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Abstract

The stable converse soul question (SCSQ) asks whether, given a real vector
bundle E over a compact manifold, some stabilization E × Rk admits
a metric with non-negative (sectional) curvature. We extend previous
results to show that the SCSQ has an affirmative answer for all real vector
bundles over any simply connected homogeneous manifold with positive
curvature, except possibly for the Berger space B13. Along the way, we
show that the same is true for all simply connected homogeneous spaces
of dimension at most seven, for arbitrary products of simply connected
compact rank one symmetric spaces of dimensions multiples of four, and
for certain products of spheres. Moreover, we observe that the SCSQ is
“stable under tangential homotopy equivalence”: if it has an affirmative
answer for all vector bundles over a certain manifold M , then the same is
true for any manifold tangentially homotopy equivalent to M . Our main
tool is topological K-theory. Over B13, there is essentially one stable class
of real vector bundles for which our method fails.
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1 Introduction and statement of results

The Soul Theorem by Cheeger and Gromoll [CG72] determines the structure of
complete open manifolds with non-negative sectional curvature: given such a
manifold M , there exists a totally geodesic, totally convex compact submanifold
S (called the soul) such that M is diffeomorphic to the normal bundle of S. The
Converse Soul Question asks, conversely, which vector bundles over a compact
non-negatively curved manifold S admit a non-negatively curved metric. In
general, this question is still widely open. The only such vector bundles that
are known not to admit a non-negatively curved metric occur over manifolds
S with infinite fundamental group [BK03,ÖW94]. On the other hand, the only
simply connected manifolds over which all vector bundles are known to admit
a non-negatively curved metric are the spheres Sn with n ≤ 5 [GZ00]. Other
than that, there are only partial results, and a weaker question has been studied,
which we formulate as follows. From now on, M will denote a (smooth) compact
manifold.

Question (Stable Converse Soul Question, SCSQ). Let E be the total space of
a real vector bundle over a compact manifold M . Is there an integer k ≥ 0 such
that the manifold E × Rk admits a metric of non-negative sectional curvature?

For simply connected M with non-negative sectional curvature, this is precisely
Problem 5.4 of [APL]. In our formulation, we do not explicitly require any
curvature related conditions on M . Note however that, as a consequence of the
Soul Theorem, one can expect positive results for the SCSQ only when M is at
least homotopy equivalent to a compact manifold with non-negative curvature.
The existence of manifolds over which the SCSQ has a negative answer for all
vector bundles is therefore immediate: simply consider compact manifolds whose
Betti numbers violate Gromov’s bound for the existence of metrics with non-
negative curvature [Gro81], for example connected sums #mCPn for sufficiently
large m and arbitrary n.
On the positive side, the SCSQ is already known to have an affirmative answer
for all real vector bundles over any sphere Sn [Rig78], and for all real vector
bundles over CP2, S2×S2 and CP2#(−CP2) [GZ11]. In [Gon17], the first-named
author extended these results to include all compact rank one symmetric spaces
(CROSSes): the spheres Sn, the projective spaces RPn, CPn and HPn, and the
Cayley plane.
In this article, we study the SCSQ over the larger class of compact simply
connected homogeneous manifolds with an invariant metric of positive sectional

2



curvature. These manifolds are completely classified (see the recent classification
[WZ]). In addition to the CROSSes they include the Wallach flag manifolds
W 6, W 12 and W 24, the Berger spaces B7 and B13, and the infinite family of
Aloff-Wallach spaces W 7

p,q. Our main result is the following.

Main Theorem. The SCSQ has a positive answer for all real vector bundles
over any compact simply connected homogeneous manifold M with an invariant
metric of positive sectional curvature, except possibly for M ∼= B13.

In fact, we can show a more general statement. Recall that two manifolds M,N
of the same dimension are defined to be tangentially homotopy equivalent if
there exists a homotopy equivalence f : M → N such that the tangent bundle
TM and f∗TN are stably isomorphic, i. e. such that TM ×Rk and f∗TN ×Rk
are isomorphic as bundles over M for some integer k ≥ 0.

Main Theorem (cont.). More generally, the SCSQ has a positive answer
for any real vector bundle over any compact manifold tangentially homotopy
equivalent to one of the above manifolds M 6∼= B13.

Results of Wilking suggest that, in this form, the Main Theorem covers a fairly
general class of manifolds with positive sectional curvature: any n-dimensional
simply connected manifold Mn with positive sectional curvature is either iso-
metric to a homogeneous space with positive sectional curvature or tangentially
homotopy equivalent to a CROSS, provided its isometry group I(M) satisfies
one of the following [Wil06]:
• the dimension of I(M) is at least 2n− 6, or
• the cohomogeneity of the I(M)-action is ` ≥ 1 and n ≥ 18(`+ 1)2.

On the other hand, the general form of the Main Theorem also applies to
manifolds that do not admit a metric of non-negative sectional curvature:
Example 1.1. All homotopy spheres are tangentially homotopy equivalent since
their tangent bundles are stably trivial [KM63, Theorem 3.1]. But there are
homotopy spheres Σm of dimensions m = 8n+ 1 and 8n+ 2 that do not admit
a metric of non-negative sectional curvature. (See [DT11] for these and other
pairs of homotopy equivalent manifolds of which only one admits a metric of
non-negative curvature.)

