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Abstract

The theory of modules over associative algebras and the theory of
comodules for coassociative coalgebras were developed fairly indepen-
dently during the last decades. In this survey we display an intimate
connection between these areas by the notion of categories subgenerated
by an object. After a review of the relevant techniques in categories
of left modules, applications to the bimodule structure of algebras and
comodule categories are sketched.

1. Module theory: Homological classification, the category σ[M ], Morita
equivalence, the functor ring, Morita dualities, decompositions, torsion theo-
ries, trace functor.

2. Bimodule structure of an algebra: Multiplication algebra, Azumaya
rings, biregular algebras, central closure of semiprime algebras.

3. Coalgebras and comodules: C-comodules and C∗-modules, σ-decom-
position, rational functor, right semiperfect coalgebras, duality for comodules.

4. Bialgebras and bimodules: The category MB
B , coinvariants, B as

projective generator inMB
B , fundamental theorem for Hopf algebras, semiper-

fect Hopf algebras.
5. Comodule algebras: (A-H)-bimodules, smash product A#H∗, coin-

variants, A as progenerator in MH
A .

6. Group actions and module algebras: Group actions on algebras,
A∗GA as a progenerator in σ[A∗GA], module algebras, smash product A#H,
A#HA as a progenerator in σ[A#HA].
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1 Module theory

In this section we recall mainly those results from module categories which
are of interest for the applications to bimodules and comodules given in the
subsequent sections. For standard notation we refer to [2], [36] and [37].

Let R be a commutative ring, A an associative R-algebra with unit, and
A-Mod the category of unital left A-modules. We usually write morphisms on
the opposite side to the scalars.

One of the major tools of ring theory is the characterization of rings by
properties of their module categories. The main results in this direction at
the end of the sixties were collected by L.A. Skornjakov in an inspiring paper
on Homological classification of rings [31]. His list of characterizations was
continued by various authors and to give a more precise idea of what this
means we recall some definitions and results.

A ring A is left semisimple if it is a direct sum of simple left ideals. Such
rings are also right semisimple in the obvious sense and also called artinian
semisimple.

A is von Neumann regular if for any a ∈ A there exists b ∈ A such that
a = aba. Such rings are characterized by the fact that each finitely generated
left (right) ideal is a direct summand.

More generally A is called left semi-hereditary if every finitely generated left
ideal is projective, and A is left hereditary if all its left ideals are projective.

A is left semiperfect if AA is a supplemented module (i.e., for every left
ideal I there exists a left ideal K which is minimal with respect to the property
I +K = A). It is known that left semiperfect rings are also right semiperfect.
A is left perfect if it is left semiperfect and the Jacobson radical of A is right
t-nilpotent.

A is left noetherian if the ascending chain condition for left ideals is satisfied,
and is left artinian if the descending chain condition for left ideals holds. A is
called quasi-Frobenius, or QF for short, if it is left noetherian and injective.

All these internal properties of A correspond to properties of A-Mod. The
following is by no means a complete list of such correspondences. Proofs for
these assertions can be found in various books on module theory (e.g., [7], [2],
[36]).
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1.1 Homological classification of rings.

The ring A is if and only if

a skew field every A-module is free (i.e., ' A(Λ), for some set Λ).

left semisimple - every simple module in A-Mod is projective;
- every module in A-Mod is injective (projective).

v. N. regular - every module in A-Mod is flat;
- every module in A-Mod is FP-injective.

left hereditary - submodules of projective A-modules are projective;
- factor modules of injective A-modules are injective.

left semiperfect - simple A-modules have projective covers;
- finitely generated A-modules have projective covers.

left perfect - every A-module has a projective cover;
- projective A-modules are direct sums of local modules.

left noetherian - direct sums of A-injectives are A-injective;
- injective A-modules are direct sums of indecomposables.

left artinian - finitely generated A-modules have finite length;
- injective A-modules are direct sums of

injective hulls of simple modules.

quasi-Frobenius - every injective A-module is projective;
- every projective A-module is injective.

Trying to apply these techniques to non-associative algebras it makes sense
to consider such an algebra as a module over the associative enveloping algebra.
We will come to this setting later on. The general problem turns out to be the
association of a suitable category to any module over an associative algebra.

1.2 The category σ[M ]. The aim is to characterize an A-module M by a
category which should be rich enough to allow important constructions avail-
able in A-Mod. By the fundamental work of P. Gabriel [10] from 1962 it was
known that this is the case for Grothendieck categories. It was during a stay
at Moscow State University in 1973 that I was led to the notion of the cate-
gory σ[M ] as the smallest full subcategory of A-Mod which contains M and is
Grothendieck.

To describe this category we call an A-module M -generated if it is a ho-
momorphic image of direct sums of copies of M (=M (Λ)) and denote the class
of all M -generated modules by Gen(M). Submodules of M -generated modules
are said to be M -subgenerated and these are precisely the objects of σ[M ] (also
denoted by Gen(M)).
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Soon after I started to investigate such categories I realized that quite a
number of results scattered around in the literature found new interpretations
in this context. We will come across some examples of this in what follows.

1.3 Injectivity. An A-module U is said to be M -injective if any diagram

0 → K → M
↓
U

can be extended commutatively by some morphism M → U , and U is called
injective for (or in) a class C ⊂ A-Mod if it is M -injective for any M ∈ C.

Around 1970 it was shown by de Robert [27] and Azumaya [4] that any
M -injective module U is also N -injective provided N is a submodule, factor
module or a direct sum of copies of M . This immediately implies that an object
is injective in σ[M ] if and only if it is M -injective - a kind of Baer’s Lemma in
σ[M ]. From the general theory of Grothendieck categories it was known that
there are always (enough) injectives in σ[M ].

1.4 Projectivity. The situation for projectives is not quite the same. Of
course M -projective modules are defined dually to M -injectives. Clearly any
projective object in σ[M ] is M -projective but the converse implication only
holds for finitely generated objects. Moreover, in general there need not be
any projectives in σ[M ]. For example, the category σ[ IQ/ZZ] - which is just the
category of torsion ZZ-modules - has no non-zero projectives at all.

An easy argument shows that σ[M ] = A/An(M)-Mod provided M is a
finitely generated module over its endomorphism ring. Faithful modules with
this property are called cofaithful (in Faith [7]). Of course, in this caseA/An(M)
is a projective generator in σ[M ].

To prepare for the characterization of M by properties of σ[M ] we have to
transfer some definitions from rings to modules.

