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Abstract

By a well known theorem of K. Morita, any equivalence between full module
categories over rings R and S, are given by a bimodule RPS , such that RP is
a finitely generated projective generator in R-Mod and S = EndR(P ). There
are various papers which describe equivalences between certain subcategories
of R-Mod and S-Mod in a similar way with suitable properties of RPS . Here we
start from the other side: Given any bimodule RPS we ask for the subcategories
which are equivalent to each other by the functor HomR(P,−). In R-Mod
these are the P -static (= P -solvable) modules. In this context properties of
s-Σ-quasi-projective, w-Σ-quasi-projective and (self-) tilting modules RP are
reconsidered as well as Mittag-Leffler properties of PS . Moreover for any ring
extension R→ A related properties of the A-module A⊗R P are investigated.

1 Introduction

It was noticed by K. Morita that an R-Module P is a finitely generated, projective

generator P in R-Mod, if and only if the functor

HomR(P,−) : R-Mod→ S-Mod,

defines a category equivalence, where S = EndR(P ).

Many authors have worked on generalizations of this setting by looking at rep-

resentable equivalences between proper subcategories. Imposing various conditions

on these subcategories, such as closure under submodules, factor modules or exten-

sions, the problem was to find a module P with suitable properties to characterize

the equivalence under consideration.

For this purpose notions like quasi-projective, s-Σ-quasi-projective, w-
∑

-quasi-

projective modules were introduced, and the generator property was replaced by

weaker conditions. We refer to the papers of U. Albrecht, R. Colpi, T.G. Faticoni,
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K.R. Fuller, A.I. Kashu, T. Kato, C. Menini, T. Onodera, A. Orsatti, M. Sato and oth-

ers for this approach. It should be mentioned that the importance of tilting modules

in representation theory gave a new impact to this kind of investigation.

Here we suggest to put the question the other way round. We do not assume

the subcategories to be given but we start with any R-module P and S = EndR(P ).

Then we ask if there are any non-trivial subcategories C ⊂ R-Mod and D ⊂ S-Mod

for which HomR(P,−) provides an equivalence. Since the functor P ⊗S − is left

adjoint to HomR(P,−) we know that the modules in C must be ”invariant” under

P ⊗S HomR(P,−). Following Nauman [20] and Alperin [3] we call these modules

P -static. Other names in the literature are reflexive (see [6]) or P -solvable or P -

coreflexive modules (see [12, p. 75]), and in Ulmer [26] the class of static modules is

called the fixpoint category.

Of course P itself and every finite direct sum of copies of P are P -static. We

will say P is
∑

-self-static if any direct sum of copies of P is P -static. Under this

condition we obtain a straightforward characterization of P -static modules (in 3.7)

which shows the importance of the projectivity notions mentioned above.

Section 4 will mainly be concerned with the interplay of conditions imposed on

the category of static modules (or on the image of HomR(P,−)) and properties of

the module P . This includes characterizations of self-tilting modules and related

equivalences.

It is well known that generators in a full module category can be characterized

by properties over their endomorphism and biendomorphism rings. In Section 5 we

provide similar characterizations for w-Σ-quasi-projective and self-tilting modules.

In particular it turns out that, for a faithful
∑

-self-static self-tilting R-module P ,

the ring R is dense in the biendomorphism ring of P , and PS has P -dcc in the sense

of Zimmermann [31], a property which makes PS a certain Mittag-Leffler module.

Similar Mittag-Leffler properties for PS are observed for the case that the category of

P -static modules is closed under products in the category of P -generated modules.

There is another topic considered in the paper of Nauman. Ring extensions

R → A are studied and the transfer of properties from an R-module P to the A-

module A⊗R P . Exploiting his basic ideas we give an account of this relationship in

Section 6 thus extending results of Fuller [13] in this direction.

The main concern of this note is to generalize known results and provide simple

proofs by relating papers which were written independently. Various results scattered

around in the literature are gathered under a common point of view. In particular

it should be mentioned that our techniques also apply to modules P which are not

self-small thus including interesting examples from abelian group theory (e.g., [30,

4.12, 5.8]).
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2 Preliminaries

Let R be an associative ring with unit and R-Mod the category of unital left R-

modules. Homomorphisms of modules will be written on the opposite side of the

scalars. For unexplained notation we refer to [27].

Throughout the paper P will be a left R-module and S := EndR(P ).

An R-module N is P -generated if there exists an exact sequence

0→ K → P (Λ) → N → 0, Λ some set,

and N is P -presented if there exists such a sequence where K is P -generated.

Gen(P ), Pres(P ) and σ[P ] will denote the full subcategories of R-Mod whose ob-

jects are P -generated, P -presented or submodules of P -generated modules, respec-

tively. σ[P ] is closed under direct sums, factor modules and submodules in R-Mod

and hence is a Grothendieck category. Recall that for Q ∈ σ[P ], Q|ΛP denotes the

product of Λ copies of Q in σ[P ] (e.g., [30]). If Q is P -injective then Q|ΛP = Tr(P,QΛ)

(the trace of P in QΛ).

An R-module N is P -cogenerated if there exists an exact sequence

0→ N → PΛ → L→ 0, Λ some set,

and N is P -copresented if there exists such a sequence where L is P -cogenerated.

By Cog(P ) and Cop(P ) we denote the full subcategories of R-Mod consisting of

P -cogenerated, resp., P -copresented modules.

Add (P ) (resp. add (P )) stands for the class of modules which are direct sum-

mands of (finite) direct sums of copies of P .

2.1 Canonical functors. Related to RPS we have the adjoint pair of functors

HomR(P,−) : R-Mod→ S-Mod, P ⊗S − : S-Mod→ R-Mod,

and for any N ∈ R-Mod and X ∈ S-Mod, the canonical morphisms

µN : P ⊗S HomR(P,N)→ N, p⊗ f 7→ (p)f,

νX : X → HomR(P, P ⊗S X), x 7→ [p 7→ p⊗ x].

We recall the following useful properties (e.g., [27, 45.8]).

2.2 Proposition. Consider any N ∈ R-Mod and X ∈ S-Mod.

(1) Each of the following compositions of maps yield the identity:

HomR(P,N)
νHom(P,N)−→ HomR(P, P ⊗S HomR(P,N))

Hom(P,µN )−→ HomR(P,N),

P ⊗S X
id⊗νX−→ P ⊗S HomR(P, P ⊗S X)

µP⊗X−→ P ⊗S X.

3



(2) Coke(νHom(P,N)) ' HomR(P,Ke(µN)) and Ke(µP⊗X) ' P ⊗S Coke(νX).

2.3 Static and adstatic modules. An R-module N is called P -static if µN is an

isomorphism and the class of all P -static R-modules is denoted by Stat(P ).

An S-module X is called P -adstatic if νX is an isomorphism and we denote the

class of all P -adstatic S-modules by Adst(P ).

