ΦP is conservative.

The commutativity of the diagram of functors is obvious. �

3.7. Properties of the functor ΦP . Let P = (T,G, σ) be a pairing on a category A with
induced functor ΦP : AG → AT (see 3.6).

(1) The functor ΦP is comonadic if and only if it has a right adjoint.
(2) Let C be a small category such that any functor C → A has a colimit that is preserved

by T . Then the functor ΦP preserves the colimit of any functor C→ AG.
(3) When A admits and T preserves all small colimits, the category AG has and the functor

ΦP preserves all small colimits.
(4) Let A be a locally presentable category, suppose that G preserves filtered colimits and T

preserves all small colimits. Then ΦP is comonadic.

Proof. (1) Since the functors UG and UT both reflect isomorphisms, it follows from commu-
tativity of Diagram (3.4) that ΦP also reflects isomorphisms. Moreover, since UG creates
equalisers of G-split pairs and since UT creates all equalisers that exist in A, AG admits
equalisers of ΦP -split pairs and ΦP preserves them. The result now follows from the dual of
Beck’s Precise Tripleability Theorem [3, Theorem 3.3.10].

(2) Since T preserves the colimit of any functor C → A, the category AT admits and the
functor UT preserves the colimit of any functor C → AT (see [7]). Now, if F : C → AG
is an arbitrary functor, then the composition ΦP · F : C → AT has a colimit in AT . Since
UT · ΦP = UG and UG preserves all colimits that exist in AG, it follows that the functor UT
preserves the colimit of the composite ΦP ·F . Now the assertion follows from the fact that an
arbitrary conservative functor reflects such colimits as it preserves.

(3) is a corollary of (2).
(4) Note first that Adámek and Rosický proved in [2] that the Eilenberg-Moore category

with respect to a filtered-colimit preserving monad on a locally presentable category is locally
presentable. This proof can be adopted to show that if G preserves filtered colimits and A
is locally presentable, then AG is also locally presentable. Therefore AG is finitely complete,
cocomplete, co-wellpowered and has a small set of generators (see [2]). Since the functor ΦP

preserves all small colimits by (3), it follows from the (dual of the) Special Adjoint Functor
Theorem (see [17]) that ΦP admits a right adjoint functor. Combining this with (1.ii) gives
that the functor ΦP is comonadic. �

3.8. Properties of rational pairings. Let P = (T,G, σ) be rational pairing on A.
(1) The functor ΦP : AG → AT is full and faithful.
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(2) The functor G preserves monomorphisms.

(3) If A is abelian and G is right exact, then G is also left exact, hence exact.

Proof. (1) Obviously, ΦP is faithful. Let (a, θa), (b, θb) ∈ AG and let

f : ΦP(a, θa) = (a, σa · T (θa))→ (b, σb · T (θb)) = ΦP(b, θb)

be a morphism in AT . We have to show that the diagram

(3.5) a
f //

θa
��

b

θb
��

G(a)
G(f)

// G(b)

commutes. Since f is a morphism in AT , the diagram

(3.6) T (a)
T (θa)//

T (f)

��

TG(a)
σa // a

f

��
T (b)

T (θb)
// TG(b)

σb
// b

commutes and we have

βPa,b(θb · f) = σb · T (θb · f) = σb · T (θb) · T (f)
by (3.6) = f · σa · T (θa)

σ is a natural = σb · TG(f) · T (θa) = σb · T (G(f) · θa) = βPa,b(G(f) · θa).

Since βPa,b is injective by assumption, it follows that G(f) · θa = θb · f , that is, (3.5) commutes.

(2) Let f : a→ b be a monomorphism in A. Then for any x ∈ A, the map

A(T (x), f) : A(T (x), a)→ A(T (x), b)

is injective. Considering the commutative diagram

A(x,G(a))
βPx,a //

A(x,G(f))

��

A(T (x), a)

A(T (x),f)

��
A(x,G(b))

βPx,b

// A(T (x), b) ,

one sees that the map A(x,G(f)) is injective for all x ∈ A, proving that G(f) is a monomor-
phism in A.

(3) Here a right exact functor preserving monomorphisms is exact. �

3.9. Comonad morphisms. Recall (e.g. [3]) that a morphism of comonads t : G → G′

induces a functor
t∗ : AG → AG

′
, (a, θa) 7→ (a, ta · θa).

The passage t → t∗ yields a bijection between comonad morphisms G → G′ and functors
V : AG → AG′ with UG

′
V = UG.

If V : AG → AG′ is such a functor, then the image of any cofree G -comodule (G(a), δa)
under V has the form (G(a), sa) for some sa : G(a)→ G′G(a). Then the collection {sa | a ∈ A}
constitute a natural transformation s : G → G′G such that G′ε · s : G → G′ is a comonad
morphism.
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3.10. Right adjoint for T . Let P = (T,G, σ) be a pairing and suppose that there exists
an endofunctor T � right adjoint to T with unit η : 1 → T �T . Then we obtain a comonad
T� = (T �, δ�, ε�) that is right adjoint to the monad T (see 3.3). In this situation, the functor
KT,T� : AT → AT� that takes any (a, ha) ∈ AT to (a, T �(ha) · ηa), is an isomorphism of
categories and UT

�
KT,T� = UT . Since UTΦP = UG, one gets the commutative diagram

AG
ΦP //

UG

''OOOOOOOOOOOOO AT
KT,T� // AT�

UT
�

wwoooooooooooooo

A .

It follows that there is a morphism of comonads t : G→ T� with KT,T�ΦP = t∗.

3.11. Lemma. In the situation given in 3.10, t is the composite

G
ηG // T �TG

T�σ // T � .

Proof. Since
• for any (a, θa) ∈ AG, ΦP(a, θa) = (a, σa · T (θa)), and

• for any (a, ha) ∈ AT , KT,T�(a, ha) = (a, T �(ha) · ηa),
it follows that for any cofree G-comodule (G(a), δa),

KT,T�ΦP(G(a), δa) = (G(a), T �(σG(a)) · T �T (δa) · ηG(a)),

thus

ta = T �(εa) · T �(σG(a)) · T �T (δa) · ηG(a).

But since

T �(εa) · T �(σG(a)) = T �(σa) · T �TG(εa)

by naturality of σ and G(εa) · δa = IG(a), one has

ta = T �(σa) · T �TG(εa) · T �T (δa) · ηG(a) = T �(σa) · ηG(a).

�

3.12. Right adjoint functor of t∗. In the setting of 3.10, suppose that the category AG
admits equalisers. Then it is well-known (e.g. [10]) that for any comonad morphism t : G →
T �, the functor t∗ : AG → AT� admits a right adjoint t∗ : AT� → AG, which can be calculated
as follows. Recall from 2.1 that, for any comonad G, we denote by ηG and εG the unit and
counit of the adjoint pair (UG, φG). Writing αt for the composite

t∗φ
G ηT

�
t∗φ

G

−−−−−−→ φT
�
UT

�
t∗φ

G = φT
�
UGφG

φT
�
εG−−−−→ φT

�
,

and βt for the composite

φGUT
� ηGφGUT

�

−−−−−−→ φGUGφGUT
�

= φGUT
�
t∗φ

GUT
� φGUT

�
αtU

T�

−−−−−−−−−→ φGUT
�
φT
�
UT

�
,

then t∗ is the equaliser (we assumed that AG has equalisers)

t∗
it // φGUT

�

βt

//
φGUT

�
ηT
�

//
φGUT

�
φT
�
UT

�
.
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Note that the counit εt : t∗t∗ → I of the adjunction t∗ a t∗ is the unique natural transfor-
mation that makes the square in the following diagram commute,

(3.7) t∗t
∗

εt

t∗it // t∗φGUT
�

αtU
T�

��

t∗βt

//
t∗φ

GUT
�
ηT
�

//
t∗φ

GUT
�
φT
�
UT

�

αtU
T�φT

�
UT
�

��
I

ηT
�
// φT

�
UT

�

ηT
�
φT
�
UT
�
//

φT
�
UT
�
ηT
�

//
φT
�
UT

�
φT
�
UT

�
.

It is not hard to see that for any a ∈ A, the a-component of the natural transformation αt
is just the morphism ta : G(a)→ T �(a) seen as a morphism

t∗φ
G(a) = (G(a), tG(a) · δa)→ φT

�
(a) = (T �(a), δ�a)

in AT� . Indeed, since for any a ∈ A, (εG)a = εa, while for any (a, νa) ∈ AT� , (ηT
�
)(a,νa) = νa,

(αt)a is the composite T �(εa) · tG(a) · δa. Considering now the diagram

G(a)
δa //

HHHHHHHHH

HHHHHHHHH
GG(a)

tG(a) //

G(εa)

��

T �G(a)

T�(εa)

��
G(a)

ta
// T �(a) ,

in which the square commutes by naturality of composition, while the triangle commutes by
the definition of a comonad, one sees that (αt)a = ta.