A module M is semisimple if it is a direct sum of simple modules. M is
semiperfect in σ[M ] if it is supplemented and is projective in σ[M ]. M is perfect
in σ[M ] provided any direct sum M (Λ) is semiperfect.

A module X is hereditary in σ[M ] if each submodule of X is projective in
σ[M ].

A module is noetherian (artinian) if it has acc (dcc) on submodules and M
is locally noetherian if every finitely generated submodule of M is noetherian.
M has locally finite length if every finitely generated submodule has finite length
(i.e., is noetherian and artinian).

Following ideas of Stenström [32], Fieldhouse [8], Mishina-Skornjakov [19]
a.o., pure exact sequences

(∗) 0→ K → L→ N → 0
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are defined in σ[M ] by the fact that HomA(P,−) is exact on them for all finitely
presented modules P in σ[M ]. Then a module N is called flat in σ[M ] if all
sequences (∗) (with N fixed) are pure, and L is regular in σ[M ] if all sequences
(∗) (with L fixed) are pure in σ[M ].

A noetherian projective module M is called quasi-Frobenius (QF) provided
it is an injective cogenerator in σ[M ].

We have the following characterizations of these modules by properties of
σ[M ] (see [36]).

1.5 Homological classification of modules.

The module M is if and only if

simple every module in σ[M ] is isomorphic to some M (Λ).

semisimple - every simple module (in σ[M ]) is M -projective;
- every module in σ[M ] is injective (proj.) in σ[M ].

regular - every module in σ[M ] is regular in σ[M ];
- every module in σ[M ] is flat in σ[M ].

hereditary M is projective in σ[M ] and
- submodules of projectives are projective in σ[M ], or
- factor modules of injectives are injective in σ[M ].

semiperfect M is projective in σ[M ] and
- simple factors of M have proj. covers in σ[M ], or
- fin. M -generated modules have proj. covers in σ[M ].

perfect M is projective in σ[M ] and
- M -generated modules have proj. covers in σ[M ], or
- M (IN) is semiperfect in σ[M ].

locally noetherian - direct sums of M -injectives are M -injective;
- injectives in σ[M ] are direct sums of indecomposables.

loc. of finite length - fin. gen. modules in σ[M ] have finite length;
- injectives in σ[M ] are direct sums of injective hulls

of simple modules.

QF M is finitely generated, M -projective, and
- every injective module is projective in σ[M ], or
- M is a generator and projectives are inj. in σ[M ].

1.6 Equivalences. B. Zimmermann-Huisgen [42] has studied modules M
which generate the submodules of M (IN) – this characterizes M to be a genera-
tor in σ[M ]. K. Fuller’s paper [9] shows - in our terminology - that the category
σ[M ] is equivalent to the full module category EndA(M)-Mod, provided M is
finitely generated, M -projective and a generator in σ[M ].
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1.7 Morita equivalence for σ[M ]. For an A-module M with S = End(AM),
the following are equivalent:

(a) HomA(M,−) : σ[M ]→ S-Mod is an equivalence;

(b) AM is a finitely generated projective generator in σ[M ];

(c) AM is a finitely generated generator in σ[M ] and MS is faithfully flat.

1.8 Self-tilting modules. Generalizing the notion of a projective generator
in σ[M ], a module M is called self-tilting if M is projective in the category
Gen(M) and every N ∈ Gen(M) is M -presented (there is an exact sequence
M (Λ′) → M (Λ) → N → 0). M is called tilting in A-Mod provided M is
self-tilting and σ[M ] = A-Mod.

Self-tilting modules are precisely the ∗-modules considered in Menini-Orsatti
[20] and Colpi [6] and hence yield an equivalence between a subcategory of σ[M ]
(which need not be closed under submodules) and a subcategory of S-Mod
(which need not be closed under factor modules), where S = End(M). To
describe these let Q be any cogenerator in σ[M ], put U = HomA(M,Q), and
denote by Cog(SU) the full subcategory of S-Mod determined by all mod-
ules which are cogenerated by U . Then we have results which generalize the
Brenner-Butler theorem from representation theory of algebras (see [3]).

1.9 Tilting and equivalences. For M the following are equivalent:
(1) M is finitely generated and self-tilting;

(2) HomA(M,−) : Gen(M)→ Cog (SU) is an equivalence.

Notice that a self-tilting moduleM which is a generator in σ[M ] is projective
in σ[M ] and the above theorem yields the Morita equivalence.

An important property of finitely generated modules M is that the functor
HomA(M,−) commutes with direct sums. This is essential in 1.9 and 1.7. For
modules which are direct sums of finitely generated modules there is a slight
variation of the Hom-functor which still commutes with direct sums.

1.10 The functor ĤomA(M,−). Assume M =
⊕

ΛMλ, where all Mλ are
finitely generated. For any A-module N put

Ĥom(M,N) = {f ∈ HomA(M,N) | (Mλ)f = 0 for almost all λ ∈ Λ}.

For N = M , we write T := Ênd(M) = Ĥom(M,M). By definition T is a
subring of S := EndA(M) and so M is a right T -module. Clearly T has no
unit but there are enough idempotents in T , i.e., there exists a family {eλ}Λ of
pairwise orthogonal idempotents eλ ∈ T such that

T =
⊕

Λ
eλT =

⊕
Λ
Teλ.
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We denote by T -Mod (=σ[TT ]) the category of all left T -modules N with
TN = N . Then T is a projective generator in T -Mod (not finitely generated
in general).

For any A-module N , we have T ĤomA(M,N) = ĤomA(M,N), and this
yields the adjoint pair of functors,

ĤomA(M,−) : σ[M ]→ T -Mod, M ⊗T − : T -Mod→ σ[M ].

ĤomA(M,−) preserves direct sums and direct products, and it preserves direct
limits, provided the Mλ are finitely presented in σ[M ]. In this setting the
Morita equivalence for σ[M ] from 1.7 has the following form ([36, 51.11]).

1.11 General Morita equivalence for σ[M ]. For M =
⊕

ΛMλ, where all
Mλ are finitely generated, and T = ÊndA(M), the following are equivalent:

(a) ĤomA(M,−) : σ[M ]→ T -Mod is an equivalence;

(b) M is a projective generator in σ[M ];

(c) M is a generator in σ[M ] and MT is faithfully flat.

The techniques displayed above can be applied to connect σ[M ] with its
functor category in a purely module theoretic way.

