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Abstract

For an associative ring R, let P be an R-module with S = EndR(P ). C. Menini
and A. Orsatti posed the question of when the related functor HomR(P,−) (with left
adjoint P ⊗S −) induces an equivalence between a subcategory of RM closed under
factor modules and a subcategory of SM closed under submodules. They observed that
this is precisely the case if the unit of the adjunction is an epimorphism and the counit
is a monomorphism. A module P inducing these properties is called a ?-module.

The purpose of this paper is to consider the corresponding question for a functor
G : B→ A between arbitrary categories. We call G a ?-functor if it has a left adjoint F :
A→ B such that the unit of the adjunction is an extremal epimorphism and the counit
is an extremal monomorphism. In this case (F, G) is an idempotent pair of functors
and induces an equivalence between the category AGF of modules for the monad GF
and the category BFG of comodules for the comonad FG. Moreover, BFG = Fix(FG)
is closed under factor objects in B, AGF = Fix(GF ) is closed under subobjects in A.
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1 Introduction

Let R and S be associative rings and RPS an (R,S)-bimodule. In [16], C. Menini and A.
Orsatti asked under which conditions on P , the functors P ⊗S− and HomR(P,−) induce an
equivalence between certain subcategories of RM closed under factor modules (i.e. Gen(P ))
and subcategories of SM closed under submodules (i.e. Cogen(HomR(P,Q)) for some cogen-
erator Q in RM). Such modules P are called ?-modules and it is well-known that they are
closely related to tilting modules (e.g., [8], [17]).

Because of the effectiveness of these notions in representation theory of finite dimensional
algebras (see Assem [2]), various attempts have been made to extend them to more general
situations. This was done mostly in categories which do permit some technical tools needed
(e.g. additivity, tensor product).
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The purpose of this article is to filter out the categorical essence of the theory and to
formulate the interesting parts for arbitrary categories. For this we consider a pair (F,G)
of adjoint functors between categories A and B. The crucial step is the observation that
these induce functors between the category BFG of comodules for the comonad FG on B
and the category AGF of modules for the monad GF on A (see 3.1). When the comonad
FG (equivalently the monad GF ) is idempotent, AFG may be considered as a coreflective
subcategory of A and BGF becomes a reflective subcategory of B and these categories are
equivalent. To improve the setting one may additionally require BFG to be closed under
factor objects and AGF to be closed under subobjects. This is achieved by stipulating that
the unit of the adjunction is an extremal epimorphism in A and its counit is an extremal
monomorphism in B. In this case we say that G is a ?-functor or that (F,G) is a pair of
?-functors. Note that no additional structural conditions on the categories are employed.

By definition, an (R,S)-bimodule P is a ?-module provided the functor HomR(P,−) :
RM→ SM is a ?-functor and our results apply immediately to this situation.

A ?-module P is a tilting module if (and only if) P is a subgenerator in RM. To transfer
this property to a ?-functor G, one has to require that every object A in A permits a
monomorphism A→ G(B) for some B ∈ B. We will not go into this question here.

Central to our investigation are the idempotent monads (comonads) which have appeared
in various places in the literature, e.g., Maranda [15], Applegate and Tierney [1], Isbell [11],
Lambek and Rattray [13, 14], and Deleanu, Frei and Hilton [10].

2 Preliminaries

For convenience we recall the basic structures from category theory which will be needed in
the sequel.

2.1. Monads. A monad on a category A is a triple T = (T, µ, η) where T : A → A
is an endofunctor and µ : TT → T , η : IdA → T are natural transformations inducing
commutative diagrams

TTT
Tµ //

µT

��

TT

µ

��
TT

µ // T,

T
Tη //

=
!!B

BB
BB

BB
B TT

µ

��

T

=
}}||

||
||

||

ηToo

T .

2.2. Modules for monads. Given a monad T = (T, µ, η) on the category A, an object
A ∈ A with a morphism ρA : T (A)→ A is called a T-module (or T-algebra) if ρA ◦ηA = IdA
and ρA induces commutativity of the diagram

TT (A)
T (ρA) //

µA

��

T (A)

ρA

��
T (A)

ρA // A.