3.13. Theorem. Let P = (T,G, σ) be a monad-comonad pairing on A. Suppose that AG
admits equalisers and that the monad T has a right adjoint comonad T�. Then

(1) the functor ΦP : AG → AT (and hence also t∗ : AG → AT�) is comonadic;
(2) if the pairing P is rational, then AG is equivalent to a reflective subcategory of AT .

Proof. By 3.7(1), ΦP is comonadic if and only if it has a right adjoint.
(1) Since the category AG admits equalisers, the functor t∗ : AG → AT� has a right adjoint

t∗ : AT∗ → AG (by 3.12). Then evidently the functor t∗KT,G is right adjoint to the functor
ΦP . Since KT,T�ΦP = t∗, it is clear that t∗ is also comonadic. This completes the proof of
the first part.

(2) If P is rational, ΦP is full and faithful by 3.8(1), and when ΦP has a right adjoint, the
unit of the adjunction is a componentwise isomorphism (see [17]). �

Given two functors F, F ′ : A → B, we write Nat(F, F ′) for the collection of all natural
transformations from F to F ′. As a consequence of the Yoneda Lemma recall:

3.14. Lemma. Let T = (T,m, e) be a monad on the category A with right adjoint comonad
T� = (T �, δ�, ε�), unit η : I → T �T and counit ε : TT � → I. Then for any endofunctor
G : A→ A, there is a bijection

χ : Nat(TG, I)→ Nat(G,T �), TG
σ→ I 7−→ G

ηG−→ T �TG
T�σ−→ T �,

with the inverse given by the assignment

G
s→ T � 7−→ TG

Ts−→ TT �
ε−→ I.

3.15. Proposition. Let T be a monad on A with right adjoint comonad T� (as in 3.14) and
let G = (G, δ, ε) be a comonad on A.

(1) There exists a bijection between

(i) natural transformations σ : TG→ I for which the triple P = (T,G, σ) is a pairing;
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(ii) natural transformations σ : TG → I for which χ(σ) : G → T � is a morphism of
comonads;

(iii) functors V : AG → AT such that UTV = UG.

(2) A functor V : AG → AT with UTV = UG is an isomorphism if and only if there exists
an isomorphism of comonads G ' T�.

Proof. (1) In the light of (3.3) and Lemma 3.14, the bijection between (i) and (ii) follows from
Lemma 3.11 and the dual of 3.4.

It remains to show that there is a bijective correspondence between comonad morphisms
G→ T� and functors V : AG → AT such that UTV = UG. But to give a comonad morphism
G → T� is to give a functor W : AG → AT� with UT

�
W = UG, which is in turn equivalent

- since K−1
T,T� is an isomorphism of categories with UTK

−1
T,T� = UT

�
(see 3.10) - to giving a

functor V : AG → AT with UTV = UG.

(2) According to (1), to give a functor V : AG → AT with UTV = UG is to give a comonad
morphism t : G → T� such that t∗ = KT,T�V . It follows - since KT,T� is an isomorphism of
categories - that V is an isomorphism of categories if and only if t∗ is, or, equivalently, if t is
an isomorphism of comonads. �

3.16. Proposition. Let P = (T,G, σ) be a monad-comonad pairing on a category A and
T� = (T �, δ�, ε�) a comonad right adjoint to T. Consider the statements:

(i) the pairing P is rational;

(ii) χ(σ) : G→ T � is componentwise a monomorphism;

(iii) the functor ΦP : AG → AT is full and faithful.
Then one has the implications (i)⇔ (ii)⇒ (iii).

Proof. (i)⇒ (iii) is just 3.8(1).
(i)⇔ (ii) For any a ∈ A, consider the natural transformation

A(a,G(−))
βPa,− // A(T (a),−)

αa,− // A(a, T �(−)) ,

where α denotes the isomorphism of the adjunction T a T �. It is easy to see that the induced
natural transformation G → T � is just χ(σ). Since each component of αa,− is a bijection, it
follows that χ(σ) is a componentwise monomorphism if and only if each component of βPa,− is
monomorphism for all a ∈ A. �

To illustrate the situation considered above we describe the details for corings.

3.17. Rational pairing for corings. Let C be an A-coring (as in 1.1). As described in 1.2,
this induces a pairing (C∗ ⊗A −, C ⊗A −, ev). From Lemma 3.14 we obtain that for X ∈ AM,

(χ(ev))X = αX : C ⊗A X → HomA(C∗, X), c⊗ x 7→ [f 7→ f(c)x],

(with α from 1.1) and Proposition 3.16 says that for the assertions
(i) (C∗ ⊗A −, C ⊗A −, ev) is a rational pairing,

(ii) αX : C ⊗A X → HomA(C∗, X) is injective for any left A-module X,

(iii) the functor CM→ C∗M is full and faithful,
we have the implications (i)⇔ (ii)⇒ (iii).

Condition (ii) is sometimes called the (right) α-condition for corings (e.g. [8, 19.2]). It is
equivalent to CA being locally projective and implies in particular that CA is flat. For corings
all the assertions (i), (ii) and (iii) are equivalent (e.g. [8, 19.3]).
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4. Rational functors

Let A be an arbitrary category admitting pullbacks.

4.1. Throughout this section we fix a rational pairing P = (T,G, σ) on the category A with
a comonad T� = (T �, δ�, ε�) right adjoint to T, unit η : 1 → T �T and counit ε : TT � → I.
Let t = χ(σ) (see Lemma 3.14).

For any (a, ϑa) ∈ AT� , write Υ(a, ϑa) for a chosen pullback

(4.1) Υ(a, ϑa)
p2 //

p1

��

G(a)

ta

��
a

ϑa

// T �(a) .

Since monomorphisms are stable under pullbacks in any category and since ta and ϑa are both
monomorphisms, it follows that p1 and p2 are also monomorphisms.

As a right adjoint functor, T � preserves all limits existing in A and thus the category AT�

admits those limits existing in A. Moreover, the forgetful functor UT
�

: AT� → A creates
them; hence these limits (in particular pullbacks) can be computed in A.

Now, ϑa : a → T �(a) is the (a, ϑa)-component of the unit ηT
�

: I → φT
�
UT

�
and thus it

can be seen as a morphism in AT� from (a, ϑa) to (T �(a), (δ�)a), while ta : G(a) → T �(a)
is the UT

�
(a, ϑa)-component of the natural transformation αt : t∗φT

� → φT
�

(see 3.12) and
thus it can be seen as a morphism in AT� from t∗(G(a), δa) = (G(a), tG(a) · δa) to (T �(a), δ�a).
It follows that the diagram (4.1) underlies a pullback in AT� . In other words, there exists
exactly one T �-coalgebra structure ϑΥ(a,ϑa) : Υ(a, ϑa)→ T �(Υ(a, ϑa)) on Υ(a, ϑa) making the
diagram

(4.2) (Υ(a, ϑa), ϑΥ(a,ϑa))
p2 //

p1

��

(G(a), tG(a) · (δG)a)

ta

��
(a, ϑa)

ϑa

// (T �(a), (δ�)a)

a pullback in AT� . Moreover, since in any functor category, pullbacks are computed compo-
nentwise, it follows that the diagram (4.2) is the (a, ϑa)-component of a pullback diagram in
AT� ,

(4.3) Υ
P2 //

P1

��

t∗φ
GUT

�

αtU
T�

��
I

ηT
�
// φT

�
UT

�
.

Since the forgetful functor UT : AT → A respects monomorphisms and UT
�
KT,T� = UT , it

follows that the forgetful functor UT
�

: AT� → A also respects monomorphisms. Thus, the
natural transformations αtUT

�
and ηT

�
are both componentwise monomorphisms and hence

so too is the natural transformation P1 : Υ→ I.
Summing up, we have seen that for any (a, ϑa) ∈ AT� , Υ(a, ϑa) is an object of AT� yielding

an endofunctor
Υ : AT

�
→ AT

�
, (a, ϑa) 7→ Υ(a, ϑa).

As we shall see later on, the endofunctor Υ is - under some assumptions - the functor-part
of an idempotent comonad on AT� .
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4.2. Proposition. Under the assumptions from 4.1, suppose that A admits and G preserves
equalisers. Then the category AG also admits equalisers and the functor t∗ : AG → AT�

preserves them.

Proof. Since the functor G preserves equalisers, the forgetful functor UG : AG → A creates
and preserves equalisers. Thus AG admits equalisers.

Since the forgetful functor UT
�

: AT� → A also creates and preserves equalisers, it follows
from the commutativity of the diagram

AG
t∗ //

UG ""DDDDDDDD AT�

UT
�

��
A

that the functor t∗ : AG → AT� preserves equalisers. �

Note that when A is an abelian category, and G is right exact, then G is left exact by
Proposition 2.4 and by 3.8(3).

Note also that it follows from the previous proposition that if A admits and G preserves
equalisers, then the category AG admits equalisers. In view of Proposition 4.2, it then follows
from 3.12 that the functor t∗ : AG → AT� has a right adjoint t∗ : AT� → AG.