1.12 The functor ring. Choose a representing set {Uλ}Λ of the finitely
generated modules in σ[M ], and put U :=

⊕
ΛUλ. Then U is a generator in

σ[M ] (=σ[U ]) and T = ÊndA(U) is called the functor ring (of finitely generated
modules) of σ[M ]. By the faithful functor

ĤomA(U,−) : σ[M ]→ T -Mod,

properties of σ[M ] are closely related to those of T -Mod, e.g., ĤomA(U,−) is
exact (an equivalence) if and only if every finitely generated module is projective
in σ[M ], i.e., M is semisimple.

M is called pure semisimple if every pure exact sequence in σ[M ] splits.
This is equivalent to every module in σ[M ] being pure injective (projective) in
σ[M ], and to every module in σ[M ] being a direct sum of finitely generated
modules.

We say M is of Kulikov type if M is locally noetherian and submodules of
pure projectives are again pure projective in σ[M ].

M is of finite (representation) type, if M is locally of finite length and
there are only finitely many non-isomorphic finitely generated indecomposable
modules in σ[M ].
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Modules with linearly ordered (by inclusion) submodules are uniserial and
direct sums of uniserial modules are serial. Call M of serial type if every module
in σ[M ] is a direct sum of uniserial modules of finite length.

QF-2 rings are semiperfect rings whose indecomposable, projective left and
right modules have simple essential socles.

1.13 Classification by the functor ring.

A f.g. module M is if and only if T is

semisimple - (left) semisimple;
- von Neumann regular;
- left (semi-) hereditary.

of Kulikov type left locally noetherian.

pure semisimple left perfect.

of finite type - left and right perfect;
- left locally of finite length.

of serial type left perfect and QF-2.

Similar to the above constructions a functor ring of finiteley presented mod-
ules of σ[M ] can be defined and we refer to [36, Chapter 10] for related results.
This approach also provides - via purity - a connection to model theoretic
techniques for algebras (e.g., [26]).

An algebra A is of finite type if and only if A is left and right pure semisim-
ple. It is an open question if a left pure semisimple algebra is also right pure
semisimple (hence of finite type). By the above characterizations the open
problem is if – for the functor ring of A-Mod – left perfect implies right per-
fect.

1.14 Dualities. It is well known that a full module category A-Mod cannot
be dual to a module category. Similarly it is clear that all σ[M ] is not dual to
a module category. Hence for the study of dualities it makes sense to restrict
to categories σf [M ] whose objects are submodules of factor modules of finite
direct sums of copies of M .

These type of categories occur in the work of Goursaud [13], and Ohtake
[25], for example. They are used to define the spectrum of non-commutative
algebras in Rosenberg [28] (see 1.24). The description of Morita dualities for
A-Mod is extended to the following situation.

1.15 Morita dualities for σ[M ]. For an A-module M with S = End(AM),
the following are equivalent:

(a) HomA(−,M): σf [M ]→ σf [SS ] is a duality;
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(b) AM is an injective cogenerator in σf [M ] (hence in σ[M ]), and MS is an
injective cogenerator in Mod-S;

(c) AM is linearly compact, finitely cogenerated and an injective cogenerator
in σf [M ];

(d) all factor modules of AM and SS are M-reflexive.

Similar to the generalization of progenerators by tilting modules, injective
cogenerators can be generalized by cotilting modules. We refer to [41] for details.

1.16 Decomposition of categories. One of the good properties of any
semiperfect algebra A is that it decomposes as a direct sum of ideals A1, . . . , An
yielding a category decomposition

A-Mod = A1-Mod⊕ · · · ⊕An-Mod,

such that the categories Ai-Mod are indecomposable (in this sense).

This is extended to decompositions of categories of type σ[M ] in the fol-
lowing way (see [40]). Given a family {Nλ}Λ of modules in σ[M ], we define

σ[M ] =
⊕

Λ
σ[Nλ],

provided for every module L ∈ σ[M ], L =
⊕

ΛTr(σ[Nλ], L). We call this a
σ-decomposition of σ[M ], and σ[M ] is said to be σ-indecomposable if no such
(non-trivial) decomposition exists.

By the fact that semiperfect projectives and locally noetherian injectives
both have decompositions which complement direct summands (see [2, § 12])
we have the following

1.17 Decomposition of σ[M ]. Let M be a locally noetherian A-module, or
assume M to be a projective generator which is semiperfect in σ[M ]. Then
σ[M ] has a σ-decomposition with Mλ ∈ σ[M ],

σ[M ] =
⊕

Λ
σ[Mλ],

where each σ[Mλ] is σ-indecomposable.

1.18 Torsion theories in σ[M ]. Techniques of torsion theory familiar from
A-Mod also apply to Grothendieck categories. We recall some of these notions
for σ[M ].

Let M ∈ A-Mod. A class T of modules in σ[M ] is called a pretorsion class
if T is closed under direct sums and factor modules, and a torsion class if T is
closed under direct sums, factors and extensions in σ[M ].

A pretorsion (torsion) class T is hereditary if it is also closed under sub-
modules, and it is stable provided it is closed under essential extensions in
σ[M ].
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Notice that for any M ∈ A-Mod, σ[M ] is a hereditary pretorsion class
in A-Mod, not necessarily closed under extensions. In fact every hereditary
pretorsion class in σ[M ] (or in A-Mod) is of type σ[U ] for some module U (e.g.,
Viola-Prioli-Wisbauer [34]).

1.19 Torsion submodules, injectivity. For any pretorsion class T and N ∈
σ[M ], the submodule

T (N) := Tr(T , N) =
∑
{U ⊂ N |U ∈ T } ∈ T ,

is the T -torsion submodule of N , and N is said to be T -torsionfree if T (N) = 0.
N is called (M,T )-injective if HomA(−, N) is exact on exact sequences

0→ K → L in σ[M ] with L/K ∈ T .
Notice that (M,T )-injective is equivalent to M -injective provided for every

essential submodule K ⊂M , M/K ∈ T .

1.20 Quotient modules. Let T be a hereditary torsion class in σ[M ] and
N ∈ σ[M ]. The (M, T )-injective hull of the factor module N/T (N) is called
the quotient module of N with respect to T ,

QT (N) := ET (N/T (N)).

Any f : N → L in σ[M ] induces a unique QT (f) : QT (N)→ QT (L) and

QT : σ[M ]→ σ[M ], N 7→ QT (N),

is in fact a left exact functor.