The name P -static was used in Alperin [3] and Nauman [20] and the name P -

adstatic should remind that we have an adjoint situation. It is easy to see that, for

every P -static module N , HomR(P,N) is P -adstatic, and for any P -adstatic module

X, P ⊗R X is P -static. In fact we have the following (e.g., Onodera [21, Theorem

1], Alperin [3, Lemma], Nauman [20, Theorem 2.5], Faticoni [12, Proposition 6.3.2]):

2.4 Basic equivalence. For any R-module P , the functor

HomR(P,−) : Stat(P )→ Adst(P )

defines an equivalence with inverse P ⊗S −.

3
∑
-self-static and pseudo-finite modules

Clearly the module P and finite direct sums P k are P -static. Moreover, for P finitely

generated any direct sum P (Λ) is P -static. This also holds more generally when P is

self-small, i.e., if for any set Λ, the canonical map

HomR(P, P )(Λ) → HomR(P, P (Λ))

is an isomorphism. However this condition is not necessary for P (Λ) to be P -static.

Because of the importance of this property we give it its own name.

3.1 Definition. We say that P is
∑

-self-static if, for any set Λ, P (Λ) is P -static,

i.e., we have an isomorphism

µP (Λ) : P ⊗S HomR(P, P (Λ))→ P (Λ).

As we will see soon
∑

-self-static modules can be far from being finitely gener-

ated. Nevertheless many examples of
∑

-self-static modules have a property which is

familiar from finitely generated modules. Again we suggest a name for this.

3.2 Definition. We call a module P pseudo-finite if, for any set Λ, and any mor-

phisms

P
g→ P (Λ) h→ N,
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where gh 6= 0, there exists a morphism ḡ : P → Im(g) ∩ PΛo , for some finite subset

Λo ⊂ Λ, such that ḡh 6= 0. These maps are displayed in the diagram

P
ḡ−→ PΛo

↓ ε
P

g−→ P (Λ) h−→ N,

where ε denotes the canonical inclusion.

Clearly every self-small module is pseudo-finite, and it is easy to see that any

direct summand of a direct sum of finitely generated modules is pseudo-finite. In

particular P is pseudo-finite provided it is projective in σ[P ]. Moreover, if P is a

generator in σ[P ] it is also pseudo-finite.

We do not expect that every pseudo-finite module is
∑

-self-static. However the

last two examples mentioned share a generalized projectivity condition which makes

them
∑

-self-static as we will prove in our next propositon.

Recall that P is self-pseudo-projective in σ[P ] if any diagram with exact sequence

P
α· · · P

β
... ↓

0 → K → L → N → 0,

where K ∈ Gen(P ) and L ∈ σ[P ], can be non-trivially commutatively extended by

some α : P → P , β : P → L. This condition is equivalent to Gen(P ) being closed

under extensions in σ[P ], and also to the fact that HomR(P,−) respects exactness

of sequences of the form (see [17, Proposition 2.2])

0→ Tr(P,L)→ L→ L/Tr(P,L)→ 0, for any L ∈ σ[P ].

3.3 Pseudo-finite self-pseudo-projective modules. Let P be pseudo-finite and

self-pseudo-projective. Then:

(1) For any N ∈ R-Mod, HomR(P,Ke(µN)) = 0.

(2) P is
∑

-self-static.

Proof. (1) Let {fλ}Λ be a generating set of the S-module HomR(P,N) and consider

the canonical map

S(Λ) → HomR(P,N), sλ 7→ sλfλ.

Tensoring with PS we obtain the morphism

h : P (Λ) ' P ⊗ S(Λ) → P ⊗S HomR(P,N), pλ 7→ pλ ⊗ fλ,
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where the kernel of h is P -generated. By our projectivity condition, for every non-

zero map g : P → P ⊗S HomR(P,N), we may construct a commutative diagram

P
α−→ P

β ↓ ↓ g
P (Λ) h−→ P ⊗S HomR(P,N) → 0

h̄↘ ↓ µN
N ,

where αg = βh 6= 0. By our finiteness condition we may assume that Im β is

contained in a finite partial sum of PΛo ⊂ P (Λ) and βh 6= 0. With the canonical

projections πλ related to P (Λ), and Λo = {λ1, . . . , λk}, we have for any p ∈ P ,

(p)βh =
k∑
i=1

(p)βπλi ⊗ fλi = p⊗
k∑
i=1

βπλifλi = p⊗ βh̄.

Now assume 0 6= Im g ⊂ KeµN . Then βh̄ = 0 and hence βh = 0, contradicting

our assumption. So we have HomR(P,Ke(µN)) = 0.

The map µP (Λ) : P ⊗S HomR(P, P (Λ))→ P (Λ) is surjective and is split by the map

P (Λ) → P ⊗S HomR(P, P (Λ)), pλ 7→ pλ ⊗ ελ.

Hence Ke (µP (Λ)) is a direct summand and so it is P -generated. Now (1) implies that

µP (Λ) is injective. 2

The above proposition subsumes several well known results:

3.4 Corollary. Let P be an R-module and T = Tr(P,R).

(1) Assume P is projective in σ[P ] or P = TP . Then HomR(P,Ke(µN)) = 0 and

P is
∑

-self-static.

(2) If P is a generator in σ[P ] then σ[P ] = Stat(P ) (and P is
∑

-self-static).

Proof. (1) Assume P is projective in σ[P ]. Then obviously P is self-pseudo-

projective and is a direct summand of a direct sum of finitely generated modules,

hence pseudo-finite.

If P = TP then every P -generated module is T -generated and vice versa. From

this it is easy to see that Gen(P ) is closed under extensions in σ[P ] (even in R-Mod)

and so P is self-pseudo-projective. Consider any morphisms

P
g→ P (Λ) h→ N,
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where gh 6= 0. Choose some t ∈ T , a ∈ P with (ta)gh 6= 0. Then by restriction we

have a non-zero map

Ta→ Ra
g→ R(a)g ⊂ (P )g ∩ PΛo h→ N,

for some finite Λo ⊂ Λ. Since Ta is P -generated, there exists ḡ : P → (P )g ∩ PΛo

with ḡh 6= 0, showing that P is pseudo-finite.

Now the assertion follows from 3.3.

(2) Let P be a generator in σ[P ]. Then trivially P is self-pseudo-projective.

Arguments similar to those used in the proof of (1) show that P is pseudo-finite.

Hence by 3.3, for any R-module N , HomR(P,Ke(µN)) = 0 and hence Ke(µN) = 0 2

Remarks. The second case in 3.4(1) was shown in Onodera [21, Theorem 2].

Notice that for P projective in R-Mod, TP = P . Assertion (2) was proved in

Zimmermann-Huisgen [32, Lemma 1.3].

More examples of
∑

-self-static and pseudo-finite modules are provided by our

next result.

3.5 Non-singular noetherian rings. Let R be a left noetherian ring with injective

hull E(R).

(1) If R is left non-singular, then E(R) is
∑

-self-static.