A morphism between T-modules (A, ρA) and (A′, ρA′) is an f : A → A′ in A satisfying
f ◦ρA = ρA′ ◦T (f). We denote the set of these morphisms by MorT(A,A′) and the category
of T-modules by AT.

2.3. Comonads. A comonad on a category A is a triple S = (S, δ, ε) where S : A→ A is an
endofunctor and δ : S → SS, ε : S → IdA are natural transformations inducing commutative
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diagrams

S
δ //

δ

��

SS

Sδ

��
SS

δS // SSS,

S
=

~~||
||

||
||

δ

��

=

!!B
BB

BB
BB

B

S SS
Sε

oo
εS

// S.

2.4. Comodules for comonads. Given a comonad S = (S, δ, ε) on the category A, an
object A ∈ A with a morphism ρA : A → S(A) is an S-comodule if εA ◦ ρA = IdA and ρA
induces commutativity of the diagram

A
ρA

//

ρA

��

S(A)

δA

��
S(A)

S(ρA)// SS(A).

A morphism between S-comodules (A, ρA) and (A′, ρA
′
) is an f : A → A′ in A satisfying

ρA
′ ◦f = S(f)◦ρA. We denote the set of these morphisms by MorS(A,A′) and the category

of S-comodules by AS.

2.5. Adjoint functors. Let F : A → B and G : B → A be (covariant) functors between
any categories A, B. The pair (F,G) is called adjoint (or an adjunction) and F (resply. G)
is called a left (resply. right) adjoint to G (resply. F ) if the two equivalent conditions hold:

(a) there is an isomorphism, natural in A ∈ A and B ∈ B,

ϕA,B : MorB(F (A), B)→ MorA(A,G(B));

(b) there are natural transformations η : IdA → GF (called the unit of the adjunction)
and ε : FG → IdB (called the counit of the adjunction) with commutative diagrams
(called the triangular identities)

F
Fη //

=
""EE

EE
EE

EE
E FGF

εF

��
F

, G
ηG //

=
""EEEEEEEE GFG

Gε

��
G.

With unit and counit the mappings are given by

ϕA,B : F (A)
f→ B 7−→ A

ηA→ GF (A)
G(f)→ G(B),

ϕ−1
A,B : A

g→ G(B) 7−→ F (A)
F (g)→ FG(B) εB→ B.

2.6. Properties of adjoint functors. Let (F,G) be as in 2.5. Then

(1) (i) G is faithful if and only if εB is an epimorphism for each B ∈ B.
(ii) G is full if and only if εB is a coretraction (split monic) for each B ∈ B.

(iii) G is full and faithful if and only if ε is an isomorphism.
(2) (i) F is faithful if and only if ηA is a monomorphism for each A ∈ A.

(ii) F is full if and only if ηA is a retraction (split epic) for each A ∈ A.
(iii) F is full and faithful if and only if η is an isomorphism.

2.7. Adjoint functors and (co)monads. Let (F,G) be as in 2.5. Then
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(1) (i) T = (GF,GεF, η) is a monad on A;
(ii) there is a functor G : B→ AGF , B 7→ (G(B), GεB).

(2) (i) S = (FG,FηG, ε) is a comonad on B;
(ii) there is a functor F : A→ BFG, A 7→ (F (A), FηA).

Proof. (1.i), (2.i) are well-known properties of adjoint functors.

(1.ii) describes the comparison functor. To show its properties recall that naturality of
ε yields the commutative diagram (e.g. [3, Section 3])

FGFG
εFG //

FGε

��

FG

ε

��
FG

ε // Id.

Action of G from the left and application to B yield the commutative diagram

GFGFG(B)
GεFGB//

GFGεB

��

GFG(B)

GεB

��
GFG(B)

GεB // G(B).