1.21 Singular modules in σ[M ]. A module N is called singular in σ[M ]
(or M-singular) if N ' L/K for some L ∈ σ[M ] and K essential in L. The
class SM of M -singular modules is a hereditary pretorsion class in σ[M ]. If
SM (N) = 0, N is called non-singular in σ[M ] or non-M-singular.

Let S2
M denote the modules X ∈ σ[M ] which allow an exact sequence

0 → K → X → L → 0, where K,L ∈ SM . S2
M is a stable hereditary torsion

class, called the Goldie torsion class in σ[M ].
It follows from the definition that (M,S2

M )-injective modules areM -injective
(since SM ⊂ S2

M ) and QS2
M

: σ[M ]→ σ[M ] is an exact functor.

1.22 Lambek torsion theory in σ[M ]. The hereditary torsion theory TM
in σ[M ], whose torsionfree class is cogenerated by the M -injective hull M̂ of
M , is called the Lambek torsion theory in σ[M ],

TM = {K ∈ σ[M ] |HomA(K, M̂) = 0}.

In fact, TM is the largest torsion class for which M is torsionfree.

10



1.23 Polyform modules. M is called polyform if it is non-M -singular. In
this case SM is closed under extensions and it coincides with TM . Therefore the
quotient module QSM (M) is just the M -injective hull M̂ of M . It is interesting
to observe that M is polyform if and only if EndA(M̂) is a von Neumann
regular ring (and left self-injective). This implies that EndA(M) is a subring
of EndA(M̂) and that M has finite uniform dimension if and only if EndA(M̂)
is left semisimple. For results about polyform modules see, for example, Clark-
Wisbauer [5].

Notice that the above notions applied to A as left A-module yield the basic
ingredients for Goldie’s Theorem (quotient ring of (semiprime) Goldie rings).
Applied to A as (A,A)-bimodule they allow to construct the (Martindale) cen-
tral closure of (non-associative ) semiprime rings A (see 2.9).

1.24 Strongly prime modules. A module M is called strongly prime if each
of its non-zero submodules subgenerates M , i.e., if for 0 6= K ⊂M , M ∈ σ[K].
This is obviously equivalent to the property that the M -injective hull M̂ is
generated by each of its non-zero submodules and hence has no non-zero fully
invariant submodules.

We mention that a ring A is strongly prime as a left A-module if and only
if every non-singular A-module N is a subgenerator in A-Mod (i.e., σ[N ] =
A-Mod). Moreover A is strongly prime as an (A,A)-bimodule if and only if the
central closure of A is a simple ring (see 2.10).

In Rosenberg [28] equivalence classes of strongly prime modules are defined
to be the spectrum of an abelian category (e.g., σ[M ] or A-Mod), where two
A-modules M,N are called equivalent if σf [M ] = σf [N ].

So far we have been concerned with internal properties of σ[M ]. Discussing
the category σ[M ] with J. Golan in the early eighties in Haifa his first question
was if σ[M ] is a torsion class, i.e., if it is closed under extensions in A-Mod.
This condition is independent of the internal properties of σ[M ], and even for
a (semi-) simple module M , when we have all good properties inside σ[M ] you
may think of, this need not be the case. It was only much later - in particular
in connection with the investigation of comodules - when I realized that the
external behaviour of σ[M ] is of considerable interest, too.

1.25 The trace functor. By definition σ[M ] is a hereditary pretorsion class
in A-Mod and we consider the corresponding torsion submodules.

For any N ∈ A-Mod we denote the trace of σ[M ] in N by

T M (N) := Tr(σ[M ], N) =
∑
{Im f | f ∈ HomA(K,N), K ∈ σ[M ]}.
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So T M (N) is the largest submodule of N which belongs to σ[M ] and we have
a left exact functor

T M : A-Mod→ σ[M ], N 7→ T M (N),

which is right adjoint to the inclusion functor σ[M ]→ A-Mod (see [36, 45.11]).

It is natural to investigate properties of this functor. There is a special
situation which is of particular interest for comodule categories (see 3.5, 3.8).
This is when σ[M ] is a cohereditary torsion class, i.e., σ[M ] is closed under
extensions and the torsionfree class is closed under factor modules.

The trace of σ[M ] in A, T M (A) ⊂ A, is an ideal of A, called the trace ideal.
It is useful to describe conditions on the class σ[M ].

1.26 T M as exact functor. For T := T M (A) the following are equivalent:
(a) The functor T M : A-Mod→ σ[M ] is exact;

(b) σ[M ] is a cohereditary torsion class;

(c) for every N ∈ σ[M ], TN = N ;

(d) T 2 = T and AT is a generator in σ[M ];

(e) TM = M and A/T is flat as a right A-module.

2 Bimodule structure of an algebra

Extending the module theory for commutative algebras to non-commutative R-
algebras A, the classical approach was to study the category of left (or right)
A-modules. However by this step some symmetry is lost: for example, the
kernels of morphisms in A-Mod are no longer the kernels of algebra morphisms.
One may ask why the category of (A,A)-bimodules - equivalently the category
of left A⊗R Ao-modules - was not considered as an adequate extension of the
commutative case. The main reason was probably the fact that in general the
algebra A is neither projective nor a generator in A ⊗R Ao-Mod and hence a
homological characterization was not possible in this setting.

IfA is projective as an A⊗RAo-module thenA is called a separable R-algebra
and this implies that A ⊗R Ao-Mod is equivalent to R-Mod, provided A is a
central R-algebra. A large part of the literature on bimodules is concentrating
on this situation.

Applying ideas and notions from the first section we are able to extend
typical results for commutative algebras to the subcategory σ[A] of A ⊗R Ao-
modules without any a priori conditions on the algebra A. Moreover we observe
that even associativity of A is not essential and we are going to report about
essential parts of the resulting theory.
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In this section let A denote an R-algebra which is not necessarily associative.
For simplicity we will assume that A has a unit eA.

For a, b, c ∈ A we define associator and commutator by

(a, b, c) := (ab)c− a(bc), [a, b] = ab− ba,

and the centre of A as the subset

Z(A) = {c ∈ A | (a, b, c) = (a, c, b) = [a, c] = 0 for all a, b ∈ A}.

Clearly Z(A) is a commutative and associative subalgebra containing the unit
of A. In case ReA = Z(A) we call A a central R-algebra.