(2) If R is left hereditary, then E(R) is pseudo-finite and self-pseudo-projective.

Proof. (1) By our assumptions we have the S-module isomorphisms

E(R) ' HomR(R,E(R)) ' EndR(E(R)) =: S,

and for every non-singular injective R-module V ,

E(R)⊗S HomR(E(R), V ) ' HomR(E(R), V ) ' V,

showing that V is E(R)-static. In particular E(R) is
∑

-self-static.

(2) Let E(R)
g→ E(R)(Λ) h→ N be any morphisms with gh 6= 0. Choose any

a ∈ E(R) with (a)gh 6= 0. Then Im g contains an injective hull L of Ra. By

the uniqueness of maximal essential extensions in E(R)(Λ), L is contained in a finite

partial sum of E(R)(Λ). Since L is generated by E(R) there exists some ḡ : E(R)→ L

with ḡh 6= 0. 2

As a special case we conclude from (1) that the rationals IQ are
∑

-self-static.

This is not a surprise since it is shown in Arnold-Murley [4, Corollary 1.4] that any

module with countable endomorphism ring is in fact self-small.

The following observation is due to D.K. Harrison (see [14, Proposition 2.1]):
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3.6 Properties of IQ/ZZ. Put S = EndZZ( IQ/ZZ) and let V be any divisible torsion

ZZ-module. Then we have an isomorphism

µV : IQ/ZZ ⊗S HomZZ( IQ/ZZ, V )→ V.

So in particular IQ/ZZ is
∑

-self-static. However IQ/ZZ is not a self-small ZZ-module

since self-small torsion ZZ-modules are finite (by [4, Proposition 3.1]).

For
∑

-self-static R-modules we have the following.

3.7 Characterization of static modules. For R-modules N , P consider the fol-

lowing statements:

(i) N is P -static;

(ii) there exists an exact sequence P (Λ′) → P (Λ) → N → 0 in R-Mod, which stays

exact under HomR(P,−);

(iii) there exists an exact sequence 0 → K → P (Λ) → N → 0 in R-Mod with

K ∈ Gen(P ), which stays exact under HomR(P,−).

For any P , (i)⇒(ii)⇔(iii).

If P is a
∑

-self-static R-module, then (i)⇔(ii)⇔(iii).

Proof. Recall that for any P -generated N and Λ = HomR(P,N), the canonical

exact sequence P (Λ) → N → 0 remains exact under HomR(P,−).

(ii)⇒(iii) This is obvious since HomR(P,−) is left exact.

(iii)⇒(ii) Given the sequence in (iii), put Λ′ = HomR(P,K). Now the assertion

follows by the preceding remark.

(i)⇒(iii) From any exact sequence 0 → K → P (Λ) → N → 0 we construct the

commutative diagram

P ⊗S HomR(P,K) → P ⊗S HomR(P, P (Λ)) → P ⊗S HomR(P,N) → 0

↓ µK ↓ µP (Λ) ↓ µN
0→ K → P (Λ) → N → 0.

Now assume (i), put Λ = HomR(P,N) and consider the canonical epimorphism.

Then the upper sequence in the diagram is exact and µP (Λ) is an epimorphism.

Hence Coke(µK) ' Ke(µN) = 0 and so K is P -generated.

(iii)⇒(i) Let P be
∑

-self-static. For the diagram above, assume that K is P -

generated and HomR(P,−) is exact on the given sequence. Then again the upper

sequence in the diagram is exact and since µP (Λ) is an isomorphism, 0 = Coke(µK) '
Ke(µN). Hence µN is an isomorphism. 2

Remarks. In Alperin [3], modules with property 3.7(ii) are called Auslander

with respect to P and the equivalence (i)⇔(ii) is asserted in Lemma 2 without any

further condition. However the proof given there only holds for self-small P .

The implication (i)⇒(iii) was also observed in Faticoni [12, Corollary 6.1.9].
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4 Static modules and equivalences

4.1 Classes of modules related to P . From the preceding definitions we have

the following chain of subclasses

add (P ) ⊂ Stat(P ) ⊂ Pres(P ) ⊂ Gen(P ) ⊂ σ[P ] ⊂ R-Mod.

Since any direct summand of a P -static module is again P -static we have that

Add (P ) ⊂ Stat(P ) if and only if P is
∑

-self-static.

Our investigations will be concerned with the problem when some of these classes

coincide. For example, P is a generator in σ[P ] if and only if Stat(P ) = σ[P ]. If P

is a semisimple module, then clearly Add (P ) = σ[P ], and if P is locally noetherian

and cohereditary in σ[P ], then Add (P ) = Pres(P ) (see [30]).

For classes C ⊂ R-Mod and D ⊂ S-Mod we use the notation

HP (C) = {X ∈ S-Mod | X ' HomR(P,C) for some C ∈ C};
PS(D) = {N ∈ R-Mod | N ' P ⊗S D for some D ∈ D}.

Throughout this section let Q be any injective cogenerator in σ[P ] and P ∗ =

HomR(P,Q). Then we have the chain of classes of S-modules

add(SS) ⊂ Adst(P ) ⊂ HP (Gen(P )) ⊂ Cop(P ∗) ⊂ Cog(P ∗) ⊂ S-Mod.

With this notation we collect some elementary properties.

4.2 Fundamental relationships.

(1) HP (R-Mod) = HP (Gen(P )) ⊂ Cop(P ∗).

(2) If (P ∗)Λ ∈ Adst(P ), for any set Λ, then HP (Gen(P )) = Cop(P ∗).

(3) If P is
∑

-self-static, then PS(S-Mod) = Pres(P ).

(4) P is self-small if and only if Add(SS) ⊂ Adst(P ).

Then HomR(P,−) : Add(P )→ Add(SS) is an equivalence.

(5) If P is
∑

-self-static, then P is self-small provided Adst(P ) is closed under

submodules.

Proof. (1) The first equality follows from HomR(P,L) = HomR(P,Tr(P,L)). Since

Q is a cogenerator in σ[M ], for any N ∈ σ[P ] we have an exact sequence

0→ N → Q|ΛP → Q|Λ′P .

Applying HomR(P,−) we obtain HomR(P,N) ∈ Cop(P ∗).
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(2) For X ∈ Cop(P ∗) we have an exact sequence in S-Mod,

0→ X → (P ∗)Λ g→ (P ∗)Λ′ .

Applying P ⊗S − and HomR(P,−) we obtain the commutative exact diagram

0→ X → (P ∗)Λ g→ (P ∗)Λ′

↓ α ↓ ' ↓ '
0→ HomR(P, P ⊗S K) → HomR(P, P ⊗S (P ∗)Λ) → HomR(P, P ⊗S (P ∗)Λ′),

where K = Ke (idP ⊗ g) and the isomorphisms are given by our assumption. Hence

α is an isomorphisms showing X ∈ HP (Gen(P )).

(3) PS(S-Mod) ⊂ Pres(P ) always holds.