We can use this example to illustrate the need for stabilization:
Example 1.2. Let Σm be one of the homotopy spheres of the previous example that
does not admit a metric of non-negative sectional curvature. Then the total space
Σm × R of the trivial bundle likewise admits no metric of non-negative sectional
curvature (see Lemma 4.4). Our Main Theorem implies that, nonetheless, some
stabilization Σm ×Rk does admit such a metric. In this particular case, this can
also be seen directly as follows: by the “Work Horse Theorem” of [TW15] (see
Section 4.2 below), the product Σm × Rm+1 is diffeomorphic to Sm × Rm+1, on
which a metric of non-negative curvature is provided by the product metric. It
would be interesting to find the minimum 2 ≤ k ≤ m + 1 such that Σm × Rk
admits such a metric.

In the case of B13 our results are inconclusive. We can, however, make pre-
cise to what extent the general strategy used in this article fails for B13: see
Theorem 1.12 below.
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Outline of the proof and related results

We proceed to sketch our proof of the Main Theorem and to describe some
positive results for other families of homogeneous spaces that we have obtained
along the way. First, we note that the second part of the theorem follows from
the first:

Proposition 1.3. If the SCSQ has a positive answer for all real (resp. all
complex) vector bundles over M , then it also has a positive answer for all real
(resp. all complex) vector bundles over any tangentially homotopy equivalent
manifold N .

Here, the SCSQ for a complex vector bundle is simply the SCSQ for the underlying
real vector bundle. The proof of Proposition 1.3 given in Section 4.2 relies on
the “Work Horse Theorem” already mentioned: the main point is that the total
space of a vector bundle over N of sufficiently high rank is diffeomorphic to the
total space of some vector bundle over M .
Given Proposition 1.3 and the results of [Gon17] on CROSSes, it remains to
prove the Main Theorem for W 6, W 12, W 24, B7 and W 7

p,q. Each of these is a
compact homogeneous space, i. e. an orbit space G/H of a subgroup H acting
on a compact Lie group G. Our basic strategy is the same as in [Gon17]: we
prove that every vector bundle over one of these spaces is stably isomorphic to
a homogeneous vector bundle G×H Rm for some representation of H. Such a
homogeneous vector bundle always admits a metric of non-negative sectional
curvature by O’Neill’s theorem on Riemannian submersions. In fact, for each
homogeneous metric 〈, 〉 of non-negative curvature on G/H, there is a metric on
G×H Rm with non-negative curvature and soul isometric to (G/H, 〈, 〉).

Remark 1.4. Given a stably homogeneous vector bundle E over G/H, one can
estimate the minimal k needed to obtain non-negative curvature on E × Rk as
follows: Let ρ be a representation of H of rank ρ ≥ dimG/H + 1 and minimal
among all representations such that the associated homogeneous bundle is stably
isomorphic to E. Then the minimum k needed satisfies k ≤ rank ρ − rankE.
See [Gon17] for concrete bounds in the case G/H = Sn.

The K-rings of real or complex vector bundles over a manifold M , denoted
KO(M) and K(M), respectively, provide the natural framework to study stable
classes of vector bundles. Let RO(H) and R(H) likewise denote the real and
complex representation rings of a Lie group H. Sending a real or complex
representation of H to the corresponding real or complex homogeneous vector
bundle over M defines ring homomorphisms:

αO : RO(H)→ KO(G/H)
α : R(H)→ K(G/H)

As observed in [Gon17], every real vector bundle over G/H can be stabilized
to a homogeneous real vector bundle if and only if αO is surjective. The
same equivalence holds for complex vector bundles and α. What is more, the
complex version α : R(H) → K(G/H) is indeed surjective in many situations.
In particular, it is well-known that α is surjective whenever G is compact simply
connected and H ⊂ G is a closed connected subgroup of maximal rank, i. e. when
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rankH = rankG. (The rank of a Lie group is the dimension of a maximal torus.)
As we explain in Theorem 3.6 below, this is true more generally, though less well-
known, for subgroups H with rankG− rankH ≤ 1. All compact homogeneous
positively curved spaces G/H satisfy this inequality, with equality if and only
if the dimension of the space is odd. As an immediate corollary, we obtain the
following result for complex vector bundles over such spaces.

Theorem 1.5. Let G be a compact connected Lie group with π1(G) torsion-free,
and let H ⊂ G be a closed connected subgroup such that rankG− rankH ≤ 1.
Then the SCSQ has a positive answer for all complex vector bundles over any
compact manifold tangentially homotopy equivalent to G/H.

The homomorphism αO, on the other hand, is surjective only in very special
situations. For example, the results of the second-named author in [Zib15] imply
that αO is almost never surjective when G/H is a full flag manifold, i. e. when
H ⊂ G is a maximal torus T . The few positive cases are:

Theorem 1.6. The SCSQ has a positive answer for all real vector bundles over
the full flag manifolds SU(m)/T with m ∈ {2, 3, 4, 5, 7}, over Spin(7)/T , over
G2/T and over the products of these specified in Proposition 5.6 below.