This proves the associativity condition for the GF -module G(B). Unitality follows from the
triangular identities (2.5). Again by naturality of ε, for any f ∈ B, G(f) is a GF -module
morphism.

The proof of (2.ii) is dual to that of (1.ii). tu

2.8. Free functor for a monad. For any monad T = (T, µ, η) on A and object A ∈ A,
(T (A), µA) is a T-module, called the free T-module on A. This yields the free functor

φT : A→ AT, A 7→ (T (A), µA),

which is left adjoint to the forgetful functor UT : AT → A by the isomorphism, for A ∈ A
and M ∈ AT,

MorT(T (A),M)→ MorA(A,UT(M)), f 7→ f ◦ ηA.

Notice that UTφT = T and UT(M) = M on objects M ∈ AT. The unit of this adjunction
is η : IdA → T = UTφT, and for the counit ε̃ : φTUT → IdAT

we have µ = UTε̃φT (e.g. [3,
Theorem 3.2.1], [4, Proposition 4.2.2]).

2.9. Free functor for a comonad. For any comonad S = (S, δ, ε) on A and object A ∈ A,
(S(A), δA) is an S-comodule, called the free S-comodule on A. This yields the free functor

φS : A→ AS, A 7→ (S(A), δA),

which is right adjoint to the forgetful functor US : AS → A by the isomorphism, for A ∈ A
and M ∈ AS,

MorS(M,S(A))→ MorA(US(M), A), g 7→ εA ◦ g.

Notice that USφS = S and US(M) = M on objects in AS. The counit of this adjunction is
ε : USφS = S → IdA, and for the unit η̃ : IdAS → φSUS we have δ = USη̃φS.

The following observation is the key to our investigation.
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2.10. Idempotent monads. For a monad T = (T, µ, η) on a category A, the following
are equivalent:

(a) the forgetful functor UT : AT → A is full (and faithful);
(b) the counit ε̃ : φTUT → IdAT

is an isomorphism;
(c) the product µ : TT → T is an isomorphism;
(d) for every T-module (A, ρA), ρA : T (A)→ A is an isomorphism in A;
(e) Tη (or ηT ) is an isomorphism;
(f) Tη = ηT ;
(g) Tµ = µT .

Proof. A proof of the equivalences from (a) to (d) can be found in [4, Proposition 4.2.3]. The
remaining equivalences are shown in [15, Proposition]. Their proof is based on the diagram

TT
µ //

TTη

��

T

Tη

��
TTT

µT // TT

which is commutative by naturality of µ.
Now, for example, if Tµ = µT , then µT ◦ TTη = µT ◦ TηT = TT showing that µ (and

Tη) is an isomorphism, that is, (g)⇒(c). tu

We also need the dual version of this theorem which is shown in Applegate-Tierney [1,
Section 6]:

2.11. Idempotent comonads. For a comonad S = (S, δ, ε) on a category A, the following
are equivalent:

(a) the forgetful functor US : AS → A is full (and faithful);
(b) the unit η̃ : IdAS → φSUS is an isomorphism;
(c) the coproduct δ : S → SS is an isomorphism;
(d) for any S-comodule (A, ρA), ρA : A→ S(A) is an isomorphism in A;
(e) Sε (or εS) is an isomorphism;
(f) Sε = εS;
(g) Sδ = δS.

3 Idempotent pairs of functors

In this section, we consider an adjoint pair of functors F : A→ B and G : B→ A with unit
η : IdA → GF and counit ε : FG→ IdB.

3.1. Related functors. Let (F,G) be as in 2.5.

(1) For the monad GF on A, composing UGF with F (from 2.7) yields a functor

F̃ = F ◦ UGF : AGF → BFG.