2.1 Multiplication algebra. Left and right multiplications by a ∈ A,

La : A→ A, x 7→ ax, Ra : A→ A, x 7→ xa,

define R-endomorphisms of A, i.e., La, Ra ∈ EndR(A). The R-subalgebra
of EndR(A) generated by all left and right multiplications in A is called the
multiplication algebra of A, i.e.,

M(A) :=< {La, Ra | a ∈ A} >⊂ EndR(A).

We consider A as a (faithful) left module over M(A). The endomorphism ring
of the M(A)-module A is called the centroid C(A) of A. Since we assume A to
have a unit, it is easy to see that C(A) is isomorphic to the center Z(A) of A,
i.e., Z(A) = EndM(A)(A).

By σ[A], or σM(A)[A], we denote the full subcategory of M(A)-Mod whose
objects are submodules ofA-generated modules. Notice that σ[A] = M(A)-Mod
provided A is finitely generated as Z(A)-module.

2.2 The centre of an M(A)-module. For any M(A)-module M , the centre
ZA(M) of M is defined as

{m ∈M | Lam = Ram, LaLbm = Labm, RbRam = Rabm, for all a, b ∈ A}.

Obviously, ZA(A) = Z(A), the centre of the algebra A, ZA(M) is a Z(A)-
submodule of M , and the map

HomM(A)(A,M)→ ZA(M), γ 7→ (eA)γ,

is a Z(A)-module isomorphism.
So M is A-generated as an M(A)-module if and only if M = AZA(M). In

particular, for any ideal I ⊂ A, ZA(I) = I ∩Z(A), and I is A-generated if and
only if I = A (I ∩ Z(A)).
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2.3 A associative. Assume A to be associative. Then the map

A⊗R Ao →M(A), a⊗ b 7→ LaRb,

is a surjective A⊗R Ao morphism. So σM(A)[A] = σA⊗RAo [A].

In general A will be neither projective nor a generator in σ[A]. These
properties are related to interesting classes of algebras. A central R-algebra
A is called an Azumaya algebra if A is a (projective) generator in M(A)-Mod,
and an Azumaya ring if it is a projective generator in σ[A]. An Azumaya ring
is an Azumaya algebra if and only if RA is finitely generated, since this implies
σ[A] = A-Mod.

Morita equivalence for the category σ[A] has the following form (see 1.7).

2.4 Azumaya rings. For a central R-algebra A, the following are equivalent:
(a) A is an Azumaya ring;

(b) A is a generator in σ[A] and A is faithfully flat as an R-module;

(c) for every ideal I ⊂ A,

I = (I ∩R)A and Z(A/I) = R/I ∩R;

(d) HomM(A)(A,−) : σ[A]→ R-Mod is an equivalence of categories.

Similar to the commutative case the cogenerator property of A in σ[A] has
a strong influence on the structure of A.

2.5 Cogenerator algebras. For a central R-algebra A, the following are
equivalent:

(a) A is a cogenerator in σ[A];

(b) A = Ê1 ⊕ · · · ⊕ Êk, where the Ei are (up to isomorphism) all the simple
modules in σ[A], and Êi is the injective hull of Ei in σ[A];

(c) A = A1⊕· · ·⊕Ak, where the algebras Ai are indecomposable self-injective
self-cogenerators as bimodules;

Under these conditions, AR cogenerates all simple R-modules and AR is FP-
injective.

Notice that the decomposition of A in (c) yields a σ-decomposition of σ[A].

To describe dualities recall that σf [A] denotes the full subcategory of σ[A]
whose objects are submodules of finitely A-generated M(A)-modules.
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2.6 Algebras with Morita dualities. For a central R-algebra A, the follow-
ing are equivalent:

(a) A is a cogenerator in σ[A] and AR is injective in R-Mod;

(b) HomM(A)(−, A) : σf [A]→ σf [RR] defines a duality;

(c) all factor modules of M(A)A and RR are A-reflexive.

Here we have a bimodule version of quasi-Frobenius rings ([37, 27.12]).

2.7 Quasi-Frobenius algebras. For a central R-algebra A, the following are
equivalent:

(a) A is a noetherian injective generator in σ[A];

(b) A is an artinian projective cogenerator in σ[A];

(c) A is an injective generator in σ[A] and R is artinian;

(d) A is an Azumaya ring and projectives are injective in σ[A].

The algebra A is called biregular if every principal ideal of A is generated
by a central idempotent. Clearly any commutative associative ring is biregular
if and only if it is von Neumann regular.

Recall that a short exact sequence (∗) 0 → K → L → N → 0 is pure in
σ[A], if the functor HomA(P,−) is exact with respect to (∗) for every finitely
presented module P in σ[A], and L ∈ σ[A] is regular in σ[A] if every exact
sequence (with L fixed) of type (∗) is pure in σ[A].

Notice that a biregular algebra A need not be regular in σ[A]. However this
is true if A is finitely presented in σ[A].

2.8 Biregular Azumaya rings. Let A be a central R-algebra. Then the
following conditions are equivalent:

(a) A is a biregular ring and is finitely presented in σ[A];

(b) A is finitely presented and regular in σ[A];

(c) A is a biregular ring and is self-projective as M(A)-module;

(d) A is a biregular ring and is a generator in σ[A];

(e) A is a generator in σ[A] and R is regular.

Similar to the situation for commutative associative rings we observe that
any semiprime algebra A is non-A-singular (polyform) as a bimodule. Recall
that Â denotes the A-injective hull of A (in σ[A]). By results for σ[M ] we
conclude that EndM(A)(Â) (the extended centroid) is a commutative, regular
and self-injective ring. The module Â can be made an algebra in the following
way.
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2.9 Central closure of semiprime algebras. Let A be semiprime with A-
injective hull Â and T := EndM(A)(Â). Then Â = AT and a ring structure is
defined on Â (central closure) by

(as) · (bt) := (ab)st, for a, b ∈ A, s, t ∈ T.

(1) Â is a semiprime ring with centre Z(Â) = T .

(2) Â is self-injective as an M(Â)-module.

(3) If A is a prime ring, then Â is also a prime ring.

Calling A strongly prime if A is strongly prime as an M(A)-module we have
from 1.24:

2.10 Strongly prime algebras. For A the following are equivalent:
(a) A is a strongly prime algebra;

(b) Â is generated (as an M(A)-module) by any non-zero ideal of A;

(c) A is a prime ring and the central closure Â is a simple algebra.

3 Coalgebras and comodules

The definitions of coalgebras and comodules are formally dual to the definitions
of algebras and modules. Whereas the algebra is a projective generator for the
left (right) modules, a coalgebra is a subgenerator for the right (left) comodules.
This indicates that ideas from the categories σ[M ] might be helpful. Under the
condition that the coalgebra is projective over the base ring we can in fact
identify the category of comodules with a category of type σ[M ] (over the dual
of the coalgebra).