4.3. Proposition. Under the conditions of Proposition 4.2, the functor Υ : AT� → AT� is
isomorphic to the functor part t∗t∗ of the AT�-comonad generated by the adjunction t∗ a t∗ :
AT� → AG.

Proof. Since the functor G preserves equalisers, the functor t∗ : AG → AT� also preserves
equalisers by Proposition 4.2. Then the top row in the diagram (3.7) is an equaliser, and
since the bottom row is also an equaliser and the natural transformation αt : t∗φG → φT

�

is a componentwise monomorphism (since (α)a = ta for all a ∈ A, see 3.12), it follows from
Lemma 2.3 that the square in the diagram (3.7) is a pullback. Comparing this pullback with
(4.3), one sees that Υ is isomorphic to t∗t∗ (and P1 to εt). �

Note that in the situation of the previous proposition, εt : Υ → I is componentwise a
monomorphism.

For the next results we will assume that the A has and G preserves equalisers. This implies
in particular that the category AG admits equalisers.

4.4. Proposition. With the data given in 4.1 assume that A has and G preserves equalisers.
Let (a, ϑa) be an any object of AT� . Then

(i) Υ is idempotent, that is, Υ(Υ(a, ϑa)) ' Υ(a, ϑa).

(ii) For every regular T�-subcomodule (a0, ϑa0) of (a, ϑa), the following diagram is a pullback,

Υ(a0, ϑa0)

(εt)(a0,ϑa0)

��

Υ(i) // Υ(a, ϑa,ϑa)

(εt)(a,ϑa)

��
a0

i
// a.

Proof. (i) As observed after Proposition 4.3, the natural transformation εt : Υ→ I is compo-
nentwise monomorph. Thus Υ is an idempotent endofunctor.



ON RATIONAL PAIRINGS OF FUNCTORS 15

(ii) For any regular monomorphism i : (a0, ϑa0)→ (a, ϑa) in AT� , consider the commutative
diagram

(4.4) Υ(a0, ϑa0)

(εt)(a0,ϑa0 )

��

(it)(a0,ϑa0 )

%%LLLLLLLLLL
Υ(i) // Υ(a, ϑa)

(εt)(a,ϑa)

��

(it)(a,ϑa)

%%KKKKKKKKK

G(a0)

ta0
��

G(i) // G(a)

ta

��

a0
i //

ϑa0 &&MMMMMMMMMMM a

ϑa

%%
T �(a0)

T�(i) // T �(a) .

We claim that the square (εt)(a,ϑa) ·Υ(i) = i · (εt)(a0,ϑa0 ) is a pullback. Indeed, if f : x→ a0

and g : x→ Υ(a, ϑa) are morphisms such that i · f = (εt)(a0,ϑa0 ) · g, then we have

T �(i) · ϑa0 · f = ϑa · i · f = ϑa · (εt)(a0,ϑa0 ) · g = ta · (it)(a,ϑa) · g,

and since the square ta · G(i) = T �(i) · ta0 is a pullback, there exists a unique morphism
k : x→ G(a0) with ta0 · k = ϑa0 · f and (it)(a,ϑa) · g = G(i) · k. Since the functor T �, as a right
adjoint functor, preserves regular monomorphisms, the forgetful functor UT

�
: AT� → A also

preserves regular monomorphisms. Thus i : a0 → a is a regular monomorphism in A. Then
the square ta0 · (it)(a0,ϑa0 ) = ϑa0 · (εt)(a0,ϑa0 ) is a pullback by Proposition 2.4. Therefore, there
exists a unique morphism k′ : x→ Υ(a0, ϑa0) with k = (it)(a0,ϑa0 ) · k′ and (εt)(a0,ϑa0 ) · k′ = f.

To show that Υ(i) · k′ = g, consider the composite

(εt)(a,ϑa) ·Υ(i) · k′ = i · (εt)(a0,ϑa0 ) · k′ = i · f = (εt)(a,ϑa) · g.

Since (εt)(a,ϑa) is a monomorphism, we get k · k′ = g. This completes the proof of the fact
that the square (εt)(a,ϑa) ·Υ(i) = i · (εt)(a0,ϑa0 ) is a pullback. �

4.5. Proposition. Assume the same conditions as in Proposition 4.4. The functor t∗ : AG →
AT� corestricts to an equivalence between AG and the full subcategory of AT� generated by
those T �-coalgebras (a, ϑa) for which there exists an isomorphism Υ(a, ϑa) ' (a, ϑa). This
holds if and only if there is a (necessarily unique) morphism x : a→ G(a) with ta · x = ϑa.

Proof. Since the category AG admits equalisers, it follows from Theorem 3.13 that the functor
t∗ is comonadic. Thus AG is equivalent to (AT�)Υ. But since εt : Υ→ I is a componentwise
monomorphism, the result follows from 2.2.

Next, Υ(a, ϑa) ' (a, ϑa) if and only if the morphism p1 in the pullback diagram (4.2) is an
isomorphism. In this case the composite x = p2 · (p1)−1 : a → G(a) satisfies the condition of
the proposition. Since ta is a monomorphism, it is clear that such an x is unique.

Conversely, suppose that there is a morphism x : a → G(a) with ta · x = ϑa. Then it is
easy to see – using that ta is a monomorphism– that the square

a

I

��

x // G(a)

ta

��
a

ϑa

// T �(a)

is a pullback. It follows that Υ(a, ϑa) ' (a, ϑa). �
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4.6. Rational functor. Assume the data from 4.1 to be given and that A has and G preserves
equalisers. Define the functor

RatP : AT
KT,T� // AT�

Υ // AT�
K−1
T,T� // AT .

Then the triple (RatP , εP , δP), where εP = K−1
T,T� · εt ·KT,T� and δP = K−1

T,T� · δt ·KT,T� , is
a comonad on AT . Moreover, for any object (a, ha) of AT ,

(i) RatP(RatP(a, ha)) ' RatP(a, ha);
(ii) for any regular T -submodule (a0, ha0) of (a, ha), the following diagram is a pullback,

RatP(a0, ϑa0)

(εP)(a0,ϑa0)

��

RatP(i)// RatP(a, ϑa,ϑa)

(εP)(a,ϑa)

��
a0

i
// a.

Proof. Observing that (RatP , εP , δP) is the comonad obtained from the comonad (Υ, εt, δt)
along the isomorphism K−1

T,T� : AT� → AT (see [23]), the results follow from Proposition
4.4. �

We call a T -module (a, ha) rational if RatP(a, ha) ' (a, ha) (which is the case if and
only if (εP)(a,ha) is an isomorphism, see 2.2), and write RatP(T) for the corresponding full
subcategory of AT . Applying Proposition 4.5 gives:

4.7. Proposition. Under the assumptions of Proposition 4.6, let (a, ha) ∈ AT . Then (a, ha) ∈
RatP(T) if and only if there exists a (necessarily unique) morphism x : a → G(a) inducing
commutativity of the diagram

G(a)

ta

��
a

x

=={{{{{{{{{
ϑa

// T �(a).

Putting together the information obtained so far, we obtain as main result of this section:

4.8. Theorem. Let P = (T,G, σ) be a rational pairing on a category A with a comonad
T� = (T �, δ�, ε�) right adjoint to T. Suppose that A admits and G preserves equalisers.

(1) RatP(T) is a coreflective subcategory of AT , i.e. the inclusion iP : RatP(T)→ AT has
a right adjoint ratP : AT → RatP(T).

(2) The idempotent comonad on AT generated by the adjunction iP a ratP is just the idem-
potent monad (RatP , εP).

(3) The functor
ΦP : AG → AT , (a, ϑa) 7→ (a, σa · T (ϑa)),

corestricts to an equivalence of categories RP : AG → RatP(T).

For illustration we write this theorem out for the case of corings.

4.9. Rational functor for corings. For an A-coring C, there is a pairing P = (C∗, C, ev)
on the category AM. Assume this to be rational. Then C ⊗A− is an exact functor and hence
preserves equalisers. Hence, by Theorem 4.8,

(1) RatP(C∗ ⊗A −) is a coreflective subcategory of C∗M, i.e. the inclusion
iP : RatP(C∗ ⊗A −)→ C∗M has a right adjoint ratP : C∗M→ RatP(C∗ ⊗A −).

(2) The idempotent comonad on C∗M generated by the adjunction iP a ratP is just the
idempotent monad (RatP , εP).
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(3) The functor

ΦP : CM→ C∗M, (M ϑ−→ C ⊗AM) 7−→ (C∗ ⊗AM
I⊗ϑ−→ C∗ ⊗A C ⊗AM

ev⊗I−→ M),

leaving the morphisms unchanged, corestricts to an equivalence of categories

RP : CM→ RatP(C∗ ⊗A −).

It is straightforward to see, that every C-comodule is a subcomodule of a C-generated
comodule, that is, C is a subgenerator in CM (e.g. [8, 18.9]). As a consequence, if P is
rational, then the left C-comodules are precisely the C∗-modules subgenerated by C, and
this subcategory is denoted by σ[C∗C] (e.g. [8, 19.3]). (This type of subcategories of module
categories over any ring are thoroughly studied in [24].) Thus the rational functor can be
written as a trace functor, that is, for M ∈ AM,

ratP(M) =
∑
{Im f | f ∈ Hom(N,M), N ∈ σ[C∗C]}.