Let P (Λ′) f→ P (Λ) → N → 0 be a P -presentation for N ∈ Pres(P ). Applying

HomR(P,−) we obtain an exact sequence

HomR(P, P (Λ′))→ HomR(P, P (Λ))→ X → 0,

where X = Coke(HomR(P, f)). Tensoring with PS we obtain the commutative exact

diagram

P ⊗S HomR(P, P (Λ′)) → P ⊗S HomR(P, P (Λ)) → P ⊗S X → 0

↓ ' ↓ ' ↓
P (Λ′) → P (Λ) → N → 0,

from which we see that N ' P ⊗S X and hence Pres(P ) ⊂ PS(S-Mod).

(4) One implication follows directly from the definition. If S(Λ) ∈ Adst(P ) then

HomR(P, P )(Λ) ' S(Λ) ' HomR(P, P ⊗S S(Λ)) ' HomR(P, P (Λ)),

showing that P is self-small.

(5) Clearly S(Λ) ⊂ HomR(P, P (Λ)) and HomR(P, P (Λ)) ∈ Adst(P ). If Adst(P ) is

closed under submodules then S(Λ) ∈ Adst(P ) and hence Add(SS) ⊂ Adst(P ). 2

The next result considers the case when the image of HomR(P,−) is contained

in Adst(P ) and was proved in Sato [25, Theorem] and Kashu [15, Proposition 9.5].

4.3 Conditions on the image of HomR(P,−). The following are equivalent:

(a) HP (Gen(P )) = Adst(P );

(b) Cop(P ∗) = Adst(P );

(c) PS(S-Mod) = Stat(P );
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(d) Pres(P ) = Stat(P );

(e) HomR(P,KeµN) = 0, for every N ∈ Gen(P );

(f) P ⊗S Coke νX = 0, for every X ∈ S-Mod;

(g) HomR(P,−) : Pres(P )→ Cop(P ∗) is an equivalence (with inverse P ⊗S −).

Proof. (a)⇔(b) Under the given conditions we have for any set Λ,

(P ∗)Λ ' HomR(P,QΛ) ' HomR(P,Tr(P,QΛ)) ∈ Adst(P ).

Hence by 4.2, HP (Gen(P )) = Cop(P ∗).

(c)⇔(d) Under the given conditions, P is
∑

-self-static and hence PS(S-Mod) =

Pres(P ) (by 4.2).

(a)⇔(e) Assume for any N ∈ Gen(P ) that HomR(P,N) is P -adstatic. Then by

2.2, 0 = Coke(νHom(P,N)) ' HomR(P,Ke(µN)).

The same formula yields the converse conclusion.

(c)⇔(f) Assume (c). Then for an X ∈ S-Mod, µP⊗X is an isomorphism, and by

2.2, 0 = Ke(µP⊗X) ' P ⊗S Coke(νX).

Again the same formula yields the converse conclusion.

(e)⇒(f) We have 0 = HomR(P,Ke(µP⊗X) ' HomR(P, P ⊗S Coke(νX)), and

hence P ⊗S Coke(νX) = 0.

(f)⇒(e) By assumption, 0 = P ⊗S Coke(νHom(P,N)) ' P ⊗S HomR(P,Ke(µN)),

and so HomR(P,Ke(µN)) = 0.

(a)⇔(g) This follows from the basic equivalence 2.4. 2

It was shown in 3.3 that pseudo-finite self-pseudo-projective modules satisfy the

conditions in 4.3.

Interesting cases arise imposing conditions on the categories Stat(P ) and Adst(P ).

4.4 Conditions on Stat(P ).

(1) The following are equivalent for the R-module P :

(a) P is
∑

-self-static and Stat(P ) is closed under factor modules;

(b) Stat(P ) = Gen(P );

(c) HomR(P,−) : Gen(P )→ Cop(P ∗) is an equivalence.

(2) The following are equivalent for the R-module P :

(a) Stat(P ) is closed under submodules;

(b) Gen(P ) = σ[P ];

(c) Stat(P ) = σ[P ];
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(d) HomR(P,−) : σ[P ]→ Cop(P ∗) is an equivalence.

Proof. (1) (a)⇔(b) is clear by the fact that the P (Λ)’s belong to Stat(P ).

(b)⇔(c) From 4.3 we know that HP (Gen(P )) = Cop(P ∗). Now the assertion

follows from the basic equivalence 2.4.

(2) (a)⇒(b)⇒(c) Since any P k ∈ Stat(P ), for any k ∈ IN , (a) implies that all

submodules of P k are P -generated and hence σ[P ] = Gen(P ). By 3.4(2) this implies

Stat(P ) = σ[P ].

The other implications are obvious (by (1)). 2

Remarks. The modules described in 4.4(1) were named Wo-modules and those

in 4.4(2) are called W -modules in Orsatti [22]. In fact 4.4 is a refinement of Teorema

3.2 and Proposizione 5.1 given there. Moreover it is pointed out in [22, 3.5] that

P := ZZp∞ (Prüfer p-group) is a Wo-module over ZZ with Cop(P ∗) 6= Cog(P ∗).

Recall that a module P is s-Σ-quasi-projective if HomR(P,−) respects exactness

of sequences

P (Λ′) → P (Λ) → N → 0, where Λ′, Λ are any sets.

P is w-Σ-quasi-projective if HomR(P,−) respects exactness of sequences

0→ K → P (Λ) → N → 0, where K ∈ Gen(P ) and Λ is any set.

P is called self-tilting (in [30]) if P is w-Σ-quasi-projective and Gen(P ) = Pres(P ).

4.5 Implications from projectivity. Let P be
∑

-self-static.

(1) If P is w-Σ-quasi-projective or s-Σ-quasi-projective, then Pres(P ) = Stat(P ).

(2) If P is self-tilting, then Gen(P ) = Stat(P ) and Adst(P ) = Cop(P ∗).

Proof. (1) This is obvious from 3.7.

(2) By [30, 3.2 and 3.3], self-tilting modules are self-pseudo-projective and hence

Adst(P ) = HP (Gen(P )) = Cop(P ∗) follows from 4.3. 2

The following results are shown in Colpi [6], Sato [24] and Faticoni [12].

4.6 Conditions on Adst(P ).

(1) The following are equivalent for an R-module P :

(a) Adst(P ) = Cog(P ∗);

(b) P is self-small and w-Σ-quasi-projective;

(c) HomR(P,−) : Pres(P )→ Cog(P ∗) is an equivalence.
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(2) The following are equivalent for P :

(a) Adst(P ) = S-Mod;

(b) P is self-small and s-Σ-quasi-projective;

(c) HomR(P,−) : Pres(P )→ S-Mod is an equivalence.