An R-module C is an R-coalgebra if there is an R-linear map

∆ : C → C ⊗R C, with (id⊗∆) ◦∆ = (∆⊗ id) ◦∆.

An R-linear map ε : C → R is a counit if (id⊗ ε) ◦∆ and (ε⊗ id) ◦∆ yield
the canonical isomorphism C ' C ⊗R R.

We will assume the coalgebra C to be projective as an R-module.
Notice that here - traditionally - maps are written on the left which may

imply anti-isomorphisms of endomorphism rings in comparison with the module
theoretic formulation of the previous sections.

The R-dual C∗ = HomR(C,R) is an associative R-algebra with unit ε,
where the multiplication of f, g ∈ C∗ is defined by f ∗ g(c) = f ⊗ g(∆(c)), for
c ∈ C.
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An R-module M is a right C-comodule if there exists an R-linear map
% : M →M ⊗R C such that (id⊗∆) ◦ % = (%⊗ id) ◦ %, and (id⊗ ε) ◦ % yields
the canonical isomorphism M ' M ⊗R R. Comodule morphisms f : M → M ′

between right comodules satisfy %′ ◦ f = (f ⊗ id) ◦ %.
Left C-comodules and their morphisms are defined similarly.
R-submodules N ⊂ M are C-sub-comodules provided %(N) ⊂ N ⊗R C.

Clearly C is a right and left C-comodule, and right (left) sub-comodules of C
are called right (left) coideals.

An R-submodule D ⊂ C is a sub-coalgebra if ∆(D) ⊂ D ⊗R D.
Right (left) C-comodules together with comodule morphisms form a cate-

gory which we denote by MC (CM). These are Grothendieck categories (re-
member that we assume RC to be projective) which are subgenerated by the
right (left) C-comodule C. They can be identified with categories of type σ[M ]
(see [39, Section 3,4]):

3.1 C-comodules and C∗-modules. Let % : M → M ⊗R C be a right C-
comodule. Then M is a left C∗-module by

ψ : C∗ ⊗RM →M, f ⊗m 7→ (id⊗f) ◦ %(m).

C is a balanced (C∗, C∗)-bimodule, subcoalgebras of C correspond to (C∗, C∗)-
sub-bimodules, and we identify

MC = σ[C∗C] ⊂ C∗-Mod, CM = σ[CC∗ ] ⊂ Mod-C∗.

C is finitely generated as R-module if and only if σ[C∗C] = C∗-Mod.

3.2 Finiteness conditions. Of particular importance for the investigation
of comodules is the so-called Finiteness Theorem which says that every finite
subset of a right comodule M is contained in a sub-comodule which is finitely
generated as an R-module. From this it follows that finiteness properties of
the ring R imply finiteness properties of comodules (see [39, 4.9]).

3.3 Coalgebras over special rings.

If R is then the coalgebra C is/has

noetherian locally noetherian.

perfect dcc on finitely generated coideals.

artinian locally of finite length.

injective injective in MC .

QF injective and cogenerator in MC .
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So if R is noetherian, direct sums of injectives are injective in σ[C∗C],
and applying results on decompositions of closed subcategories we can extend
decomposition theorems known for coalgebras over fields to comodules over
noetherian (or QF) rings.

3.4 σ-decomposition of coalgebras. Let R be noetherian. Then there exists
a σ-decomposition C =

⊕
Λ Cλ, i.e.,

MC = σ[C∗C] =
⊕

Λ
σ[C∗Cλ] =

⊕
Λ
MCλ ,

with sub-coalgebras Cλ ⊂ C, and MCλ σ-indecomposable.
If R is QF, each fully invariant decomposition of C is a σ-decomposition.

3.5 Rational functor. Left C∗-module which are also right C-comodules
are traditionally called rational C∗-modules. The largest submodule of any
C∗-module N which is a right C-comodule is the rational submodule of N ,
T C(M) = TrC∗(σ[C∗C],M), and this leads to the rational functor

T C : C∗-Mod→MC ,

which is right adjoint to the inclusion MC → C∗-Mod.
Further properties of this functor depend on the (torsion theoretic) proper-

ties of the class MC in C∗-Mod.

3.6 The rational functor exact. Put T := T C(C∗C∗). The following are
equivalent:

(a) the functor T C : C∗-Mod→MC is exact;

(b) MC is a cohereditary torsion class in C∗-Mod;

(c) for every N ∈MC , TN = N ;

(d) T 2 = T and T is a generator in MC .

3.7 Right semiperfect coalgebras. We already mentioned that categories
of type σ[M ] need not have projectives. Even for coalgebras C over fields there
may be no projectives in MC . The question arises when there is a projective
generator in MC . By the Finiteness Theorem it is straightforward to see that
for coalgebras over fields (or artinian rings) this is equivalent to the fact that
every simple module has a projective cover in MC . If this holds C is called
right semiperfect (see [18]). Notice that a right semiperfect coalgebra C need
not be left semiperfect.
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Over a QF ring R there is a certain interplay between left and right prop-
erties of C. This is based on the observation that, for any right C-comodule
N which is finitely generated as R-module, the dual N∗ is a left C-comodule.
This leads to the following connection between the existence of projectives in
MC and the exactness of the rational functor.

3.8 Right semiperfect coalgebras over QF rings. Let R be a QF ring
and put T := T C(C∗C∗). Then the following are equivalent:

(a) MC has a projective generator (projective in C∗-Mod);

(b) every simple module has a projective cover in MC ;

(c) injective hulls of simple left C-comodules are finitely generated R-modules;

(d) the functor T C : C∗-Mod→MC is exact.

In particular one may ask when C itself is projective in MC . If R is QF
then C is an injective cogenerator inMC and we have the following character-
izations.

3.9 Projective coalgebras over QF rings. Let R be a QF ring. Then the
following are equivalent:

(a) C is a submodule of a free left C∗-module;

(b) in MC every (indecomposable) injective object is projective;

(c) C is projective in MC (in C∗-Mod).

In this case C is a left semiperfect coalgebra and C is a generator in CM.