(2) For the comonad FG on B, composing UFG with G (from 2.7) yields a functor

G̃ = G ◦ UFG : BFG → AGF .
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(3) These functors lead to the commutative diagram

BFG
eG //

UF G

��

AGF
eF //

UGF

��

BFG

UF G

��
B

G
//

G

=={{{{{{{{{{{{{{{{{{
A

F
//

F

=={{{{{{{{{{{{{{{{{{
B,

In general (F̃ , G̃) need not be an adjoint pair of functors. As a first observation in this
context we state:

3.2. Proposition. Consider an adjoint pair (F,G) (as in 2.5).

(1) For (A, ρA) in AGF , the following are equivalent:

(a) ηA : A→ GF (A) is a GF -module morphism;
(b) ηA : A→ GF (A) is an epimorphism (isomorphism);
(c) ρA : GF (A)→ A is an isomorphism.

(2) For (B, ρB) in BFG, the following are equivalent:

(a) εB : FG(B)→ B is an FG-comodule morphism;
(b) εB : FG(B)→ B is a monomorphism (isomorphism);
(c) ρB : B → FG(B) is an isomorphism.

Proof. (1) (b)⇔(c) for isomorphisms is obvious by unitality of GF -modules.
(a)⇒(b) For (A, ρ) in AGF , the condition in (a) requires commutativity of the diagram

GF (A)
GFηA//

ρA

��

GFGF (A)

GεF (A)

��
A

ηA // GF (A).

By the triangular identities (see 2.5), GεF ◦GFη ' IdGF and hence ηA ◦ρA ' IdG(A). Since
ρA ◦ ηA ' IdA (by unitality) it follows that ηA (and ρA) is an isomorphism.

(b)⇒(a) Consider the diagram

A

ηA

��

ηA // GF (A)

ηGFA

��
GF (A)

GF (ηA)//

ρA

��

GFGF (A)

GεF (A)

��
A

ηA // GF (A),

in which the upper square is commutative by naturality of η and the outer rectangle is
commutative since the composites of the vertical maps yield the identity. If ηA is an epimor-
phism, the lower square is also commutative showing that ηA is a GF -module morphism.

(2) These assertions are proved in a similar way. tu

3.3. (F̃ , G̃) as an adjoint pair. With the notation in 3.1, the following are equivalent:
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(a) by restriction and corestriction, ϕ (see 2.5) induces an isomorphism

ϕ̃ : MorFG(F̃ (A), B)→ MorGF (A, G̃(B)) for A ∈ AGF , B ∈ BFG,

(hence (F̃ , G̃) is an adjoint pair of functors);
(b) ηG : G→ GFG is an isomorphism;
(c) GεF : GFGF → GF is an isomorphism.

Proof. (a)⇒(b) ηA is the image of Id : F̃ (A) → F̃ (A) under ϕ̃ and hence a GF -module
morphism. By 3.2, this implies that ηA is an isomorphism for all GF -modules A. Since
G(B) is a GF -module for any B ∈ B, we have ηG(B) : G(B) → GFG(B) an isomorphism,
that is, ηG : G→ GFG is an isomorphism.

(b)⇒(c) By the triangular identities, (b) implies that Gε and GεF are also isomorphisms.
(c)⇒(a) Unitality and the triangular identities yield the equalities

GF (ρA) ◦GFηA = GεFA ◦GFηA = GεFA ◦ ηGFA = IdGFA
.

Given (c), we conclude from these thatGFηA = ηGFA is an isomorphism and thusGF (ρA) =
GεFA. With this information, the test diagram for ηA being a GF -module morphisms (see
proof of 3.2(1)) becomes

GF (A)
ηGFA//

ρA

��

GFGF (A)

GF (ρA)

��
A

ηA // GF (A),

and this is commutative by naturality of η. Thus we get an isomorphism

ϕ̃ : MorFG(F̃ (A), B) −→ MorGF (A, G̃(B)),

F̃ (A)
f→ B 7−→ A

ηA→ G̃F̃ (A)
eG(f)→ G̃(B),

showing that (F̃ , G̃) is an adjoint pair of functors. tu

Adjoint pairs with the properties addressed in 3.3 are well-known in category theory.
Combined with 2.10 and by standard arguments we obtain the following list of characteri-
sations for them.