5. Pairings in monoidal categories

We begin by reviewing some standard definitions associated with monoidal categories.
Let V = (V,⊗, I) be a monoidal category with tensor product ⊗ and unit object I. We

will freely appeal to MacLane’s coherence theorem (see [17]); in particular, we write as if the
associativity and unitality isomorphisms were identities. Thus X ⊗ (Y ⊗ Z) = (X ⊗ Y ) ⊗ Z
and I ⊗X = X ⊗ I for all X,Y,X ∈ V. We sometimes collapse ⊗ to concatenation, to save
space.

Recall that an algebra A in V (or V-algebra) is an object A of V equipped with a mul-
tiplication mA : A ⊗ A → A and a unit eA : I → A satisfying associativity and unitality
conditions.

Dually, a coalgebra C in V (or V-coalgebra) is an object C of V equipped with a comul-
tiplication δC : C → C ⊗ C, a counit εC : C → I subject to coassociativity and counitality
conditions.

5.1. Definition. A triple P = (A,C, t) consisting of a V-algebra A, a V-coalgebra C and a
morphism t : A⊗ C → I, for which the diagrams

(5.1) A⊗A⊗ C
A⊗A⊗δC //

mA⊗C
��

A⊗A⊗ C ⊗ C
A⊗t⊗C // A⊗ C

t

��

C
eA⊗Coo

εC
||xxxxxxxxxx

A⊗ C
t

// I

commute, is called a left pairing.

A left action of a monoidal category V = (V,⊗, I) on a category X is a functor

−♦− : V× X→ X,
called the action of V on X, along with invertible natural transformations

αA,B,X : (A⊗B)♦X → A♦(B♦X) and λX : I♦X → X,

called the associativity and unit isomorphisms, respectively, satisfying two coherence axioms
(see Bénabou [4]). Again we write as if α and λ were identities.

5.2. Example. Recall that if B is a bicategory (in the sense of Bénabou [4]), then for any
A∈Ob(B), the triple (B(A,A), ◦, IA), where ◦ denotes the horizontal composition operation,
is a monoidal category, and that, for an arbitrary B ∈ B, there is a canonical left action
of B(A,A) on B(B,A), given by f♦g = f ◦ g for all f ∈ B(A,A) and all g ∈ B(B,A). In
particular, since monoidal categories are nothing but bicategories with exactly one object,
any monoidal category V = (V,⊗, I) has a canonical (left) action on the category V, given by
A♦B = A⊗B.
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5.3. Actions and pairings. Given a left action −♦− : V × X → X of a monoidal category
V on a category X and an algebra A = (A, eA,mA) in V, one has a monad TX

A on V defined
on any X ∈ V by
• TX

A(X) = A♦X,

• (eTX
A

)X = eA♦X : X = I♦X → A♦X = TX
A(X),

• (mTX
A

)X = mA♦X : TX
A(TX

A(X)) = A♦(A♦X) = (A⊗A)♦X → A♦X = TX
A(X),

and we write AX for the Eilenberg-Moore category of TA-algebras. Note that in the case of
the canonical left action of V on itself, AV is just the category of (left) A-modules.

Dually, for a V-coalgebra C = (C, εC , δC), a comonad GC
X = (C♦−, εC♦−, δC♦−) is

defined on X and one has the corresponding Eilenberg-Moore category CX; for X = V this is
just the category of (left) C-comodules.

It is easy to see that if P = (A,C, t) is a left pairing in V, then the triple PX = (TX
A,G

C
X , σt),

where σt is the natural transformation

t♦− : TA ·GC = A♦(C♦−) = (A⊗ C)♦− → I⊗− = I,

is a pairing between the monad TX
A and comonad GC

X .
We say that a left pairing (A,B, σ) is X-rational, if the corresponding pairing PX is rational,

i.e. if the map
βPX
X,Y : X(X,C♦Y )→ X(A♦X,Y )

taking f : X → C♦Y to the composite

A♦X A♦f−−−→ A♦(C♦Y ) = (A⊗ C)♦Y σ♦Y−−−→ Y,

is injective.
We will generally drop the X from the notations TX

A, GC
X and PX when there is no danger

of confusion.

5.4. Closed categories. A monoidal category V = (V,⊗, τ, I) is said to be right closed if
each functor −⊗X : V→ V has a right adjoint [X,−] : V→ V. So there is a bijection

(5.2) πY,X,Z : V(Y ⊗X,Z) ' V(Y, [X,Z]),

with unit ηYX : X → [Y,X ⊗ Y ] and counit eYZ : [Y, Z]⊗ Y → Z.
We write (−)∗ for the functor [−, I] : Vop → V that takes X ∈ V to [X, I] and f : Y → X to

the morphism [f, I] : [X, I]→ [Y, I] that corresponds under the bijection (5.2) to the composite

[X, I]⊗ Y
[X,I]⊗f // [X, I]⊗X

eXI // I.

Symmetrically, a monoidal category V = (V,⊗, τ, I) is said to be left closed if each functor
X ⊗ − : V → V has a right adjoint {X,−} : V → V. We write ηYX : X → [Y, Y ⊗ X] and
eYZ : Y ⊗ {Y, Z} → Z for the unit and counit of the adjunction X ⊗ − a {X,−}. One calls
a monoidal category closed when it is both left and right closed. A typical example is the
category of bimodules over a non-commutative ring R, with ⊗R as ⊗.

5.5. Actions with right adjoints. Suppose now that −♦− : V × X → X is a left action
of a monoidal category V on a category X and that A = (A, eA,mA) is an algebra in V such
that the functor A♦− : X → X has a right adjoint {A,−}X : X → X (as it surely is when
V = B(A,A) and X = B(B,A) for some objects A,B of a closed bicategory B, see Example
5.2.)

Since the functor {A,−}X : X→ X is right adjoint to the functor A♦− : X→ X and since
A♦− is the functor-part of the monad TA, there is a unique way to make {A,−}X into a
comonad G(A) = ({A,−}X, δG(A), εG(A)) such that the comonad G(A) is right adjoint to
the monad TA (see 3.3).
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Dually, for any coalgebra C = (C, δC , εC) in V such that the functor C♦− : X → X has
a right adjoint {C,−}X : X → X , there exists a monad T(C) whose functor-part is {C,−}X
and which is right adjoint to the comonad GC.

5.6. Pairings with right adjoints. Consider a left action of a monoidal category V on a
category X and a left pairing P = (A,C, σ) in V, such that there exist adjunctions

A♦− a {A,−}X, −♦A a [A,−]X, C♦− a {C,−}X, and −♦C a [C,−]X.

Since the comonad G(A) is right adjoint to the monad TA, the following are equivalent by
Proposition 3.16:

(a) the pairing P is X-rational;
(b) for every X ∈ X, the composite

αPX : C♦X
ηAC♦X // {A, A♦(C♦X)}X = {A, (A⊗ C)♦X}X

{A, t♦X}X // {A,X}X,

where ηAC♦X is the C♦X-component of the unit of the adjunction A♦− a {A,−}X, is a
monomorphism.

If these conditions hold, then the functor

ΦP : CX→ AX, (X,X θX−−→ C♦X) 7−→ (X,A♦X A♦θX−−−−→ A♦(C♦X) = (A⊗ C)♦X t♦X−−−→ X)

is full and faithful.

Writing RatP (resp. RatP(A)) for the functor RatPX (resp. the category RatPX(TA)), one
gets:

5.7. Proposition. Under the conditions given in 5.6, assume the category X to admit equalis-
ers. If P is an X-rational pairing in V such that either

(i) the functor C♦− : X→ X preserves equalisers, or
(ii) X admits pushouts and the functor C♦− : X→ X preserves regular monomorphisms, or

(iii) X admits pushouts and every monomorphism in X is regular,
then

(1) the inclusion iP : RatP(A)→ AX has a right adjoint ratP : AX→ RatP(A);

(2) the idempotent comonad on AX generated by the adjunction is just RatP : AX→ AX;

(3) the functor ΦP : CX→ AX corestricts to an equivalence RP : RatP(A)→ CX.