By the general Morita equivalence for modules (see 1.11) we have:

3.10 C as projective generator in MC . Let R be a QF ring and put
T := T C(C∗C∗). The following are equivalent:

(a) C is projective in MC and CM;

(b) C is a projective generator in MC (in CM);

(c) C is a direct sum of finitely generated C∗-submodules, T is a ring with
enough idempotents, and there is an equivalence

ĤomC∗(C,−) :MC → T -Mod.

For a QF ring R the functor (−)∗ = HomR(−, R) defines a duality for
the category of finitely generated R-modules. Combined with the (covariant)
left and right rational functors (both denoted by T C) we obtain a duality for
finitely generated C-comodules provided C is left and right semiperfect. Here
again categories of type σf [M ] as defined in 1.14 enter the scene. The following
extends [14, Theorem 3.5] from base fields to base QF rings.
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3.11 Duality for comodules. If R is QF the following are equivalent:
(a) C is left and right semiperfect;

(b) the following functors are exact

T C ◦ (−)∗ :MC → CM, T C ◦ (−)∗ : CM→MC ;

(c) the left and right trace ideals coincide and form a ring T with enough
idempotents and there is a duality

T C ◦ (−)∗ : σf [C∗C]→ σf [TT ].

4 Bialgebras and bimodules

4.1 Bialgebras. Let B be an R-coalgebra and algebra with counit and unit,

∆ : B → B ⊗R B, ε : B → R,
µ : B ⊗R B → B ι : R→ B

B is called a bialgebra if ∆ and ε are algebra morphisms (equivalently - µ, ι
are coalgebra morphisms).

An immediate implication of this definition is the fact that R itself has a
right B-comodule structure R→ R⊗R B, r 7→ r ⊗ 1B . As a consequence R is
a direct summand of B and hence B is a generator for R-Mod.

An R-module M is called a right B-bimodule if M is a right B-module and
a right B-comodule by % : M →M ⊗R B, such that % is B-linear in the sense
%(mb) = %(m)∆b, for all m ∈M, b ∈ B.

The reader should be aware of the fact that the notion bimodule applies
in different situations. We have already talked about (A,A)-bimodules over
associative algebras A. Moreover, for any bialgebra B we may consider left
B-comodules which are right B-modules, right B-comodules which are left B-
modules, etc. Of course B itself belongs to any of these categories but it may
have different properties in the distinct settings.

4.2 The category MB
B. Let B be an R-bialgebra. By MB

B we denote the
category whose objects are the right B-bimodules and the morphisms are maps
which are both B-comodule and B-module morphisms (= BimB(−,−)).

One link to our previous considerations is given by the observation that the
right B-module B ⊗R B is a subgenerator in MB

B .
We will assume that BR is projective which implies thatMB

B is a Grothen-
dieck category and the objects in MB

B may be considered as left modules over
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the smash product B#B∗, which is defined as the R-module B ⊗R B∗ with
multiplication

(a⊗ f)(b⊗ g) := ((∆b)(a⊗ f)) (1B ⊗ g).

Similar to the case of comodules we may identify

MB
B = σB#B∗ [B ⊗R B] ⊂ B#B∗-Mod,

where MB
B = B#B∗-Mod if and only if BR is finitely generated.

4.3 Coinvariants. The coinvariants of a right B-bimodule M are

M coB := {m ∈M | %(m) = m⊗ 1B} ,

and there is an R-module isomorphism

νM : BimB(B,M)→M coB , f 7→ f(1B).

In particular, BimB(B,B)→ BcoB = R 1B is a ring isomorphism.

It is interesting to compare the next theorem with results from Section 2.
Recall that a finitely generated generator in σ[M ] is projective in σ[M ] if and
only if it is faithfully flat over its endomorphism ring. As noticed in 4.1, B is
a generator for modules over BimB(B,B) = R and hence we have:

4.4 B as generator in MB
B. The following are equivalent:

(a) B is a (projective) generator in MB
B;

(b) BimB(B,−) :MB
B → R-Mod is an equivalence (with inverse −⊗R B);

(c) for every M ∈MB
B, we have an isomorphism

M coB ⊗R B →M, m⊗ b 7→ mb;

(d) B ⊗R B → B ⊗R B, a⊗ b 7→ (a⊗ 1)∆b, is an isomorphism.

Similar to the multiplication defined on the dual of any coalgebra, for a
bialgebra B a convolution product for f, g ∈ EndR(B) is defined by

f ∗ g(b) = µ(f ⊗ g(∆(b))), for b ∈ B.

4.5 Antipodes and Hopf algebras. Let (B,∆, ε, µ, ι) be a bialgebra. An
element S ∈ EndR(B) is called an antipode of B if it is inverse to idB with
respect to the convolution product ∗. So by definition,

µ ◦ (S ⊗ idB) ◦∆ = µ ◦ (idB ⊗ S) ◦∆ = ι ◦ ε .

Notice that as an endomorphism of B, S need neither be injective nor surjective.
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A bialgebra with an antipode is called a Hopf algebra. Again we will assume
that RH is projective. One of the intrinsic properties of such an algebra is that
H is a generator for the H-bimodules.

4.6 Fundamental Theorem. Let H be a Hopf R-algebra. Then H is a
projective generator in MH

H , so for any right H-Hopf module M ,

M coH ⊗R H →M, m⊗ h 7→ mh ,

is a bimodule isomorphism, and

BimH(H,−) :MH
H → R-Mod

is an equivalence of categories.

It follows from 4.6 that Hopf algebras behave similarly to algebras A which
are (projective) generators in σ[A] (Azumaya rings, 2.4).

The fundamental theorem describes properties of H as a bimodule. It does
not give information about the right (or left) comodule structure of H. However
it brings a certain symmetry to H and we observe, for example, that over a
QF ring right semiperfect Hopf algebras are also left semiperfect.

For these characterizations the coinvariants of the (left) trace ideal T H(H∗)
are of importance, which are called left integrals for H (see [21]).

4.7 Semiperfect Hopf algebras. Let R be a QF ring and T := T H(H∗).
Then the following are equivalent:

(a) H is right semiperfect;

(b) T (or T coH) is a faithful and flat R-module;

(c) T is a projective generator in MH ;

(d) H is a projective (generator) in MH ;

(e) H is left semiperfect.

Algebras of this type are called left co-Frobenius Hopf algebras in [14].

5 Comodule algebras

The results on Hopf algebras and their bimodules can be transferred to a more
general setting.