3.4. Idempotent pair of adjoints. For the adjoint pair of functors (F,G) (as in 2.5),
the following are equivalent.

(a) The forgetful functor UGF : AGF → A is full and faithful;
(b) the counit ε̄ : φGFUGF → IdAGF

is an isomorphism;
(c) the product GεF : GFGF → GF is an isomorphism;
(d) εF : FGF → F is an isomorphism;
(e) the forgetful functor UFG : BFG → B is full and faithful;
(f) the unit η̄ : IdBF G → φFGUFG is an isomorphism;
(g) the coproduct FηG : FG→ FGFG is an isomorphism;
(h) ηG : G→ GFG is an isomorphism.

If these properties hold then (F,G) is called an idempotent pair of adjoints.
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3.5. Remarks. Most of these properties have been considered somewhere in the literature.
Perhaps the first hint of idempotent pairs is given in Maranda [15, Proposition] under
the name idempotent constructions (1966). Isbell discussed their role in [11] calling them
Galois connections (1971). In Lambek and Rattray [13] they are investigated in the context
of localisation and duality (1975). In the same year they were studied in Deleanu, Frei
and Hilton [10, Section 2] where it is shown that their Kleisli categories are isomorphic
to the category of fractions (of invertible morphisms). Extending these ideas, idempotent
approximations to any monad are the topic of Casacuberta and Frei [5].

For the adjoint functor pair (F,G) we use the notation (e.g. [13])

Fix(GF, η) = {A ∈ A | ηA : A→ GF (A) is an isomorphism},
Fix(FG, ε) = {B ∈ B | εB : FG(B)→ B is an isomorphism}.

We denote the (isomorphic) closure of the image of GF in A and FG in B by GF (A) and
FG(B), respectively.

3.6. Idempotent pairs and equivalences. Let (F,G) be an idempotent adjoint pair of
functors. Then:

(i) AGF ' Fix(GF, η) = GF (A) is a reflective subcategory A with reflector GF .
(ii) BFG ' Fix(FG, ε) = FG(B) is a coreflective subcategory of B with coreflector FG.

(iii) The (restrictions of the) functors F , G induce an equivalence

F : GF (A)→ FG(B), G : FG(B)→ GF (A).

(iv) The Kleisli category of GF is isomorphic to the category of fractions A[S−1] where S
is the family of morphisms of A rendered invertible by GF (or F ).

Proof. (i) and (ii) follow from 3.4 (g) and (b), respectively.
(iii) The composition F̃ G̃ is isomorphic to the identity on BFG and G̃F̃ is isomorphic to

the identity on AGF .
(iv) This is shown in [10, Theorem 2.6]. tu

Of course, if (F,G) induces an equivalence between A and B, then it is an idempotent
pair. More generally, we obtain from 2.6 that (F,G) is idempotent provided the functor F
or the functor G is full and faithful.

To consider weaker conditions on the unit and counit, recall that an epimorphism e in
any category A is called extremal or a cover if whenever e = m ◦ f for a monomorphism
m then m is an isomorphism. Such epimorphisms are isomorphisms if and only if they are
monomorph.

3.7. ηA epimorph. Let (F,G) be an adjoint pair of functors (as in 2.5).

(1) If ηA : A→ GF (A) is epimorph for any A ∈ A, then

(i) (F,G) is idempotent;
(ii) GF preserves epimorphisms;
(iii) for any coproduct

∐
i∈I Ai in A, the canonical morphism

ψ :
∐

I
GF (Ai)→ GF (

∐
I
Ai)

is an epimorphism.

(2) If ηA : A → GF (A) is an extremal epimorphism for any A ∈ A, then Fix(GF, η) is
closed under subobjects in A.
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Proof. (1) (i) follows by 3.2.
(ii) For any morphism f : A→ A′ in A, we have the commutative diagram

A
f //

ηA

��

A′

η′
A

��
GF (A)

GF (f)// GF (A′).