Proof. For condition (i), the assertion follows from Theorem 4.8. We show that (iii) is a
particular case of (ii), while (ii) is itself a particular case of (i). Indeed, since P is an X-rational
pairing in V, it follows from 3.8(2) that the functor C♦− : X→ X preserves monomorphisms,
and if every monomorphism in X is regular, then C♦− : X → X clearly preserves regular
monomorphisms. Next, since the functor C♦− : X → X admits a right adjoint, it preserves
pushouts, and then it follows from Proposition 2.4 that C♦− : X → X preserves equalisers.
This completes the proof. �

5.8. Nuclear objects. We call an object V ∈ V is (left) X-prenuclear (resp. X-nuclear) if
• the functor −⊗ V : V→ V has a right adjoint [V,−] : V→ V,
• the functor V ∗♦− : X→ X, with V ∗ = [V, I], has a right adjoint {V ∗,−}X : X→ X, and
• the composite

αX : V♦X
(ηX)V♦X// {V ∗, V ∗♦(V♦X)} = {V ∗, (V ∗ ⊗ V )♦X}

{V ∗, eVI ♦X} // {V ∗, X},

is a monomorphism (resp. an isomorphism), where ((η)X)V♦X is the (V♦X)-component
of the unit ηX : − → {V ∗, V ∗♦−} of the adjunction V ∗♦− a {V ∗,−}.
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Note that the morphism αX : V♦X → {V ∗, X} is the transpose of the morphism eVI ♦X :
(V ∗ ⊗ V )♦X → X under the adjunction V♦− a {V,−}X.

Applying Proposition 5.7 and 6.10, we get:

5.9. Proposition. Let V be a monoidal closed category and C = (C, εC , δC) a V-coalgebra
with C X-prenuclear, and assume X to admit equalisers. If either

(i) the functor C♦− : X→ X preserves equalisers, or
(ii) X admits pushouts and the functor C♦− : X→ X preserves regular monomorphisms, or

(iii) X admits pushouts and every monomorphism in X is regular,

then RatP(C)(C∗) is a full coreflective subcategory of C∗X and the functor ΦP(C) : CX→ C∗X
corestricts to an equivalence RP(C) : CX→ RatP(C)(C∗).

Specialising the previous result to the case of the left action of the monoidal category
C∗MC∗ of C∗-bimodules on the category of left C∗-modules, one sees that the equivalence
of the category of comodules CM and a full subcategory of C∗M for AC locally projective
addressed in 1.2 is a special case of the preceding theorem.

Recall (e.g. from [17]) that a monoidal category V = (V,⊗, I) is said to be symmetric if for
all X,Y ∈ V, there exists functorial isomorphisms τX,Y : X ⊗ Y → Y ⊗ X obeying certain
identities. It is clear that if V is closed, then {X,−} ' [X,−] for all X ∈ V.

5.10. Pairings in symmetric monoidal closed categories. Let V = (V,⊗, I, τ, [−,−]) be
a symmetric monoidal closed category and P = (A,C, t) a left pairing in V. For any X ∈ V,
we write

γX : A∗ ⊗X → [A,X]
for the morphism that corresponds under π (see (5.2)) to the composition

A∗ ⊗X ⊗A
τA∗, X⊗A // X ⊗A∗ ⊗A

eAI // X .

Since the functor [A,−], as a left adjoint, preserves colimits, it follows from [14, Theorem 2.3]
that there exists a unique morphism γ(t) : C → A∗ such that the diagram

(5.3) C ⊗X
γ(t)⊗X //

αX
((QQQQQQQQQQQQQ A∗ ⊗X

γX

��
[A,X]

commutes. Hereby the morphism γ(t) corresponds under π to the composite σ · τC,A.

5.11. Proposition. Consider the situation given in 5.10.
(1) If P is a rational pairing, then the morphism γ(t) : C → A∗ is pure, that is, for any

X ∈ V, the morphism γ(t)⊗X is a monomorphism.
(2) If A is V-nuclear, then P is rational if and only if γ(t) : C → A∗ is pure.
(3) ΦP : CV → AV is an isomorphism if and only if A is V-nuclear and γ(t) : C → A∗ is

an isomorphism. In this case C is also V-nuclear.

Proof. (1) To say that P is a rational pairing is to say that αX is a monomorphism for all
X ∈ V (see Proposition 5.6). Then it follows from the commutativity of the diagram (5.3)
that γ(t)⊗X is also a monomorphism, thus γ(t) : C → A∗ is pure.

(2) follows from the commutativity of diagram (5.3).
(3) One direction is clear, so suppose that the functor Φ is an isomorphism of categories.

Then it follows from Proposition 3.15(2) that αX is an isomorphism for all X ∈ V. It implies
that the functor [A,−] preserves colimits and thus the morphism γX is an isomorphism (see
[14, Theorem 2.3]). Therefore A is V-nuclear. Since αX and γX are both isomorphisms,
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it follows from the commutativity of diagram (5.3) that the morphism γ(t) ⊗ X is also an
isomorphism. This clearly implies that γ(t) : C → A∗ is an isomorphism.

It is proved in [22, Corollary 2.2] that if A is V-nuclear, then so is A∗. �

6. Entwinings in monoidal categories

Recall (for example, from [19]) that an entwining in a monoidal category V = (V,⊗, I) is a
triple (A,C, λ), where A = (A, eA,mA) is a V-algebra, C = (C, εC , δC) is a V-coalgebra, and
λ : A⊗ C → C ⊗A is a morphism inducing commutativity of the diagrams

C

eA⊗C
��

C⊗eA

%%KKKKKKKKKK A⊗ C

λ

��

A⊗εC

##FFFFFFFFF

A⊗ C
λ
// C ⊗A , C ⊗A

εC⊗A
// A,

A⊗ C

λ

��

A⊗δC // A⊗ C ⊗ C
λ⊗C // C ⊗A⊗ C

C⊗λ
��

A⊗A⊗ C

mA⊗C
��

A⊗λ // A⊗ C ⊗A
λ⊗A // C ⊗A⊗A

C⊗mA
��

C ⊗A
δC⊗A

// C ⊗ C ⊗A, A⊗ C
λ

// C ⊗A .

For any entwining (A,C, λ), the natural transformation

λ′ = λ⊗− : TA ◦GC = A⊗ C ⊗− → C ⊗A⊗− = GC ◦ TA

is a mixed distributive law from the monad TA to the comonad GC. We write C̃ for the
AV-comonad G̃C, that is, for any (V, hV ) ∈ AV,

C̃(V, hV ) = (C ⊗ V,A⊗ C ⊗ V λ⊗V−−−→ C ⊗A⊗ V C⊗hV−−−−→ C ⊗ V ),

and write C
AV(λ) for the category VGC

TA
(λ′). An object of this category is a three-tuple

(V, θV , hV ), where (V, θV ) ∈ CV and (V, hV ) ∈ AV, with commuting diagram

(6.1) A⊗ V
hV //

A⊗θV
��

V
θV // C ⊗ V

A⊗ C ⊗ V
λ⊗V

// C ⊗A⊗ V.

C⊗hV

OO

The assignment ((V, hV ), θ(V,hV )) 7−→ (V, θ(V,hV ), hV ) yields an isomorphism of categories

Λ : (AV)eC → C
AV(λ).

6.1. Representable entwinings. For objects A, C in a monoidal category V = (V,⊗, I),
consider the functor

V(−⊗ C,A) : Vop → Set
taking an arbitrary object V ∈ V to the set V(V ⊗ C,A). Suppose there is an object E ∈ V
that represents the functor, i.e. there is a natural bijection

ω : V(−⊗ C,A) ' V(−, E).

Writing β : E ⊗ C → A for the morphism ω−1(IE), it follows that for any object V ∈ V and
any morphism f : V ⊗ C → A, there exists a unique βf : V → E making the diagram

V ⊗ C
f //

βf⊗C %%JJJJJJJJJ A

E ⊗ C
β

<<xxxxxxxxx
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commute. It is clear that ω−1(βf ) = f.
We call an entwining (A,C, λ) representable if the functor V(− ⊗C,A) : Vop → Set is

representable.

6.2. Examples.
(i) If the functor − ⊗ C : V → V has a right adjoint [C,−] : V → V, then it follows from

the bijection V(V ⊗ C,A) ' V(V, [C,A]) that the object [C,A] represents the functor
V(−⊗C,A). In particular, when V is right closed, each entwining in V is representable.

(ii) If C is a right V-nuclear object, the functor V(− ⊗ C,A) : Vop → Set is representable.
Indeed, to say that C is right V-nuclear is to say that the functor C ⊗− : V→ V has a
right adjoint {C,−} : V→ V, the functor −⊗ ∗C = −⊗ {C, I} : V→ V also has a right
adjoint [∗C,−] : V→ V, and the morphism

α′V : V ⊗ C → [∗C, V ]

is a natural isomorphism. Considering then the composition of bijections

V(−⊗ ∗C, ?) ' V(−, [∗C, ?]) ' V(−, ?⊗C),

one sees that the functor −⊗ C admits the functor −⊗ ∗C as a left adjoint. The same
arguments as in the proof of Theorem X.7.2 in [17] then show that there is a natural
bijection

V(−⊗C,A) ' V(−, A⊗ ∗C).
Thus the object A⊗ ∗C represents the functor V(−⊗ C,A) : Vop → Set.