Proof. (1) See Colpi [6, Proposition 3.7] and Faticoni [12, Theorem 6.1.9],

(2) See Sato [24, Theorem 2.1] and Faticoni [12, Theorem 6.1.14]. 2

Self-small self-tilting modules are also known as ∗-modules (see [30]). Combining

the preceding propositions we obtain a characterization of ∗-modules given in Colpi

[6, Theorem 4.1]:

4.7 Corollary. The following are equivalent for an R-module P :

(a) Gen(P ) = Stat(P ) and Adst(P ) = Cog(P ∗);

(b) P is self-small and self-tilting;

(c) HomR(P,−) : Gen(P )→ Cog(P ∗) is an equivalence.

Remarks. s(emi)-Σ-quasi-projective modules were defined in Sato [24] and the

notion of w(eakly)-Σ-quasi-projective modules was introduced in the study of ∗-
modules (see Colpi [6]). Notice that the condition Gen(P ) = Pres(P ) in the definition

of self-tilting modules was already considered by Onodera in [21]. However, he

combined it with projectivity of P such yielding a projective self-generator (see [21,

Theorem 5]).

Obviously if P is a generator in σ[P ] then P is self-pseudo-projective in σ[P ] but

need neither be s-Σ-quasi-projective nor w-Σ-quasi-projective.

5 Properties over the (bi)endomorphism ring

Let P be an R-module, S = EndR(P ) and B = EndS(P ) = BiendR(P ), the bien-

domorphism ring. There is a remarkable interplay between the properties of P as

a module over R, B and S, and we begin with considering properties of P as an

S-module.

Recall that P is said to be direct projective if for every direct summand X ⊂ P ,

any epimorphism P → X splits (see [27, 41.18]), and P is
∑

-direct projective if any

direct sum of copies of P is direct projective. The latter means that P is a projective

object in Add(P ) and can be characterized by the fact that for L ∈ Gen(P ) and

N ∈ Add(P ), any epimorphism L → N splits (see [11, Lemma 11.2]). For abelian

groups this is known as the Baer splitting property (see [12, 7.1]).

The following is a variation and extension of a result in Ulmer [26] and the

Theorems 2.2 and 2.5 in Albrecht [1].
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5.1 PS (faithfully) flat. We keep the notation above.

(1) The following are equivalent:

(a) PS is a flat module;

(b) for any k, l ∈ IN , the kernel of any f : P k → P l is P -generated;

(c) Stat(P ) is closed under kernels.

In this case Stat(P ) is also closed under P -generated submodules.

(2) If P is self-small the following are equivalent:

(a) PS is a faithfully flat module;

(b) Stat(P ) is closed under kernels, and HomR(P,−) is exact on short exact

sequences in Stat(P );

(c) Stat(P ) is closed under kernels, and P is
∑

-direct projective;

(d) Stat(P ) is closed under kernels, and for any left ideal I ⊂ S,

I = HomR(P, PI);

(e) Stat(P ) is closed under kernels and for any left ideal I ⊂ S, PI 6= P .

Proof. (1) (a)⇔(b) is well known (e.g., [27, 15.9]).

(a)⇒(c) Consider an exact sequence 0 → K → L → N , where L,N ∈ Stat(P ).

By our assumptions we may construct an exact commutative diagram

0→ P ⊗S HomR(P,K) → P ⊗S HomR(P,L) → P ⊗S HomR(P,N)

↓ µK ↓ ' ↓ '
0→ K → L → N ,

showing that µK is an isomorphism.

(c)⇒(b) is obvious.

Assume (a) holds. Let K be a P -generated submodule of some L ∈ Stat(P ). An

argument similar to that in (a)⇒(c) shows K ∈ Stat(P ).

(2) (a)⇒(b) Consider an exact sequence L
f→ N → 0, where L,N ∈ Stat(P ).

We construct an exact commutative diagram

P ⊗ HomR(P,L) → P ⊗ HomR(P,N) → P ⊗S X → 0

↓ ' ↓ '
L → N → 0,

where X = Coke (HomR(P, f)). This implies P ⊗S X = 0 and hence X = 0.

(b)⇒(c) For every N ∈ Add(P ), HomR(N,−) is exact on short exact sequences

in Stat(P ) and so every epimorphism P (Λ) → N splits, i.e., P is
∑

-direct projective.
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(c)⇒(b) Let L→ N → 0 be an exact sequence, where L,N ∈ Stat(P ). For any

P → N we obtain, by a pullback construction, a commutative diagram

U → P → 0

↓ ↓
L → N → 0.

As a kernel of a morphism L ⊕ P → N , U is P -generated and hence U → P splits

(since P is
∑

-direct projective).

(b)⇒(d) Let I ⊂ S be a left ideal. By (1), PI ⊂ P is P -static and for a generating

set {γλ}Λ of I, we have an exact sequence of modules in Stat(P ),

0→ K → P (Λ)

∑
γλ−→ PI → 0,

and so HomR(P,−) is exact on this sequence. By standard arguments this implies

I = HomR(P, PI).

(d)⇒(e)⇒(a) is clear. 2

Notice that for P finitely generated, I = HomR(P, PI) for every left ideal I ⊂ S,

if and only if P is intrinsically projective (see [28, 5.7]).

Next we recall some well known cases of special interest.

5.2 Proposition. We keep the notation above.

(1) P is a generator in R-Mod if and only if R ' B and PS is finitely generated

and projective.

(2) P is a progenerator in R-Mod if and only if R ' B and PS is a progenerator

in Mod-S.

(3) P is self-small and tilting in R-Mod if and only if R ' B and PS is self-small

and tilting in Mod-S.

(4) If P is faithful and a generator in σ[P ], then R is dense in B and PS is flat.

(5) If P is self-tilting and self-small, then P ⊗S− is exact on short exact sequences

with modules from HP (Gen(P )).

Proof. For (1),(2) and (4) we refer to [27, 18.8 and 15.7]. (3) is proved in Colby-

Fuller [5, Proposition 1.1].

(5) By 4.7 we have that HomR(P,−) : Gen(P ) → Cog(P ∗) = HP (Gen(P )) is an

equivalence. Now the assertion follows from Colpi-Menini [9, Proposition 1.1]. 2

We have a striking left right symmetry in (2) and (3) for the properties in R-Mod

but there are only implications in one direction for the properties in σ[P ] considered

in (4) and (5). The question arises which property of PS would guarantee the converse

implication in (4). To answer the corresponding question for (5) also some form of

density property is needed. Our next result relates to the latter problem.
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5.3 Proposition. Let P be an R-module and B = BiendR(P ).

(1) Every P -presented R-module is a (P -presented) B-module.

(2) If P is w-Σ-quasi-projective then HomR(P,N) = HomB(P,N), for every N ∈
Pres(P ).

(3) If P is
∑

-self-static then HomR(P,N) = HomB(P,N), for every N ∈ Stat(P ).

(4) If P is
∑

-self-static the following are equivalent:

(a) RP is w-Σ-quasi-projective;

(b) BP is w-Σ-quasi-projective and HomR(P,N) = HomB(P,N), for every

N ∈ Pres(P ).

(5) If P is faithful and
∑

-self-static the following are equivalent:

(a) RP is self-tilting;

(b) BP is self-tilting and R is dense in B.