It therefore came as a surprise that, nonetheless, αO is surjective for all compact
simply connected manifolds admitting a homogeneous metric of positive sectional
curvature, except for B13. For any given homogeneous space M , the surjectivity
of αO may of course depend on the precise presentation of M as G/H, but for all
spaces considered here, it turns out that the “standard” presentation with simply
connected G works. We will in fact show that αO is surjective for all homogeneous
spaces in certain families that include the positively curved ones, except for
B13. In particular, in each of our positive cases W 6,W 12,W 24, B7,W 7

p,q, the
surjectivity of αO fits into one of the following two more general results.
Firstly, the spaces W 6, B7 and W 7

p,q are covered by a result in low dimensions:
αO is surjective for any simply connected compact homogeneous space G/H of
dimension at most seven, at least if we choose, as we may, a presentation with
simply connected G (Proposition 5.3). The dimensional bound is perhaps not
surprising—real K-theory generally becomes more complicated starting from
dimension eight—and indeed, for S2×S2×S2×S2 the result is false (Remark 5.4).
In any case, as a consequence we obtain:

Theorem 1.7. The SCSQ has a positive answer for all real vector bundles over
any simply connected compact homogeneous space of dimension at most seven.

Secondly, the Wallach manifolds W 12 = Sp(3)/Sp(1)3 and W 24 = F4/Spin(8)
are covered by the following result (see Proposition 3.12):

Theorem 1.8. Let G be a compact connected Lie group with π1(G) torsion-free,
and let H ⊂ G be a closed connected subgroup with rankH = rankG, and such
that complex conjugation acts on the complex representation ring R(H) as the
identity map. Then the SCSQ has a positive answer for all real vector bundles
over G/H.
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The maximal rank closed subgroups of compact Lie groups are described in
[BDS49]. Conjugation acts trivially on R(H) for all compact connected Lie
groups H that have no circle factor and no simple factors of types An with n ≥ 2,
D2n+1 with n ≥ 4 or E6 (Remark 3.13).

The SCSQ for products

The class of spaces satisfying Theorem 1.8 is closed under taking products. In
particular, it includes arbitrary products of 4n-dimensional spheres, quaternionic
projective spaces and the Cayley plane (for the usual homogeneous presentations).
It turns out that, in good situations, surjectivity of αO is also preserved when
taking products with CP2n (Proposition 3.14). Altogether, this gives the following
result.

Theorem 1.9. Let M be a finite product of simply connected CROSSes whose
dimensions are multiples of four. Then the SCSQ has a positive answer for all
real vector bundles over M .

Besides the products of spheres included in Theorem 1.9, our K-theoretic com-
putations yield positive results for other products of spheres.

Theorem 1.10. Consider a product of spheres S = Sn1×Sn2×· · ·×Sn` Assume
that the unordered tuple {n1, . . . , n`} is congruent modulo eight to one of the
following, where even, even′ denote arbitrary even numbers and odd denotes an
arbitrary odd number:
` = 1 : {n} arbitrary
` = 2 : {3, 3}, {7, 7}, {even, odd} or {even, even′} 6≡ {2, 6}
` = 3 : {2, 2, 2}, {6, 6, 6}, {7, 7, 7} or {even, even′, odd} 6∈ {{2, 6, odd}, {4, 4, odd}}
` = 4 : {2, 2, 2, odd} or {6, 6, 6, odd}
` ∈ N : {even, n2, . . . , n`}, where ni ≡ 0 or 4 for all i
` ∈ N : A∪{nk, . . . , n`}, where ni ≡ 0 for all i and A is any of the tuples above.
Then the SCSQ has a positive answer for all real vector bundles over S.

Finally, all of the above results that rely on the surjectivity of αO can be improved
using Bott periodicity, in the sense that we can allow products with an arbitrary
number of spheres whose dimensions are multiples of eight. In combination with
Proposition 1.3 we obtain:

Theorem 1.11. Let M be any of the homogeneous spaces satisfying the hypo-
theses in Theorems 1.6, 1.7, 1.8, 1.9 or 1.10, and let S be a product of arbitrarily
many spheres whose dimensions are multiples of eight. The SCSQ has a posit-
ive answer for all real vector bundles over any compact manifold tangentially
homotopy equivalent to M × S.

The Berger space B13

For the standard presentation of the Berger space B13 as SU(5)/Sp(2)×Z2 S
1,

in turns out that αO is not surjective. As is shown in [FZ09, Proof of Theorem
A], any compact homogeneous space homotopy equivalent to B13 is already
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diffeomorphic to B13, and the standard presentation is its only presentation as
an orbit space of a simply connected Lie group. It follows that αO cannot be
surjective for any presentation of B13 as a homogeneous space (Lemma 3.5). In
other words, the SCSQ over B13 cannot be addressed by the techniques used
here. However, surjectivity of αO fails only by a small margin:

Theorem 1.12. The map αO is not surjective for any presentation of B13 as
a homogeneous space. Rather, its image is contained in a fixed subring S ⊂
KO(B13) of index two. For the standard presentation of B13 as SU(5)/Sp(2)×Z2

S1, the image of αO is equal to S.
Let K̃O(B13) ⊂ KO(B13) and S̃ ⊂ S denote the ideals consisting of all virtual
vector bundles of rank zero. Then K̃O(B13) splits, as a non-unitary ring, as a
product

K̃O(B13) ∼= S × Z2w

with w2 = 0. The generator w is the unique nonzero class in K̃O(B13) with
trivial Pontryagin classes.