6.3. Proposition. Let (A,C, λ) be a representable entwining in V = (V,⊗, I) with represent-
ing object E (see 6.1). Let eE = βτ : I → E and mE = β% : E ⊗ E → E, where τ is the
composite

I⊗ C ' C εC−−→ I eA−−→ A,

while % is the composite

E⊗E⊗C E⊗E⊗δC−−−−−−→ E⊗E⊗C⊗C E⊗β⊗C−−−−−→ E⊗A⊗C E⊗λ−−−→ E⊗C⊗A β⊗A−−−→ A⊗A mA−−→ A.

(i) The triple (E, eE ,mE) is a V-algebra.
(ii) The morphism i := βA⊗εC : A→ E is a morphism of V-algebras.

Proof. (i) First observe commutativity of the diagrams

(6.2) E ⊗ E ⊗ C

mE⊗C
��

%

%%JJJJJJJJJJ I⊗ C = C

eE⊗C
��

eA·εC

$$JJJJJJJJJJ

E ⊗ C
β
// A, E ⊗ C

β
// A.

To prove that mE is associative, i.e. mE · (mE ⊗ E) = mE · (E ⊗mE), it is to show

β · (mE ⊗ C) · (mE ⊗ E ⊗ C) = β · (mE ⊗ C) · (E ⊗mE ⊗ C).

This can be achieved by standard arguments which are left to the reader.
To prove that eE is the unit for the multiplication mE , it is to show

β · (mE ⊗ C) · (eE ⊗ E ⊗ C) = β and β · (mE ⊗ C) · (E ⊗ eE ⊗ C) = β.

Again this can be done by straightforward computation completing the proof of (i).
(ii) We have to show i · eA = iE and mE · (i⊗ i) = i ·mA. For this consider the diagram

C

εC

��

eA⊗C // A⊗ C
i⊗C //

A⊗εC
��

E ⊗ C

β
yytttttttttt

I eA
// A
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Since the square commutes by naturality of composition, while the triangle commutes by
definition of i, the outer diagram is also commutative, meaning βeA·εC = i·eA. But βeA·εC = eE .
Thus i · eA = eE .

Next, consider the diagram

A⊗A⊗ C ⊗ C
A⊗A⊗εC⊗C //

i⊗A⊗C⊗C
��

A⊗A⊗ C

i⊗A⊗C

��

A⊗λ // A⊗ C ⊗A

i⊗C⊗A

��

A⊗εC⊗A

��<<<<<<<<<<<<<<<<<

A⊗A⊗ C

A⊗A⊗δC
66mmmmmmmmmmmmm

i⊗i⊗C
��

E ⊗A⊗ C ⊗ C
E⊗A⊗εC⊗C

**UUUUUUUUUUUUUUUU

E⊗i⊗C⊗C
��

E ⊗ E ⊗ C
E⊗E⊗δC

// E ⊗ E ⊗ C ⊗ C
E⊗β⊗C

// E ⊗A⊗ C
E⊗λ

// E ⊗ C ⊗A
β⊗A

// A⊗A

in which the two triangles commute by definition of i, and the quadrangles commute by
naturality of composition. We have

ω−1(mE · (i⊗ i)) = mA · (β ⊗A) · (E ⊗ λ) · (E ⊗ β ⊗ C) · (E ⊗ E ⊗ δC) · (i⊗ i⊗ C)
= mA · (A⊗ εC ⊗A) · (A⊗ λ) · (A⊗A⊗ εC ⊗ C) · (A⊗A⊗ δC)

since (εC ⊗ C) · δC = I = mA · (A⊗ εC ⊗A) · (A⊗ λ)
by definition of λ = mA · (A⊗A⊗ εC)

nat. of composition = (A⊗ εC) · (mA ⊗ C)
since A⊗ εC = β · (i⊗ C) = β · (i⊗ C) · (mA ⊗ C)

= β · ((i ·mA)⊗ C)
= ω−1(i ·mA).

Thus mE · (i⊗ i) = i ·mA. This completes the proof. �

6.4. Proposition. Assume the data from Proposition 6.3 to be given,
(1) For any (V, θV , hV ) ∈ C

AV(λ), the composite

ιV : E ⊗ V E⊗θV−−−−→ E ⊗ C ⊗ V β⊗V−−−→ A⊗ V hV−−→ V

provides an E-module structure on V .
(2) There is a functor

Ξ : CAV(λ)→ EV, (V, θV , hV ) 7→ (V, ιV ),

leaving the morphisms unchanged.
(3) The diagram

(6.3) C
AV(λ) Ξ //

C
AU ""EEEEEEEE EV

EU~~}}}}}}}}

V ,

is commutative where C
AU : CAV(λ)→ V is the evident forgetful functor.

Proof. (1) can be verified by direct computation.
(2) Let f : (V, θV , hV )→ (V ′, θV ′ , hV ′) be in C

AV(λ). Then the diagram

(6.4) A⊗ V

A⊗f
��

hV // V

f

��

θV // C ⊗ V

C⊗f
��

A⊗ V ′
hV ′

// V ′
θV ′
// C ⊗ V ′
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is commutative. It is to show that f is also a morphism in EV. In the diagram

E ⊗ V

E⊗f
��

E⊗θV // E ⊗ C ⊗ V

E⊗C⊗f
��

β⊗V // A⊗ V

A⊗f
��

hV // V

f

��
E ⊗ V ′

E⊗θV ′
// E ⊗ C ⊗ V ′

β⊗V ′
// A⊗ V ′

hV ′
// V ′ ,

the middle square commutes by naturality of composition, while the other squares commute
by (6.4). This proves our claim and shows that the assignment given in (1) yields a functor
Ξ : CAV(λ)→ EV.

(3) It is clear that Ξ makes the diagram (6.3) commute. �

In order to proceed, we need the following result.

6.5. Lemma. Let T = (T, eT ,mT ) and H = (H, eH ,mH) be monads on a category A, i :
T → H a monad morphism and i∗ : AH → AT the functor that takes an H-algebra (a, hA) to
the T -algebra (a, ha · ia). Suppose that T� = (T �, e�,m�) (resp. H� = (H�, eH� ,mH�)) is a
comonad that is right adjoint to T (resp. H). Write i : H� → T � for the mate of i. Then

(1) i is a morphism of comonads.
(2) We have commutativity of the diagram

(6.5) AH
KH,H�

��

i∗ // AT
KT,T�

��
AH�

(i)∗

// AT� .

(3) If A admits both equalisers and coequalisers, then

(i) the functors i∗ and (i)∗ admit both right and left adjoints;
(ii) i∗ is monadic and (i)∗ is comonadic.

Proof. (1) This follows from the properties of mates (see, for example, [20]).
(2) An easy calculation shows that for any (a, ha) ∈ AH , one has

(i)∗ ◦KH,H�(a, ha) = (a, (i)a ·H�(ha) · σa) and
KT,T� ◦ i∗(a, ha) = (a, T �(ha) · T �(ia) · τa),

where σ : I → H�H is the unit of the adjunction H a H�, while τ : I → T �T is the unit of
the adjunction T a T �. Considering the diagram

a
σa //

τa

��

H�H(a)

iH(a)

��

H�(ha)// H�(a)

(i)a
��

T �T (a)
T�(ia)

// T �H(a)
T�(ha)

// T �(a) ,

in which the right square commutes by naturality of i, while the left one commutes by Theorem
IV.7.2 of [17], since i is the mate of i. Thus (i)a ·H�(ha) · σa = T �(ha) · T �(ia) · τa, and hence
(i)∗ ◦KH,H� = KT,T� ◦ i∗.

(3)(i) If the category A admits both equalisers and coequalisers, then AH admits equalisers,
while AH

�
admits coequalisers. Since KH,H� is an isomorphism of categories, it follows that

the category AH as well as the category AH
�

admit both equalisers and coequalisers. Then,
according to 3.12 and its dual, the functor (i)∗ admits a right adjoint (i)∗, while the functor
i∗ admits a left adjoint i∗. Then clearly the composite i! = (KH,H�)−1 · (i)∗ ·KT,T� is right
adjoint to i∗, while the composite (i)! = KH,H� · i∗ · (KT,T�)−1 is left adjoint to (i)∗.
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(3)(ii) Since the functors i∗ and (i)∗ are clearly conservative, the assertion follows by a
simple application of Beck’s monadicity theorem (see, [17]) and its dual. �

6.6. Left and right adjoints to the functor i∗. In the setting considered in Proposition
6.3, suppose now that V admits both equalisers and coequalisers and that there are adjunctions
A ⊗ − a {A,−} : V → V and E ⊗ − a {E,−} : V → V. Then, according to Lemma 6.5, the
functor i∗ : EV → AV has both left and right adjoints i∗ and i!. It follows from 3.12 and its
dual that for any (V, hV ) ∈ AV, i∗(V, hV ) is the coequaliser

E ⊗A⊗ V
E⊗hV

//
hrE⊗V //

E ⊗ V
q(V,hV )// i∗(V, hV ) ,

while i!(V, hV ) is the equaliser

(6.6) i!(V, hV )
e(V,hV )// {E, V }

k
//

{hlE ,V } // {A⊗ E, V } ,

where hrE = mE · (E ⊗ i), hlE = mE · (i⊗ E) and k is the transpose of the composition

A⊗ E ⊗ {E, V } A⊗eEV−−−−→ A⊗ V hV−−→ V.