Proof. (1) For N ∈ Pres(P ) we have a short exact sequence

P (Λ′) f→ P (Λ) g→ N → 0, where Λ′, Λ are any sets.

Since every P -generated submodule of P (Λ) is a B-submodule (see [27, 15.6]), Ke g =

Im f is a B-module. Hence N is a B-module and g is a B-morphism.

(2) We have an exact sequence

HomR(P, P (Λ′))→ HomR(P, P (Λ))→ HomR(P,N)→ 0.

It is easy to see that HomR(P, P (Λ)) = HomB(P, P (Λ)) and this implies HomR(P,N) =

HomB(P,N).

(3) In view of 3.7 the same proof as in (2) applies.

(4) This follows easily by (1) and (2).

(5) (a)⇒(b) Let P be self-tilting. Then for any submodule K ⊂ P n, n ∈ IN ,

the factor module N = P n/K ∈ Gen(P ) = Pres(P ) is a B-module and by (4),

HomR(P,N) = HomB(P,N). In particular the canonical projection P n → N is a

B-morphism and hence its kernel K is a B-submodule of P n. This implies that R is

dense in B (e.g., [27, 15.7]).

(b)⇒(a) is obvious since R dense in B implies σ[RP ] = σ[BP ] (see [27, 15.8]). 2

Let Inj (P ) denote the class of all injectives in σ[P ]. Since Inj (P ) ⊂ Gen(P ),

for any self-small self-tilting module P , Inj (P ) ⊂ Stat(P ). More generally we may

ask for which P the latter inclusion holds. Before answering this let us recall the

canonical map

αL,P : L⊗S HomR(P, V )→ HomR(HomS(L, P ), V ), l ⊗ f 7→ [g 7→ (g(l))f ],
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which is an isomorphism provided LS is finitely presented and V is P -injective (e.g.,

[27, 25.5]).

Following Zimmermann [31, 3.2], we say that PS has L-dcc if αL,P is a monomor-

phism for all V ∈ Inj (P ). The notation was chosen to indicate that the condition is

related to descending chain conditions on certain matrix subgroups of P .

Now let Q be an injective cogenerator in σ[P ]. Then the above condition is

equivalent to

αL,P : L⊗S HomR(P,QΛ)→ HomR(HomS(L, P ), QΛ)

being a monomorphism. This indicates the relationship to certain Mittag-Leffler

modules (e.g., Albrecht [2], Rothmaler [23]).

Let X be a class of left S-modules. PS is called an X -Mittag-Leffler or X -ML

module if, for any family {Xλ}Λ of modules in X , the canonical map

P ⊗S
∏
Λ

Xλ →
∏
Λ

(P ⊗S Xλ),

is injective. In particular, for X = {X}, PS is X-Mittag-Leffler or X-ML, if the

canonical map

P ⊗S XΛ → (P ⊗S X)Λ,

is injective for any index set Λ.

The connection of these notions with static modules becomes obvious if we put

L = P and assume that P is balanced (i.e. R ' B). Then PS has P -dcc implies an

isomorphism

P ⊗S HomR(P, V )→ HomR(HomS(P, P ), V ) ' V,

for all injective V ∈ σ[P ], since they are P -generated. For the injective cogenerator

Q ∈ σ[P ] and P ∗ := HomR(P,Q) this corresponds to the condition that

P ⊗S (P ∗)Λ ' (P ⊗S P ∗)Λ,

is a monomorphism for any set Λ (i.e., PS is P ∗-ML), and this is equivalent to

P ⊗S (P ∗)Λ ' P ⊗S HomR(P,Q|ΛP )→ Q|ΛP ,

being an isomorphism for any set Λ.

Summarizing these remarks and referring to the basic equivalence 2.4 we have

(see [31, Corollary 3.10]):
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5.4 P balanced with PS-dcc. For a balanced bimodule RPS, the following are

equivalent:

(a) Inj (P ) ⊂ Stat(P );

(b) PS has PS-dcc;

(c) Q ∈ Stat(P ) and PS is a P ∗-ML module;

(d) for every set Λ, Q|ΛP ∈ Stat(P );

(e) HomR(P,−) : Inj (P )→ HP (Inj (P )) is an equivalence, (and

HP (Inj (P )) = {X ∈ S-Mod |X is a direct summand of (P ∗)Λ, Λ some set}).

Combining this with our previous observations on density properties (in 5.3) we

are now able to describe when P -injectives are P -static.

5.5 Injective and static modules. For a
∑

-self-static R-module P , the following

are equivalent:

(a) Inj (P ) ⊂ Stat(P );

(b) for every set Λ, Q|ΛP ∈ Stat(P );

(c) HomR(P,−) : Inj (P )→ HP (Inj (P )) is an equivalence (with inverse P ⊗S −);

(d) PS has PS-dcc, Inj (P ) ⊂ Pres(P ) and HomR(P, V ) = HomB(P, V ), for all

V ∈ Inj (P ).

Proof. (a)⇔(b)⇔(c) is clear by the observations preceding 5.4.

(a)⇒(d) Clearly Inj (P ) ⊂ Pres(P ), and by 5.3(3), for every injective V ∈ σ[P ],

HomR(P, V ) = HomB(P, V ). The last equality implies

HomR(L, V ) = HomB(L, V ), for any P -generated B-module L.

Indeed, for f ∈ HomR(L, V ) let l ∈ L, b ∈ B. There exists g ∈ HomB(P,L) and

p ∈ P with (p)g = l, implying (bl)f = (bp)gf = b((p)gf) = b(l)f . This shows

f ∈ HomB(L, V ).

Now let W be an injective module in σ[BP ] ⊂ σ[P ] and α : W → V an R-mono-

morphism for some injective V ∈ σ[P ]. Then α ∈ HomB(W,V ) and hence it splits

proving that W is injective in σ[P ].

This implies Inj (BP ) ⊂ Stat(BP ) and PS has PS-dcc by 5.4.

(d)⇒(a) Any injective V ∈ σ[P ] is a B-module and hence there exists a B-

monomorphism β : V → V ′, for some injective B-module V ′ in σ[BP ]. This is

R-split by some β′ : HomR(V ′, V ) = HomB(V ′, V ) (see proof above) and hence V is

injective in σ[BP ]. Now 5.4 implies Inj (P ) = Inj (BP ) ⊂ Stat(BP ) = Stat(P ). 2
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If P is a cogenerator in σ[P ] then it satisfies the density property (see [27, 15.7])

and so we have:

5.6 Corollary. If P is an injective cogenerator in σ[P ] the following are equivalent:

(a) Inj (P ) ⊂ Stat(P );

(b) PS has PS-dcc;

(c) PS is an S-ML module;

(d) for every set Λ, Tr(P, PΛ) ∈ Stat(P ).

If P satisfies (a) and is
∑

-pure-injective in σ[P ], then P is
∑

-self-static.