If f is epimorph, then so is the composite η′A ◦ f and hence GF (f) must also be epimorph.
(iii) We have the commutative diagram

∐
i∈I GF (Ai)

ψ // GF (
∐
i∈I Ai)

∐
i∈I Ai

ffNNNNNNNNNNN η‘
I Ai

88ppppppppppp

where η‘
I Ai

is epimorph and hence so is ψ.
(2) In the diagram in the proof of (1)(ii), assume f to be monomorph and ηA′ an

isomorphism. Then ηA is monomorph and an extremal epimorphism which implies that
it is an isomorphism. tu

A monomorphism m in any category B is called extremal if whenever m = f ◦ e for an
epimorphism e then e is an isomorphism. Such monomorphisms are isomorphisms if and
only if they are epimorph.

3.8. εB monomorph. Let (F,G) be an adjoint pair of functors (as in 2.5).

(1) Assume εB : FG(B)→ B to be monomorph for any B ∈ B. Then:

(i) (F,G) is idempotent;
(ii) FG preserves monomorphisms;

(iii) for any product
∏
i∈I Bi in B, the canonical morphism

ϕ : FG(
∏

I
Bi)→

∏
I
FG(Bi)

is a monomorphism.

(2) If εB : FG(B)→ B is an extremal monomorphism for any B ∈ B, then Fix(FG, ε) is
closed under factor objects in B.

Proof. The proof is dual to that of 3.7:
(1) (i) follows by 3.2.
(ii) For any morphism g : B′ → B in B, we have the commutative diagram

FG(B′)
FG(g) //

εB′

��

FG(B)

εB

��
B′

g // B.

If g is monomorph, then g ◦ εB′ is monomorph and so is FG(g).
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(iii) We have the commutative diagram in B,

FG(
∏
i∈I Bi)

ϕ //

εQ
I Bi ''NNNNNNNNNNN

∏
I FG(Ai)

xxqqqqqqqqqqq

∏
i∈I Bi,

where εQ
I Bi

is monomorph and hence so is ϕ.
(2) In the diagram in (ii), we now have g an epimorphism and εB′ an isomorphism. Thus

εB is epimorph and an extremal monomorphism, hence an isomorphism. tu

3.9. Definition. An adjoint pair (F,G) of functors with unit η and counit ε is said to be
a pair of ?-functors provided

ηA : A→ GF (A) is an extremal epimorphism for all A ∈ A and
εB : FG(B)→ B is an extremal monomorphism for all B ∈ B.

Combining the information from 3.6, 3.7 and 3.8, we obtain the following.

3.10. Theorem. For a pair of ?-functors (F,G), the functors (see 3.1)

F̃ : AGF → BFG, G̃ : BFG → AGF

induce an equivalence where AGF = Fix(GF, η) is a reflective subcategory of A closed under
subobjects in A and BFG = Fix(FG, ε) is a coreflective subcategory of B closed under factor
objects in B.

4 ?-modules

In this section let R, S be rings and P be an (R,S)-bimodule. The latter provides the
adjoint pair of functors

TP := P ⊗S − : SM→ RM, HP := HomR(P,−) : RM→ SM,

with unit and counit

ηX : X → HPTP (X), x 7→ [p 7→ p⊗ x], εN : TPHP (N)→ N, p⊗ f 7→ (p)f,

where N ∈ RM and X ∈ SM. Associated to this pair of functors we have the monad and
comonad

HPTP : SM→ SM, TPHP : RM→ RM.

It is well-known that in module categories all monomorphism and all epimorphisms are
extremal.

Recall that N ∈ RM is said to be P -static if εN is an isomorphism, and X ∈ SM is
P -adstatic if ηX is an isomorphism (e.g. [18]).

An R-module N is called P -presented if there exists an exact sequence of R-modules

P (Λ′) → P (Λ) → N → 0, Λ,Λ′ some sets.

Let Q be any injective cogenerator in RM and P ∗ := HomR(P,Q). An S-module X is
said to be P ∗-copresented if there exists an exact sequence of S-modules

0→ X → P ∗Λ
′
→ P ∗Λ, Λ,Λ′ some sets.
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When S = EndR(P ), there are canonical candidates for fixed modules for TPHP and for
HPTP , namely

P ∈ Fix(TPHP , ε) and S, P ∗ ∈ Fix(HPTP , η),

and hence the description of the fixed classes can be related to these objects.