We write E⊗A− for the functor i∗ (as well as for the AV-monad generated by the adjunction
i∗ a i∗) and write {E,−}A for the functor i! (as well as for the AV-comonad generated by the
adjunction i∗ a i!).

According to Lemma 6.5, the comparison functor Ki∗ : EV→ (AV)E⊗A− is an equivalence
of categories. It is easy to check that for any (V, hV ) ∈ EV, Ki∗(V, hV ) = ((V, νV ), κ(V,hV )),
where νV = hV ·(i⊗V ), while κ(V,hV ) : E⊗AV → V is the unique morphism with commutative
diagram

(6.7) E ⊗ V
q(V,νV ) //

hV ##FFFFFFFFF E ⊗A V

κ(V,hV )
{{vvvvvvvvv

V .

Such a unique morphism exists because the morphism hV : E ⊗ V → V coequalises the pair
of morphisms (hE ⊗ V,E ⊗ νV ).

6.7. Pairing induced by the adjunction E ⊗A − a {E,−}A. We refer to the setting
considered in 6.6. Writing F for the composition

(AV)eC Λ−→ C
AV(λ) Ξ−→ EV Ki∗−−→ (AV)E⊗A−

KE⊗A−, {E,−}A−−−−−−−−−−→ (AV){E,−}A ,

one easily sees that F makes the diagram

(AV)eC F //

U
eC ""FFFFFFFF

(AV){E,−}A

{E,−}AUyytttttttttt

AV

commute, were U eC is the evident forgetful functor. Then, according to 3.9, there is a unique
morphism of comonads α : C̃→ {E,−}A such that α∗ = F.

Since the triple (E ⊗A −, {E,−}A, êE−), where êE− is the counit of the adjunction E ⊗A − a
{E,−}A, is a pairing (see 3.1), it follows from Proposition 3.5 that the triple

(6.8) P(λ) = (E ⊗A −, {E,−}A, σ := êE− · (E ⊗A α))

is a pairing on the category AV.
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A direct inspection shows that for any ((V, νV ), θ(V,νV )) ∈ (AV)eC, ΞΛ((V, νV ), θ(V,νV )) =
(V, ξ), where ξ is the composite

E ⊗ V
E⊗θ(V,νV )−−−−−−−→ E ⊗ C ⊗ V β⊗V−−−→ A⊗ V νV−−→ V.

Then

Ki∗ΞΛ((V, νV ), θ(V,νV )) = Ki∗(V, ξ) = ((V, νV ), κ(V,ξ) : E ⊗A V → V ),

and thus

F((V, νV ), θ(V,νV )) = KE⊗A−, {E,−}A((V, νV ), κ(V,ξ)) = ((V, νV ), θ(V,νV )),

where θ(V,νV ) is the composite

V
bηEV−−→ {E,E ⊗A V }A {E,κ(V,ξ)}A−−−−−−−−→ {E, V }A.

Here η̂E− : I → {E,E ⊗A −}A is the unit of the adjunction E ⊗A − a {E,−}A.
Since for any object (V, νV ) ∈ VA, the pair

(C̃(V, νV ), (δ eC)(V,νV )) = ((C ⊗ V, h), δC ⊗ V ),

where h is the composite (C⊗ νV ) · (λ⊗V ) : A⊗C⊗V → C⊗V , is an object of the category
(AV) eC , one has

F((C ⊗ V, h), δC ⊗ V ) = ((C ⊗ V, (C ⊗ νV ) · (λ⊗ V ), θ(C⊗V,h)),

where θ(C⊗V,h) : C ⊗ V → {E,E ⊗A V }A is the composite

C ⊗ V
bηEC⊗V−−−−→ {E,E ⊗A (C ⊗ V )}A

{E,κ(C⊗V,ξ)}−−−−−−−−−→ {E,C ⊗ V }A.

Here ξ is the composite

E ⊗ C ⊗ V E⊗δC⊗V−−−−−−→ E ⊗ C ⊗ C ⊗ V β⊗C⊗V−−−−−→ A⊗ C ⊗ V λ⊗V−−−→ C ⊗A⊗ V C⊗νV−−−−→ C ⊗ V.

Now, according to 3.9, the (V, νV )-component α(V,νV ) of the comonad morphism α : C̃ →
{E,−}A is the composite

C ⊗ V
bηEC⊗V−−−−→ {E,E ⊗A (C ⊗ V )}A

{E,κ(C⊗V,ξ)}−−−−−−−−−→ {E,C ⊗ V }A
{E,εC⊗V }A−−−−−−−−→ {E, V }A,

i.e. α(V,νV ) is the transpose of the composite (εC ⊗ V ) · κ(C⊗V,ξ). By (6.7), the diagram

E ⊗ C ⊗ V
q(C⊗CV,ξ)

��

ξ

''OOOOOOOOOOO

E ⊗A (C ⊗ V )
κ(C⊗V,ξ)

// C ⊗ V
εC⊗V

// V

commutes. In the diagram

E ⊗ C ⊗ V
E⊗δc⊗V //

QQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQ E ⊗ C ⊗ C ⊗ V
β⊗C⊗V//

E⊗εC⊗C⊗V
��

A⊗ C ⊗ V

A⊗εC⊗C ''OOOOOOOOOOOO
λ⊗V // C ⊗A⊗ V

C⊗νV //

εC⊗A⊗V
��

C ⊗ V

εC⊗V
��

E ⊗ C ⊗ V
β⊗V

// A⊗ V νV
// V ,

the left triangle commutes since C is a coalgebra in V, the middle triangle commutes since the
triple (A,C, λ) is an entwining, and the trapeze and the rectangle commute by naturality of
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composition, hence (εC ⊗ V ) · ξ = νV · (β ⊗ V ). Thus, κ(C⊗V,ξ) is the unique morphism that
makes the diagram

(6.9) E ⊗ C ⊗ V
β⊗V //

q(C⊗V,h)

��

A⊗ V

νV

��
E ⊗A (C ⊗ V )

(εC⊗V )·κ(C⊗V,h)

// V

commute. (Recall that here h = (C ⊗ νV ) · (λ⊗ V ) : A⊗ C ⊗ V → C ⊗ V .)

6.8. Proposition. For any (V, νV ) ∈ AV, consider the morphism α′(V,νV ) : C ⊗ V → {E, V }

that is the transpose of the composition E ⊗ C ⊗ V β⊗V−−−→ A⊗ V νV−−→ V. Then the diagram

{E, V }A
e(V,νV ) // {E, V }

C ⊗ V
α(V,νV )

eeKKKKKKKKKK α′(V,νV )

99ttttttttt

is commutative.

Proof. We show first that

(6.10) {hE , V } · α′(V,νV ) = k · α′(V,νV )

(see the equaliser diagram (6.6)). Since the transpose of the morphism k is the composite

A⊗ E ⊗ {E, V } A⊗eEV−−−−→ A⊗ V hV−−→ V,

while the transpose of the morphism {hlE , V } is the composite

A⊗ E ⊗ {E, V } A⊗E⊗{hlE ,V }−−−−−−−−−→ A⊗ E ⊗ {A⊗ E, V }
eA⊗EV−−−→ V

and this is easily seen to be the composite

A⊗ E ⊗ {E, V } hlE⊗{E,V }−−−−−−−→ E ⊗ {E, V } eEV−−→ V.

Thus, since

(hlE ⊗ {E, V }) · (A⊗ E ⊗ α′(V,νV )) = (E ⊗ α′(V,νV )) · (h
l
E ⊗ C ⊗ V )

by naturality of composition, it is enough to show that the diagram

A⊗ E ⊗ C ⊗ V
A⊗E⊗α′(V,νV ) //

hlE⊗C⊗V
��

A⊗ E ⊗ {E, V }
A⊗eEV //

hlE⊗{E,V }
���
�
� A⊗ V

νV

��
E ⊗ C ⊗ V

E⊗α′(V,νV )

// E ⊗ {E, V }
eEV

// V

is commutative. Since eEV · (E ⊗ α′(V,νV )) = νV · (β ⊗ V ), the diagram can be rewritten as

(6.11) A⊗ E ⊗ C ⊗ V

hlE⊗C⊗V
��

A⊗(νV ·(β⊗V ))// A⊗ V
νV

��
E ⊗ C ⊗ V

νV ·(β⊗V )
// V .
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Consider now the diagram

A⊗ E ⊗ C
A⊗E⊗δC//

i⊗E⊗C
��

A⊗ E ⊗ C ⊗ C
A⊗β⊗C//

i⊗E⊗C⊗C
��

A⊗A⊗ C
A⊗λ //

i⊗A⊗C
��

A⊗ C ⊗A

i⊗C⊗A
��

A⊗εC⊗A

&&MMMMMMMMMMM

E ⊗ E ⊗ C
E⊗E⊗δC

// E ⊗ E ⊗ C ⊗ C
E⊗β⊗C

// E ⊗A⊗ C
E⊗λ

// E ⊗ C ⊗A
β⊗A

// A⊗A ,

in which the three rectangles commute by naturality of composition, while the triangle com-
mutes since ω−1(A⊗ εC) = β · (i⊗ C). Recalling now that hlE = mE · (i⊗ E), we have

β · (hlE ⊗ C) = β · (mE ⊗ C) · (i⊗ E ⊗ C)
= mA · (β ⊗A) · (E ⊗ λ) · (E ⊗ β ⊗ C) · (E ⊗ E ⊗ δC) · (i⊗ E ⊗ C)
= mA · (A⊗ εC ⊗A) · (A⊗ λ) · (A⊗ β ⊗ C) · (A⊗ E ⊗ δC)

since λ is an entwining = mA · (A⊗A⊗ εC) · (A⊗ β ⊗ C) · (A⊗ E ⊗ δC)
nat. of composition = mA · (A⊗ β) · (A⊗ E ⊗ C ⊗ εC) · (A⊗ E ⊗ δC)

since (C ⊗ εC) · δC = IC = mA · (A⊗ β).