Notice that the case Inj (P ) = Stat(P ) is described in [30, 6.5]. This condition

characterizes locally noetherian cohereditary modules P for which every (injective)

module in σ[P ] is embedded in some P (Λ).

Since the inclusion functor Gen(P )→ R-Mod is left adjoint to the trace functor

Tr(P,−) : R-Mod → Gen(P ), the product of any family {Nλ}Λ in Gen(P ) is just

Tr(P,
∏

ΛNλ) (see [27, 45.11]). By this we may describe when Stat(P ) is closed under

certain products. A special case of the next proposition is considered in Albrecht [2,

Theorem 3.2].

5.7 Stat(P ) closed under products in Gen(P ).

(1) The following are equivalent:

(a) Stat(P ) is closed under products in Gen(P );

(b) for any family {Nλ}Λ in Stat(P ), P⊗SHomR(P,
∏

ΛNλ) ' Tr(P,
∏

ΛNλ);

(c) PS is an Adst(P )-ML module.

(2) Assume that PS is flat and an Adst(P )-ML module. Then Stat(P ) has inverse

limits.

Proof. (1) (a)⇔(b) is clear by the definitions.

(b)⇒(c) Consider a family {Xλ}Λ of modules in Adst(P ). Then P ⊗S Xλ ∈
Stat(P ) and

P ⊗S
∏

ΛXλ ' P ⊗S
∏

Λ HomR(P, P ⊗S Xλ)

' P ⊗S HomR(P,
∏

Λ(P ⊗S Xλ)) ' Tr(P,
∏

Λ(P ⊗S Xλ)),

showing that PS is an Adst(P )-ML module.
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(c)⇒(b) Take any family {Nλ}Λ of modules in Stat(P ). Then HomR(P,Nλ) ∈
Adst(P ) and therefore we have a monomorphism

P ⊗S HomR(P,
∏
Λ

Nλ) ' P ⊗S
∏
Λ

HomR(P,Nλ)→
∏
Λ

Nλ,

and this implies P ⊗S HomR(P,
∏

ΛNλ) ' Tr(P,
∏

ΛNλ).

(2) Any category has inverse limits provided it has products and kernels. By (1),

the ML-property implies that Stat(P ) has products. As shown in 5.1, PS flat implies

that Stat(P ) has kernels. 2

Notice that in particular Stat(P ) = Gen(P ) implies that PS is an Adst(P )-ML

module ( by 5.7(1)).

We are now in a position to get new characterizations for generators and tilting

modules in σ[M ].

5.8 Corollary. Let P be a faithful R-module.

(1) The following are equivalent:

(a) P is a generator in σ[P ];

(b) R is dense in B, PS is flat and has PS-dcc.

(2) If P is finitely generated the following are equivalent:

(a) P is a projective generator in σ[P ];

(b) R is dense in B, PS is faithfully flat and has PS-dcc.

(3) If P is self-small then the following are equivalent:

(a) P is self-tilting;

(b) R is dense in B, BP is w-Σ-quasi-projective, PS has PS-dcc, and P ⊗S−
is exact on short exact sequences with modules from HP (Gen(P )).

(4) For P self-small the following are equivalent:

(a) P is self-tilting and PS is flat;

(b) P is a projective generator in σ[P ].

Proof. (1) (a)⇒(b) follows from 5.2(4) and 5.5.

(b)⇒(a) By 5.4, Inj (P ) ⊂ Stat(P ). For any K ∈ σ[P ], there exists an exact

sequence 0 → K → Q1 → Q2, where Q1, Q2 are injectives in σ[P ]. By 5.1 this

implies that K is P -generated.

(2) By [27, 18.5], any finitely generated generator in σ[P ] is projective in σ[P ] if

and only if it is faithfully flat over its endomorphism ring.
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(3) (a)⇒(b) follows from 5.2(5), 5.3(5) and 5.5.

(b)⇒(a) By 5.5, Inj (P ) ⊂ Stat(P ). Let K be P -generated and consider an exact

sequence 0→ K → K̂ → N → 0, where K̂ is the P -injective hull of K. BP being w-

Σ-quasi-projective the functor HomB(P,−) is exact on this sequence and we obtain

an exact commutative diagram

0→ P ⊗S HomB(P,K) → P ⊗S HomB(P, K̂) → P ⊗S HomB(P,N) → 0

↓ µK ↓ ' ↓ µN
0→ K → K̂ → N → 0,

showing that µK is an isomorphism and hence K ∈ Stat(BP ). So BP is self-tilting

and by density RP is self-tilting.

(4) (a)⇒(b) Let P be self-tilting with PS flat. Then by (1) and (3), P is a gen-

erator in σ[P ]. By [30, Proposition 4.1], any self-tilting module which is a generator

in σ[P ] is projective in σ[P ].

(b)⇒(a) is trivial. 2

Remark. Abelian group theorists have been mainly interested in modules which

are (faithfully) flat over their endomorphism rings while in representation theory

(self-) tilting modules have received much attention. From 5.8(4) we see that these

notions generalize projective generators in different directions.

6 Ring extensions and equivalences

In this section we investigate the behaviour of equivalences as considered in the

previous sections under ring extensions.

6.1 Ring extensions. Let α : R → A be a morphism of associative rings with

units. Related to it we have the induction functor

R-Mod→ A-Mod, M 7→ A⊗RM,

and the restriction functor

A-Mod→ R-Mod, AN 7→ RN.

For a given R-module P , putting S = EndR(P ) and T = EndA(A⊗RP ) we have the

ring morphism

β : S → T, f 7→ id⊗ f.
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We will be interested in A-modules (resp., T -modules) which have certain properties

as R-modules (resp., S-modules). Refining the notations introduced before we set

addAR(P ) = {V ∈ A-Mod | RV ∈ add(P )},
AddAR(P ) = {V ∈ A-Mod | RV ∈ Add(P )},
GenAR(P ) = {V ∈ A-Mod | RV ∈ Gen(P )},
PresAR(P ) = {V ∈ A-Mod | RV ∈ Pres(P )},
StatAR(P ) = {V ∈ A-Mod | RV ∈ StatR(P )},
AdstTS (P ) = {X ∈ T -Mod | SX ∈ Adst(P )} .

It is easy to see (e.g., [13, Lemma 1.2]) that

A⊗R P ∈ Gen(P ) if and only if GenA(A⊗R P ) = GenAR(P ).

From Hom-tensor relations (e.g., [28, 15.6]) we have the

6.2 Basic isomorphisms.

(1) For any V ∈ A-Mod there is a functorial S-module isomorphism

ϕ : HomR(P, V )→ HomA(A⊗R P, V ), f 7→ [a⊗ p 7→ a · (p)f ].

(2) For V = A⊗RP we get HomR(P,A⊗RP ) ' T and the R-module isomorphism

id⊗ ϕ : P ⊗S HomR(P,A⊗R P )→ P ⊗S T.