Let H be an R-Hopf algebra. An R-algebra A with a right H-comodule
structure % : A → A ⊗R H is a right H-comodule algebra provided % is an
algebra morphism.
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5.1 (A-H)-bimodules. An R-module M is called a right (A-H)-bimodule if
M is a right A-module and a right H-comodule %M : M →M ⊗RH, such that
%M is A-linear, i.e., for a ∈ A, m ∈M ,

%M (ma) = %M (m) · a (= %M (m)%A(a)) .

We denote byMH
A the category of (A-H)-bimodules with morphisms those

maps which are both A-module and H-comodule morphisms (= BimH
A (−,−)).

This is obviously an additive category which is closed under infinite direct
sums and homomorphic images and it is easy to show that A⊗RH is a subgen-
erator inMH

A . Assuming HR to be projective,MH
A is a Grothendieck category

and the (A-H)-bimodules can be considered as left modules over the smash
product A#H∗, which is defined as the R-module A⊗RH∗ with multiplication

(a⊗ k)(b⊗ h) =
∑

j
bja⊗ (b̃j · k) ∗ h,

where a, b ∈ A, k, h ∈ H∗ and %A(b) =
∑
jbj ⊗ b̃j .

Then (A-H)-bimodule morphisms are precisely the A#H∗-module mor-
phisms and we can identify

MH
A = σA#H∗ [A⊗R H] ⊂ A#H∗-Mod.

If RH is finitely generated, then MH
A = A#H∗-Mod.

5.2 Coinvariants. Similar to the case of Hopf algebras, coinvariants for M ∈
MH

A are defined by

M coH = {m ∈M | %M (m) = m⊗ 1H} ,

and there is an R-module isomorphism

BimH
A (A,M)→M coH , f 7→ f(1A).

In particular we have a ring (anti-) isomorphism

EndHA (A) := BimH
A (A,A)→ AcoH = {a ∈ A | ∆(a) = a⊗ 1H} .

Applying our results about progenerators in module categories we obtain
an extension of Menini-Zuccoli [22, Theorem 3.29] from base fields to rings,
which in turn was an extension of Schneider’s result [29, Theorem 1].

5.3 A as progenerator in MH
A . The following are equivalent:

(a) A is a projective generator in MH
A ;

(b) BimH
A (A,−) :MH

A → Mod-AcoH is a category equivalence;
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(c) AcoHA is faithfully flat and we have an isomorphism

A⊗AcoH A −→ A⊗R H, a⊗ b 7→ (a⊗ 1H)%A(b) ;

(d) for any M ∈MH
A and N ∈ Mod-AcoH , we have isomorphisms

BimH
A (A,M)⊗AcoH A→M, f ⊗ a 7→ f(a),

N → BimH
A (A,N ⊗AcoH A), n 7→ [a 7→ n⊗ a].

6 Group actions and module algebras

6.1 Group actions on algebras. A group G acts on an associative R-algebra
A if there is a group homomorphism from G to the group of all R-algebra
automorphisms of A.

The skew group algebra A ∗G is defined as the direct sum A(G) with mul-
tiplication given by

(ag) · (bh) = a(gb)gh, for a, b ∈ A and g, h ∈ G.

A ∗G is an associative algebra and we consider A as left A ∗G-module.
The A ∗G-submodules of A are the G-invariant left ideals of A. A is a cyclic
A ∗G-module and it is a finitely presented A ∗G-module if and only if the
group G is finitely generated.

For any A ∗G-module M the set of G-invariant elements of M is denoted
by

MG := {m ∈M | gm = m, for every g ∈ G},

and the (evaluation) map

HomA∗G(A,M)→MG, f 7→ f(1),

is an isomorphism of left AG-modules. Hence M is A-generated as an A ∗G-
module if and only if M = AMG.

AG is called the fixed ring of A and we have an algebra isomorphism

EndA∗G(A)→ AG, f 7→ f(1).

Properties of the A ∗G-module A, in particular the connection with the
subcategory σ[A∗GA] ⊂ A ∗G-Mod are investigated in [35] and [37, Chap. 10].
As an example we recall the characterization of A being a progenerator which
parallels properties of Azumaya rings.
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6.2 A∗GA as a progenerator in σ[A∗GA]. The following are equivalent:
(a) A∗GA is a progenerator in σ[A∗GA];

(b) HomA∗G(A,−) : σ[A∗GA]→ AG-Mod is an equivalence of categories;

(c) for every G-invariant left ideal I ⊂ A,

I = A · IG and (A/I)G ' AG/IG.

6.3 Module algebras. Let H be a Hopf algebra. An (associative) R-algebra
A with unit is said to be a left H-module algebra if it has a H-module structure
such that the map

A→ HomR(H,A), a 7→ [x 7→ x · a],

is an algebra morphism with respect to the convolution product.
For a left H-module algebra A, the smash product A#H is defined as the

R-module A⊗R H with multiplication

(a#h)(b⊗ g) :=
∑

i
[a(hi · b)]⊗ h̃ig, for h, g ∈ H, a, b ∈ A,

where ∆(h) =
∑
i hi ⊗ h̃i.

If G is a group acting on an algebra A, then A ∗G ' A#R[G], where the
group ring R[G] is a Hopf algebra. So the theory of module algebras generalizes
the action of groups on algebras.

We consider A as a left A#H-module, and in particular the category
σ[A#HA]. The invariants of any M ∈ A#H-Mod are defined by

MH := {m ∈M | h ·m = ε(h)m for all h ∈ H} ,

and the canonical map

HomA#H(A,M)→MH , f 7→ f(1A),

is an AH -isomorphism, where EndA#HA ∼= AH ⊂ A (as algebras).

Here the Morita equivalence for module categories implies:

6.4 A#HA as a progenerator in σ[A#HA]. For a left H-module algebra A
the following are equivalent:

(a) A#HA is a progenerator in σ[A#HA];

(b) A#HA is self-projective and for simple modules E ∈ σ[A#HA], EH 6= 0;

(c) A is a generator in σ[A#HA] and

(i) A · I 6= A for each (maximal) left ideal I ⊂ AH , or
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(ii) AHA is faithfully flat;

(d) HomA#H(A,−) : σ[A#HA]→ AH -Mod is an equivalence;

(e) for any H-stable left ideal I ⊂ A,

I = A · (I ∩AH) and (A/I)H ∼= AH/IH .

For more detailed results concerning the A#H-module structure of A we
refer to Gruschka [16].

Notice that in the last sections we have mainly reported about (pro-) gener-
ator properties in various comodule situations. The application of other tech-
niques from σ[M ] (as presented in the first section) to comodule and module
algebras is still under investigation.
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