Therefore, mA · (A⊗ β) = β · (hlE ⊗ C), and hence

(mA ⊗ V ) · (A⊗ β ⊗ V ) = (β ⊗ V ) · (hlE ⊗ C ⊗ V ).

Using now that νV · (A⊗ νV ) = νV · (mA ⊗ V ), since (V, νV ) ∈ AV, one has

νV · (A⊗ νV ) · (A⊗ β ⊗ V ) = νV · (β ⊗ V ) · (hlE ⊗ C ⊗ V ).

Thus the diagram (6.11) commutes. It follows that {hlE , V } · α′(V,νV ) = k · α′(V,νV ), and since
the diagram (6.6) is an equaliser, there exists a unique morphism γ(V,νV ) : C ⊗ V → {E, V }A
that makes the diagram

{E, V }A
e(V,νV ) // {E, V }

C ⊗ V
γ(V,νV )

eeKKKKKKKKKK α′(V,νV )

99ttttttttt

commute. We claim that γ(V,νV ) = α(V,νV ). To see this, consider the diagram

E ⊗ C ⊗ V
E⊗γ(V,νV ) //

q(C⊗V,h)

��

E ⊗ {E, V }A
E⊗e(V,νV ) //

q{E,V }A

��

E ⊗ {E, V }

eEV
��

E ⊗A (C ⊗ V )
E⊗Aγ(V,νV )

// E ⊗A {E, V }A beEV // V ,

where êE− is the counit of the adjunction −⊗AE a [E,−]A. In this diagram, the left rectangle
commutes by naturality of q (recall that γ(V,νV ) : C ⊗ V → {E, V }A is a morphism in AV),
while the right one commutes by definition of êE−. Since

eEV · (E ⊗ e(V,νV )) · (E ⊗ γ(V,νV )) = eEV · (E ⊗ (e(V,νV ) · γ(V,νV ))) = eEV · (E ⊗ α′(V,νV )),

and since eEV · (E ⊗ α′(V,νV )) = νV · (β ⊗ V ), it follows that the diagram

E ⊗ C ⊗ V
β⊗V //

q(C⊗V,h)

��

A⊗ V

νV

��
E ⊗A (V ⊗ C) beEV ·(E⊗Aγ(V,νV ))

// V

commutes. Comparing this diagram with (6.9), one sees that

êEV · (E ⊗A γ(V,νV )) = (εC ⊗ V ) · κ(C⊗V,h).
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Thus γ(V,νV ) : C ⊗ V → {E, V }A is the transpose of the morphism (εC ⊗ V ) · κ(C⊗V,h). Thus
γ(V,νV ) is just α(V,νV ). This completes the proof. �

When the pairing P(λ) (6.8) is rational, we write RatP(λ)(E) for the full subcategory of
the category EV generated by those objects whose images under the functor Ki∗ lie in the
category RatP(λ)(E ⊗A −).

The following result extends [1, Theorem 3.10], [12, Proposition 2.1], and [13, Theorem 2.6]
from module categories to monoidal categories.

6.9. Theorem. Let V = (V,⊗, I) be a monoidal category with V admitting both equalisers and
coequalisers, and (A,C, λ) a representable entwining with representable object E. Suppose
that

(1) the functors A⊗−, E ⊗− : V→ V have right adjoints {A,−} and {E,−},
(2) for any (V, νV ) ∈ AV, the transpose α′(V,νV ) : C ⊗ V → {E, V } of the composite

E ⊗ C ⊗ V β⊗V−−−→ A⊗ V νV−−→ V is a monomorphism, and
(3) (i) the functor C ⊗− : V→ V preserves equalisers, or

(ii) the category V admits pushouts and the functor C ⊗− : V→ V preserves regular
monomorphisms and has a right adjoint, or

(iii) the category V admits pushouts, every monomorphism in V is regular and the
functor C ⊗− : V→ V has a right adjoint.

Then the pairing P(λ) is rational and there is an equivalence of categories
C
AV(λ) ' RatP(λ)(E).

Proof. Since e(V,νV ) : {E, V }A → {E, V } is an equaliser for all (V, νV ) ∈ AV, α(V,νV ) is a
monomorphism if and only if α′(V,νV ) is so. Thus, the pairing P(λ) is rational if and only if
for any (V, νV ) ∈ AV, the morphism α′(V,νV ) : C ⊗ V → {E, V } is a monomorphism. Thus,
condition (2) implies that the pairing P(λ) is rational.

Next, since the forgetful functor AU : AV→ V preserves and creates equalisers, the functor
C̃ : AV → AV preserves equalisers if and only if the composite AUC̃ : AV → V does so. But
for any (V, νV ) ∈ AV, AUC̃(V, νV ) = C ⊗ V . It follows that if the functor C ⊗ − : V → V
preserves equalisers, then the functor C̃ : AV → AV does so. Since each of the conditions in
(3) implies that the functor C ⊗− : V→ V preserves equalisers (see the proof of Proposition
5.7) and since the functor E ⊗A − :AV→EV has a right adjoint {E,−}A :AV→EV, one can
apply Theorem 4.8 to get the desired result. �

Since for any V-coalgebra C = (C, εC , δC), the identity morphism IC : C ⊗ I = C → C =
I⊗C is an entwining from the trivial V-algebra I = (I, II, II) to the V-coalgebra C, it follows
from Example 6.2(1) that this entwining is representable with representable object C∗ = [C, I].
Applying Proposition 6.3 gives:

6.10. Coalgebras in monoidal closed categories. Assume the monoidal category V to be
closed and consider any V-coalgebra C = (C, εC , δC). Then the triple

C∗ = (C∗ = [C, I], eC∗ ,mC∗)

is a V-algebra, where eC∗ = π(εC), while mC∗ is the morphism C∗⊗C∗ → C∗ that corresponds
to the composite

C∗ ⊗ C∗ ⊗ C C∗⊗C∗⊗δC−−−−−−−−→ C∗ ⊗ C∗ ⊗ C ⊗ C C∗⊗eCI ⊗C−−−−−−−→ C∗ ⊗ C eCI−−→ I

under the bijection (see (5.2))

π = πC∗⊗C∗,C,I : V(C∗ ⊗ C∗ ⊗ C, I) ' V(C∗ ⊗ C∗, C∗).
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6.11. Proposition. In the situation of 6.10, the triple

P(C) = (C∗,C, t = eCI : C∗ ⊗ C → I)
is a left pairing in V.

Proof. We just note that the equalities π−1(eC∗) = εC and

π−1(mC∗) = eCI · (C∗ ⊗ eCI ⊗ C) · (C∗ ⊗ C∗ ⊗ δC)

imply commutativity of the diagrams

C∗ ⊗ C∗ ⊗ C
C∗⊗C∗⊗δC //

mC∗⊗C
��

C∗ ⊗ C∗ ⊗ C ⊗ C
C∗⊗eCI ⊗C // C∗ ⊗ C

eCI
��

C
eC∗⊗Coo

εC
{{wwwwwwwwww

C∗ ⊗ C
eCI

// I.

�

Applying now either Proposition 5.9 or Proposition 6.11 yields

6.12. Theorem. Let Let V = (V,⊗, I, [−,−]) be a monoidal closed category, C = (C, εC , δC)
a V-coalgebra with C V-prenuclear, and assume V to admit equalisers. If either

(i) the functor C ⊗− : V→ V preserves equalisers, or
(ii) V admits pushouts and the functor C ⊗ − : V → V preserves regular monomorphisms,

or
(iii) V admits pushouts and every monomorphism in V is regular,

then RatP(C)(C∗) is a full coreflective subcategory of C∗V and the functor ΦP(C) : CV→ C∗V
corestricts to an equivalence RP(C) : CV→ Rat(C∗).

A special case of the situation described in Theorem 6.12 is given by a locally projective
A-coalgebra C over a commutative ring A and V the category of A-modules (see also (4.9)).
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