In particular, there exists a real vector bundle E (of rank ≤ 13) over B13 such
that E ×Rk is not a homogeneous vector bundle for any integer k. There are, in
fact, countably infinitely many such bundles – all representatives of all elements
in the w-coset of S – but there is a unique stable class of vector bundles with
the additional property that the Pontryagin classes are trivial.

Acknowledgements

The second author is grateful to Wilhelm Singhof for inspiration regarding the
projective dimension of representation rings (Corollary 3.10).

2 K-theory

In this section we review mostly well-known facts on the real and complex
K-theory of a manifold. Classical references include [Ati67] and [Hus94]. We
place particular emphasis on relations between the real and the complex theory.
In particular, we discuss cohomological conditions that ensure the surjectivity of
the realification map from complex to real K-theory for manifolds of dimension
at most seven.

2.1 K-theory classifies vector bundles

Throughout this section, M will denote a compact Hausdorff space. We denote
by VectF(M) the set of isomorphism classes of (continuous) F-vector bundles
over M , where F is either R, C or H. (In the last case, each fiber is considered
as a right module over H.) Over a manifold, any continuous vector bundle can
be equipped with an essentially unique smooth structure, i. e. VectF(M) agrees
with the set of isomorphism classes of smooth F-bundles. The Whitney sum ⊕
endows VectF(M) with a semigroup structure, and we define KF(M) as its group
completion. The elements of KF(M) can be described as formal differences of
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elements in VectF(M). As an example, for a point we have KF(pt) ∼= Z. As usual
in the literature, we denote KR, KC and KH by KO, K and KSp, respectively.

Products

When F = R or C, the F-tensor product gives VectF(M) a semiring structure.
Thus KF(M) is the ring completion of VectF(M) and K(M) and KO(M) are
referred to as the complex and real K-rings of M , respectively. Moreover, recall
that there is a bijective correspondence between VectR(M) (resp. VectH(M))
and the set of isomorphism classes of C-vector bundles endowed with a conjugate-
linear automorphism J such that J2 = id (resp. J2 = −id) [Ati67, § 1.5]. In this
way, the C-tensor product induces product mapsKO(M)⊗KSp(M)→ KSp(M)
and KSp(M)⊗KSp(M)→ KO(M) giving the direct sum KO(M)⊕KSp(M)
the structure of a Z2-graded ring. Similarly, the i-th exterior power of vector
spaces induces the corresponding exterior power operations λi on vector bundles,
making K(M) and KO(M) λ-rings and KO(M)⊕KSp(M) a Z2-graded λ-ring
[Bot59,All74]. For two spacesM1 andM2 we also have external products defined
in the usual way in terms of the (internal) products discussed above and the
canonical projections πi : M1 ×M2 →Mi:

µ : KF1(M1)⊗KF2(M2) → KF12(M1 ×M2)
α⊗ β 7→ π∗1(α) · π∗2(β)

Here, (F1,F2,F12) is one of the triples (C,C,C), (R,R,R), (R,H,H), (H,R,H)
or (H,H,R). Bott periodicity implies that the external product for K- and
KO-theory is an isomorphism when one of the two spaces is an even-dimensional
sphere or a sphere of dimension a multiple of eight, respectively [Ati67, Cor. 2.2.3;
Hus94, Thm 11.1.2]:

K(M)⊗K(S2k)
∼=−−→ K(M × S2k)

KO(M)⊗KO(S8k)
∼=−−→ KO(M × S8k)

(1)

(Most references only state the case k = 1. The more general statement follows
from [Hus94, Prop. 11.1.1].) See also [Ati62] for a general Künneth formula for
complex K-theory.

Reduced K-groups

For a pointed space (M,pt), the reduced KF-theory is defined as the kernel of
the restriction map KF(M)→ KF(pt). When M is connected, this subgroup is
independent of the chosen basepoint and we denote it by K̃F(M). It may in this
case be described explicitly as follows. Denote by nF the trivial F-vector bundle
over M of rank n ∈ N. Then

K̃F(M) = {E − nF ∈ KF (M) | rankE = n}.

Alternatively, K̃F(M) can be described as the abelian group of stable classes
of F-vector bundles over M . Two vector bundles E,F ∈ VectF(M) are stably
equivalent if there exist trivial bundles nF,mF such that E ⊕ nF is isomorphic to
F ⊕mF. In any case, we have a natural isomorphism of abelian groups:

KF(M) = Z⊕ K̃F(M). (2)

8



As we will ultimately be interested in the reduced group K̃F(M), we will often
write the constant Z-term in (2) in parentheses, i. e. KF(M) = [Z]⊕ K̃F(M).