Our main interest is to transfer properties of the R-module P to the A-module

A⊗RP . It turns out that the conditions we are looking at can be transferred provided

A⊗R P is P -static as an R-module. With the above preparations we can prove the

following crucial result (see [20, Theorem 4.9, 5.5]):

6.3 Related equivalences. Assume A⊗R P ∈ StatAR(P ). Then:

(1) StatAR(P ) = StatA(A⊗R P ).

(2) AdstTS (P ) = Adst(A⊗R P ) and there is an equivalence

HomA(A⊗R P,−) : StatAR(P )→ AdstTS (P ).

(3) If P is self-small then we have an equivalence

HomA(A⊗R P,−) : AddAR(P )→ AddTS (S).

In each case the inverse functor is (A⊗R P )⊗T −.
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Proof. A⊗R P ∈ StatAR(P ) means P ⊗S HomR(P,A⊗R P ) ' A⊗R P .

(1) Combined with an isomorphism from 6.2 we get the R-module isomorphism

P ⊗S T ' A⊗R P.

This implies the isomorphisms for any V ∈ A-Mod,

(A⊗R P )⊗T HomA(A⊗R P, V ) ' (P ⊗S T )⊗T HomA(A⊗R P, V )

' P ⊗S HomA(A⊗R P, V )

' P ⊗S HomR(P, V ).

Now V ∈ StatAR(P ) means by definition that the last expression in this chain is

isomorphic to V , whereas V ∈ StatA(A ⊗R P ) means that the first expression is

isomorphic to V .

(2) First notice the R-module isomorphisms for any T -module V ,

P ⊗S V ' (P ⊗S T )⊗T V ' (A⊗R P )⊗T V.

Assume V ∈ AdstTS (P ). Then we have the isomorphisms

V ' HomR(P, P ⊗S V ) ' HomR(P, (A⊗R P )⊗T V )

' HomA(A⊗R P, (A⊗R P )⊗T V ),

proving V ∈ AdstT (A⊗R P ).

The same chain of isomorphisms shows AdstT (A⊗R P ) ⊂ AdstTS (P ).

In view of (1) and the first part of (2) the final assertion about the equivalence

follows from the basic equivalence 2.4 applied to A⊗R P .

(3) We know that AddAR(P ) ⊂ StatAR(P ) = StatA(A⊗RP ), and it is easy to verify

that HP (AddAR(P )) ⊂ AddTS (S) ⊂ AdstTS (P ). 2

Combining the preceding observations we obtain:

6.4 w-Σ-quasi-projective modules. Let P be a w-Σ-quasi-projective R-module

and assume A⊗R P ∈ Pres(P ). Then:

(1) A⊗R P is a w-Σ-quasi-projective A-module.

(2) If P is
∑

-self-static we have an equivalence

HomA(A⊗R P,−) : PresAR(P )→ AdstTS (P ),

with inverse functor (A⊗R P )⊗T −.

(3) If P is a self-small R-module then A⊗R P is a self-small A-module.
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Proof. (1) By [30, 3.2], factor modules of P -presented modules by P -generated

modules are P -presented. This implies

PresA(A⊗R P ) ⊂ PresAR(P ),

and by the functorial isomorphism in 6.2 we conclude that A ⊗R P is w-Σ-quasi-

projective as an A-module.

(2) By 4.5, P -presented modules are P -static and so A ⊗R P ∈ Pres(P ) implies

A⊗R P ∈ StatAR(P ). Hence by 6.3, we have the inclusions

PresA(A⊗R P ) ⊂ PresAR(P ) = StatAR(P ) = StatA(A⊗R P ) ⊂ PresA(A⊗R P ).

From this and 2.4 we obtain the equivalence as given.

(3) By [30, 5.1], for P self-small and w-Σ-quasi-projective, HomR(P,−) commutes

with direct limits of P -presented modules. Since A ⊗R P ∈ Pres(P ), any infinite

direct sum (A⊗R P )(Λ) is the direct limit of its finite partial sums and hence

HomA(A⊗R P, (A⊗R P )(Λ)) ' HomR(P, (A⊗R P )(Λ))

' HomR(P,A⊗R P )(Λ)

' HomA(A⊗R P,A⊗R P )(Λ).

2

6.5 Self-tilting modules. Let P be a self-tilting and
∑

-self-static R-module, and

assume A⊗R P ∈ Gen(P ). Then A⊗R P is a self-tilting A-module and we have an

equivalence

HomA(A⊗R P,−) : GenAR(P )→ AdstTS (P ),

with inverse functor (A⊗R P )⊗T −.

Proof. By 6.4, we have the equalities

GenA(A⊗R P ) = GenAR(P ) = PresAR(P ) = PresA(A⊗R P ) = StatA(A⊗R P ).

2

Recall that P is a tilting module in R-Mod if it is self-tilting and a subgenerator

in R-Mod. We consider some special cases of this.

6.6 Corollary. Assume A⊗R P ∈ Gen(P ). Then:

(1) If P is a projective generator in σ[P ], then A⊗R P is a projective generator in

σA[A⊗R P ].

(2) If P is self-tilting and Gen(P ) is closed under extensions in R-Mod, then A⊗RP
is self-tilting and GenA(A⊗R P ) is closed under extensions in A-Mod.
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(3) Assume that P is
∑

-self-static and (i) AR is flat or (ii) AA is finitely cogen-

erated and A⊗R P is a faithful A-module.

If P is tilting in R-Mod, then A⊗R P is tilting in A-Mod.

Proof. (1) Recall that P is a projective generator in σ[P ] if and only if it is self-tilting

and a generator in σ[P ].

Let P be a projective generator in σ[P ]. Then P is
∑

-self-static by 3.4, and by

6.5, A ⊗R P is self-tilting. Since σA[A ⊗R P ] ⊂ GenAR(P ) = GenA(A ⊗R P ) we see

that A⊗R P is a generator in σA[A⊗R P ].

(2) Suppose Gen(P ) is closed under extensions in R-Mod. Since GenA(A⊗RP ) =

GenAR(P ) this implies that GenA(A⊗R P ) is closed under extensions in A-Mod.

(3) Suppose R ∈ σ[P ], i.e., there is a monomorphism R → P k, for some k ∈ IN .

If AR is flat, then A ' A⊗RR→ A⊗R P k is a monomorphism and hence A⊗R P is

a subgenerator in A-Mod. If AA is finitely cogenerated and A⊗R P is faithful, then

A ⊂ (A⊗R P )k, for some k ∈ IN . Now the assertions follow from 6.5. 2

Remarks. Let P be finitely generated. If P is self-tilting then it is a ∗-module

and 6.5 implies Fuller [13, Theorem 2.2]. Condition (1) in 6.6 corresponds to [13,

Corollary 2.4]. If P satisfies the condition in 6.6(2) then P is called quasi-tilting in

R-Mod (see [8]) and we obtain [13, Corollary 2.5].

Acknowledgements. The author is very indebted to John Clark for helpful

discussions on the subject.
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