4.1. (TP , HP ) idempotent. The following are equivalent:

(a) HP εTP : HPTPHPTP → HPTP is an isomorphism;
(b) for any X ∈ SM, εTP (X) : P ⊗S HomR(P, P ⊗S X) → P ⊗S X is an isomorphism

(that is, P ⊗S X is P -static);
(c) TP ηHP : TPHP → TPHPTPHP is an isomorphism;
(d) for any N ∈ RM, ηHP (N) : HomR(P,N) → HomR(P, P ⊗S HomR(P,N)) is an

isomorphism (that is, HomR(P,N) is P -adstatic).

If we assume S = EndR(P ), then (a)-(d) are also equivalent to:

(e) every P -presented R-module is P -static;
(f) every P ∗-copresented module is P -adstatic.

Proof. The equivalences (a)-(d) follow from 3.4. For the remaining equivalences see, for
example, [18, 4.3]. tu

4.2. Idempotence and equivalence. With the notation above, let (TP , HP ) be an idem-
potent pair. Then these functors induce an equivalence

T̃P : SMHPTP
→ RMTPHP , H̃P : RMTPHP → SMHPTP

,

where RMTPHP = Fix(TPHP , ε) is a coreflective subcategory of RM and SMHPTP
=

Fix(HPTP , η) is a reflective subcategory of SM:
If S = EndR(P ), then RMTPHP

is precisely the subcategory of P -presented R-modules
and SMHPTP

the subcategory of P ∗-copresented S-modules.

Proof. The first part is a special case of 3.6. For the final remark we again refer to [18, 4.3].
tu

Note that the corresponding situation in complete and cocomplete abelian categories is
described in [6, Theorem 1.6].

Recall that the module P is self-small if, for any set Λ, the canonical map

HomR(P, P )(Λ) → HomR(P, P (Λ))

is an isomorphism, and P is called w-Σ-quasiprojective if HomR(P,−) respects exactness of
sequences

0→ K → P (Λ) → N → 0,

where K ∈ Gen(P ), Λ any set.
The following observations are known from module theory.

4.3. Proposition. For an R-module P with S = EndR(P ), the following are equivalent:

(a) ηX : X → HPTP (X) is surjective, for all X ∈ SM;
(b) P is self-small and w-Σ-quasiprojective;
(c) (TP , HP ) is an idempotent functor pair and SMHPTP

is closed under submodules in
SM..
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For the proof we refer to [17], [7]. The assertions where shown by Lambek and Rattray for
a self-small object in a cocomplete additive category (see [14, Theorem 4], [12, Proposition
1]).

The following corresponds to [18, 4.4].

4.4. Proposition. For an R-module P with S = EndR(P ), the following are equivalent:

(a) εN : TPHP (N)→ N is monomorph (injective), for all N ∈ RM;
(b) (TP , HP ) is idempotent and RMTPHP is closed under factor modules in RM.

As suggested in 3.9, we call HP a ?-functor provided the unit η
SM : Id → HPTP is an

epimorphism and the counit ε : TPHP → Id
RM is a monomorphism. In this case, the module

P is called a ?-module ([16], [8]) and we obtain:

4.5. Theorem. For an R-module P with S = EndR(P ), the following are equivalent:

(a) P is a ?-module;
(b) HP is a ?-functor;
(c) (TP , HP ) induces an equivalence

TP : SMHPTP
→ RMTPHP , HP : RMTPHP → SMHPTP

,

where RMTPHP is closed under factor modules in RM and SMHPTP
is closed under

submodules in SM.

The equivalence of (a) and (b) is shown in [7, Theorem 4.1] (see also [16], [8], [2], [17]).
For objects in any Grothendieck category they are shown in Colpi [9, Theorem 3.2].
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