2.2 K-theory as a generalized cohomology theory

Atiyah and Hirzebruch constructed generalized cohomology theories K∗(−) and
KO∗(−) on topological spaces such that K0(M) ∼= K(M) and KO0(M) ∼=
KO(M) for any compact HausdorffM . For negative indices i, the groups Ki(M)
and KOi(M) can be defined geometrically in terms of vector bundles over
suspensions of M . An equivalent way to state Bott periodicity (1) is that these
cohomology theories are periodic in the sense that there are natural isomorphisms
Ki+2(−) ∼= Ki(−) and KOi+8(−) ∼= KOi(−). Their coefficient groups are as
follows:

i mod 8 0 1 2 3 4 5 6 7

K−i(pt) Z 0 Z 0 Z 0 Z 0
KO−i(pt) Z Z2 Z2 0 Z 0 0 0

Both cohomology theories are multiplicative. Their coefficient rings may be
written as

K∗(pt) = Z[β±1]
KO∗(pt) = Z[η, α, β±1

O ]/(2η, η3, ηα, α2 − 4βO)

with deg β = −2, deg η = −1, degα = −4 and deg βO = −8. The graded
rings K∗(M) :=

⊕
i∈ZK

i(M) and KO∗(M) :=
⊕

i∈ZKO
i(M) are graded

K∗(pt)- and KO∗(pt)-modules, respectively, and the periodicity isomorphisms
are given by multiplication with the so-called Bott elements β and βO. In
the quaternionic case, the same construction yields a graded abelian group
KSp∗(M) :=

⊕
i∈ZKSp

i(M). The periodicity in this case is again of period
eight, as there are natural group isomorphisms:

KSpi(M) ∼= KOi−4(M), for all i ∈ Z. (3)

For connected M , we define higher reduced groups K̃i(M) as in the case i = 0,
so that we have natural splittings:

Ki(M) = [Ki(pt)]⊕ K̃i(M), KOi(M) = [KOi(pt)]⊕ K̃Oi(M).

2.3 Relations between complex and real K-theory

We have the following natural maps between the K-groups of a space, referred
to as complexification (c, c′), realification (r), quaternionification (q) and con-
jugation (t):

c : KO(M)→ K(M) r : K(M)→ KO(M) t : K(M)→ K(M)
c′ : KSp(M)→ K(M) q : K(M)→ KSp(M)

They satisfy the following identities, where 2 denotes multiplication by two:

r ◦ c = 2 c ◦ r = id + t q ◦ c′ = 2
c′ ◦ q = id + t t ◦ c = c r ◦ t = r
t ◦ c′ = c′ q ◦ t = q t2 = id
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The maps c and t are ring homomorphisms, while c′, r and q are only group
homomorphisms. More precisely, (c, c′) : KO(M)⊕KSp(M)→ K(M) is a ring
homomorphism. This gives K(M) the structure of a KO(M)⊕KSp(M)-module.
The map

(r
q
)

: K(M) → KO(M) ⊕KSp(M) is a KO(M) ⊕KSp(M)-module
homomorphism with respect to this module structure on K(M). For example,
r(c′x · y) = x · qy for all x ∈ KSp(M), y ∈ K(M).
All of the above maps extend to natural transformations of cohomology theories.
Under the identification (3), q : K(M)→ KSp(M) corresponds to r : K−4(M)→
KO−4(M) and c′ corresponds to c [Bot59]. The values of c, r and t on the
coefficient rings are determined by:

tβ = −β cβO = β4 cα = 2β2 rβ = η2 r(β2) = α (4)

[Bou90, § 1.1]. The realification and complexification maps in different degrees
can be assembled into a periodic exact sequence known as the Bott sequence, of
the following form:

· · · → KOi(M) c−−−→ Ki(M) rβ−1
−−−→ KOi+2(M) η−−−→ KOi+1(M)→ · · · (5)

A lemma of Bousfield

We can view the conjugation t : K(M) → K(M) as an involution on the K-
ring. In general, given a ring A = (A, t) with an involution, i. e. with a ring
automorphism t such that t2 = id, one can define the associated Tate ring as the
Z2-graded ring h∗(A, t) := h+(A, t)⊕ h−(A, t) with homogeneous components:

h+(A, t) = ker(id− t)
im(id + t)

h−(A, t) = ker(id + t)
im(id− t)

Lemma 2.1 (Bousfield). For any space M with K1(M) = 0, the complexification
maps induce isomorphisms:

KO(M)/r ⊕KSp(M)/q
∼=−−−−→

c + c′
h+(K(M), t)

KO2(M)/r ⊕KO6(M)/r
∼=−−−→

c + c
h−(K(M), t)

Proof. This is essentially [Bou05, Lemma 4.7]. See also [Zib15, § 1.2, § 2.1].

Remark 2.2. Likewise, for any compact Lie group G, complex conjugation defines
an involution t on the complex representation ring RG, and the complexification
map from the real/quaternionic representation ring RO(G) ⊕ RSp(G) to the
complex representation ring induces a ring isomorphism:

RO(G)/r ⊕RSp(G)/q
∼=−−−→

c + c′
h+(RG, t)

The odd Tate groups h−(RG, t) vanish in this case (see section Section 3.2).
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Lemma 2.3. Suppose (A, t) and (B, t) are commutative rings with involutions.
Consider the tensor product ring A⊗B with the induced involution t⊗ t. If A
is free as an abelian group, then the canonical ring homomorphism of Z2-graded
rings h∗(A)⊗ h∗(B)→ h∗(A⊗B) is an isomorphism.

Proof. As an abelian group, we can decompose A into a direct sum A+ ⊕A− ⊕
A′ ⊕A′ such that t acts on A+ as the identity, on A− as minus the identity and
on A′ ⊕ A′ by interchanging the two factors [Bou90, Prop. 3.7]. It suffices to
verify the claim separately for each of these three factors.

2.4 The Atiyah-Hirzebruch spectral sequences

In [AH61], Atiyah and Hirzebruch constructed a spectral sequence for calculating
generalized cohomology theories like K∗ and KO∗ of a space from its ordinary
cohomology. It is commonly known today as the Atiyah-Hirzebruch spectral
sequence (AHSS).
A spectral sequence is a sequence of pages {Ep,qk }k∈Z, each consisting of a grid of
abelian groups together with certain homomorphisms dp,qk between them, called
differentials, that determine the next page. See [McC01] for a comprehensive
introduction to this machinery. A spectral sequence converges to some graded
group G∗ if there exists a limit page Ep,q∞ such that each diagonal p + q = c
is isomorphic to the graded group associated with some bounded exhaustive
filtration on Gc. We refer to this situation with the notation Ep,q2 ⇒ Gp+q.
The AHSS for the generalized cohomology theories K∗(M) and KO∗(M) have
the form:

Ep,q2 = Hp(M,Kq(pt))⇒ Kp+q(M)
Ep,q2 = Hp(M,KOq(pt))⇒ KOp+q(M)

Alternatively, using reduced cohomology, we obtain a spectral sequence conver-
ging to the reduced K- and KO-theory ofM . It differs from the unreduced AHSS
only in that the first column is zero. We will repeatedly use the following facts:

(a) The images of all differentials are torsion. In particular, if H∗(M,Z) is
torsion-free, then there are no nontrivial differentials in the AHSS for K∗(M),
and consequently Ep,q2 = Ep,q∞ . (See [AH61, § 2.4] for the complex case. The
real case follows by comparing the two spectral sequence for K∗(−)⊗Q and
KO∗(−)⊗Q.)

(b) In the AHSS for KO∗(M), the differential d2 : Ep,q2 → Ep+2,q−1
2 is as follows:

dp,q2 =


Sq2 ◦ red for q ≡ 0 mod 8
Sq2 for q ≡ −1 mod 8
0 otherwise,

Here, Sq2 denotes the second Steenrod square and red is reduction of coeffi-
cients modulo two. [Fuj67, § 1]

(c) The spectral sequences are multiplicative. That is, for each page Er of the
spectral sequence, we have a pairing of bigraded abelian groups Er⊗Er → Er,
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and with respect to this pairing, the differential dr satisfies the Leibniz rule
dr(x · y) = dr(x) · y+ (−1)px · dr(y) for x ∈ Ep,qr and y ∈ Es,tr . Up to a sign,
the pairing on the E2-page can be identified with the usual cup product
[Dug03, Thm 3.4 and Rem. 3.6].

(d) The first few columns of the spectral sequences are closely related to certain
characteristic classes. Write K(M) = F 0K(M) ⊃ F 1K(M) ⊃ F 2K(M) ⊃
· · · for the filtration on K(M) whose associated graded ring is isomorphic
to the zero diagonal of the E∞-page of the AHSS converging to K(M).
As all odd rows vanish, F 2i−1K(M) = F 2iK(M) for all i. Moreover,
F 2K(M) = K̃(M), the morphism F 2K(M) → H2(M,Z) coming from
the spectral sequence can, up to a sign, be identified with the first Chern
class, and the morphism F 4K(M)→ H4(X,Z) can be identified with the
restriction of the second Chern class, again up to a possible sign. Similarly,
for the corresponding filtration on KO(M), we have F 1KO(M) = K̃O(M),
the map F 1KO(M)→ H1(M,Z2) is the first Stiefel-Whitney class, and the
map F 2KO(M) → H2(M,Z2) is the second Stiefel-Whitney class [Zib14,
Lem. 3.13].

Here’s one quick application:

Lemma 2.4. A product of spheres S = Sn1×Sn2×· · ·×Sn` satisfies K̃O(S) = 0
only in the following cases:
` = 1 and n1 ≡ 3, 5, 6, 7 modulo 8.
` = 2 and the unordered pair {n1, n2} is congruent to one of the pairs {3, 3},

{5, 6}, {6, 7} or {7, 7} modulo 8.
` = 3 and the triple {n1, n2, n3} is congruent to {7, 7, 7} modulo 8.

Proof. The differentials in the AHSS for KO are trivial for any sphere. It follows
from the multiplicativity of the spectral sequence that they are also trivial for S.
Thus, K̃O(S) vanishes if and only if all terms on the diagonal Ep,−p2 are zero
for p ≥ 1. As the cohomology of S is finitely generated free, this happens if
and only if Hk(S,Z) vanishes in all positive degrees k ≡ 0, 1, 2, 4 mod 8. This
condition is equivalent to the numerical conditions stated.

The structure maps r, c and t induce morphisms of spectral sequences between
the AHSS computing the K- and KO-theory of a space. For example, r induces
a sequence of maps rp,qk : Ep,qk (K(M)) → Ep,qk (KO(M)) that commute with
the differentials and converge to r : K∗(M) → KO∗(M). On the E2-pages,
these morphisms are simply the change-of-coefficient maps induced by the
corresponding maps between the K- and KO-theory of a point. Using (4), we
can easily describe them explicitly:

Conjugation tp,q2 : Ep,q2 (K(M))→ Ep,q2 (K(M))
For q ≡ 0 mod 4, tp,q2 : Hp(M,Z)→ Hp(M,Z) is the identity.
For q ≡ 2 mod 4, tp,q2 : Hp(M,Z)→ Hp(M,Z) is multiplication by −1.
In all other cases, tp,q2 vanishes.

Complexification cp,q2 : Ep,q2 (KO(M))→ Ep,q2 (K(M))
For q ≡ 0 mod 8, cp,q2 : Hp(M,Z)→ Hp(M,Z) is the identity.
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For q ≡ 4 mod 8, cp,q2 : Hp(M,Z)→ Hp(M,Z) is multiplication by 2.
In all other cases, cp,q2 vanishes.

Realification rp,q2 : Ep,q2 (K(M))→ Ep,q2 (KO(M))
For q ≡ 0 mod 8, rp,q2 : Hp(M,Z)→ Hp(M,Z) is multiplication by 2.
For q ≡ 4 mod 8, rp,q2 : Hp(M,Z)→ Hp(M,Z) is the identity.
For q ≡ 6 mod 8, rp,q2 : Hp(M,Z)→ Hp(M,Z2) is reduction of coefficients.
In all other cases, rp,q2 vanishes.

For example, the description of r2 implies:

Lemma 2.5. Suppose all differentials in the AHSS’s affecting elements in the
diagonals computing K0(M) and KO0(M) vanish. If
• Hk(M) = 0 for positive k ≡ 0 mod 8, and
• reduction of coefficients Hk(M,Z) → Hk(M,Z2) is surjective for k ≡

2 mod 8
then the map r : K̃(M)→ K̃O(M) is surjective.

A similar argument to that in the proof of Lemma 2.4 yields the following
corollary:

Corollary 2.6. Consider a product of spheres S = Sn1 × Sn2 × · · · × Sn` .
If, among all possible sums ni1 + · · · + nik (1 ≤ i1 < · · · < ik ≤ `), only
the empty sum is congruent to zero modulo eight, then the realification map
r : K̃(S)→ K̃O(S) is surjective.

Observe that of course the products in Lemma 2.4 are included in Corollary 2.6.

2.5 Manifolds of dimension at most seven

Here, we apply the preceding discussion to simply connected compact manifolds
Mn of small dimensions. By the reduced realification, we will mean the restriction
of the realification map to reduced K-groups: r : K̃(M)→ K̃O(M).

Proposition 2.7. Let Mn be a simply connected compact manifold of dimension
n ≤ 7. If Hn−2(M,Z) contains no two-torsion, then the reduced realification
is surjective. If H5(M,Z) is torsion-free, then the absence of two-torsion in
Hn−2(M,Z) is equivalent to the surjectivity of the reduced realification.

The proof below will moreover show that, when both cohomological assumptions
are satisfied, the group K̃O(M) can be described as an extension of H2(M,Z2)
by H4(M,Z). If H4(M,Z) is a torsion group of odd order, this extension splits,
so

KO(M) ∼= [Z]⊕H2(M,Z2)⊕H4(M,Z). (6)
Examples 2.8. Proposition 2.7 easily implies surjectivity of the reduced realifica-
tion in the following cases:
• M compact simply connected of dimM ≤ 4.
• M compact simply connected and homogeneous of dimM ≤ 7, except for

two cases (see Lemma 5.1).
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• M is an Eschenburg biquotient with positive curvature [Esc82, Proposition
36].
• M is the total space of an S3-bundle over S4. Grove and Ziller proved in
[GZ00] that they all admit non-negatively curved metrics.

Proof of Proposition 2.7. Let Hi := Hi(M,Z) and hi := Hi(M,Z2). We note
first that for a simply connected compact n-manifold M , our hypothesis that
Hn−2 contains no two-torsion is equivalent to the assumption that the reduction
map H2 → h2 is surjective. Indeed, as H1 vanishes, the Universal Coefficient
Theorem identifies H2 and h2 with Hom(H2,Z) and Hom(H2,Z2), respectively.
The long exact sequence obtained by applying Hom(H2,−) to the short exact
sequence Z � Z � Z2 therefore yields an isomorphism between the cokernel
of the reduction map H2 → h2 and the kernel of multiplication by two on
Ext(H2,Z). AsM is a compact manifold, H2 is finitely generated, and Ext(H2,Z)
can be identified with the torsion subgroup of H2. Moreover, by Poincaré duality,
H2 ∼= Hn−2. So altogether the cokernel of H2 → h2 is isomorphic to the kernel
of multiplication by two on Hn−2.
Now assume in addition that n ≤ 7, and consider the realification map from
the AHSS computing K̃(M) to the AHSS computing K̃O(M). The surjectivity
of H2 → h2 implies that, on the E2-page, realification is surjective on the zero
diagonal computing K̃(M) and K̃O(M).
The only possibly nontrivial differentials on these two diagonals are the two
differentials d3 defined on E2,−2

2 (K) = H2 and E2,−2
2 (KO) = h2, respectively.

Both take values in H5 and thus vanish when H5 is torsion-free. In that case,
K̃(M) is an extension of H2 by H4, K̃O(M) is an extension of h2 by H4, and
the reduced realification r defines a morphism of extensions that restricts to an
isomorphism on the subgroups identified with H4 (see above Lemma 2.5). So r
is surjective if and only if H2 → h2 is.
However, even when the differentials d3 are nontrivial, the realification remains
surjective on the zero diagonal of the E3-page. Indeed, we have the following
commutative diagram:

0 // E2,−2
3 (K̃(M)) //

r2,−2
3��

H2 = H2(M,K−2(pt))
r2,−2
2��

d3 // H5 = H5(M,K−4(pt))
r5,−4
2��

0 // E2,−2
3 (K̃O(M)) // h2 = H2(M,KO−2(pt)) d3 // H5 = H5(M,KO−4(pt))

We are assuming that the second vertical arrow is surjective, and we know that
the third vertical arrow is an isomorphism (again, see above Lemma 2.5). So it
follows that the first vertical arrow is also surjective. Thus, again, realification
is surjective on the zero diagonal of the E∞-pages, and hence as a morphism
K̃(M)→ K̃O(M).

3 Homogeneous spaces and bundles

We outline the classical construction of a vector bundle over a homogeneous
space from a representation. Moreover, we recall and extend existing results on
how many stable classes of vector bundles arise in this way. These considerations
will be key to the proof of the Main Theorem.
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3.1 Homogeneous spaces

A homogeneous space is a manifoldM that admits a smooth transitive action by a
Lie group G. It may be identified with the orbit space G/H for a closed subgroup
H ⊂ G, the stabilizer of a point under the given action. In general, there can
be many different groups G acting transitively on M , so the presentation of M
as G/H is not unique. However, the difference rankG− rankH is a homotopy
invariant of M (see [GOV97, II § 2.2, remark following Cor. 2]). Moreover, when
G/H is compact and simply connected, we may assume the same for G:

Lemma 3.1. Given any presentation of a simply connected compact homogen-
eous space as G/H, there is a simply connected compact Lie group G′, a closed
connected subgroup H ′ ⊂ G and a homomorphism of Lie groups f : G′ → G with
f(H ′) ⊂ H inducing a diffeomorphism G′/H ′ ∼= G/H.

Proof. Suppose G/H is some presentation of M . Let H1 ⊂ H and G1 ⊂ G be
the identity components. AsM is simply connected, we find that H/H1 → G/G1
is an isomorphism, and hence that G/H is diffeomorphic to G1/H1. Next, by
Montgomery’s Theorem [GOV97, II S 2.3, Cor. 3], we have G1/H1 ∼= Gc/Hc

for maximal compact subgroups Hc ⊂ H1 and Gc ⊂ G1. Let G′ denote the
compact factor of the universal cover of Gc, and let H ′ denote the preimage of H
under the canonical homomorphism j : G′ → Gc. This homomorphism induces a
diffeomorphism G′/H ′ ∼= Gc/Hc.

From now on, all homogeneous spaces and all Lie groups considered in this
article will be compact.

3.2 Representations and homogeneous bundles

As in Section 2, let F denote either R, C or H. Given a compact Lie group G and
a subgroup i : H → G as above, a representation ρ of H on Fm defines a right
H-action on G× Fm by the rule ((g, v), h) 7→ (gh, ρ(h−1)v). The orbit space

Eρ := G×H Fm := (G× Fm)/H

is the total space of an Fm-vector bundle over G/H. Vector bundles constructed
in this way are called homogeneous.

Example 3.2. The tangent bundle of a homogeneous space G/H is always a
homogeneous vector bundle [GOV97, II § 3.3]. The representation of H inducing
the tangent bundle is called the isotropy representation for the presentation
G/H.

The real and complex representation rings RO(H) and R(H) = RH, and
the quaternionic representation group RSp(H), are constructed in a manner
completely analogous to the construction of K-groups of a space: one starts with
the set RepF(H) of isomorphism classes of finite-dimensional F-representations
of H, endows it with a semigroup structure via the direct sum, and passes to the
group completion RF(H). Unsurprisingly, the properties of R(H), RO(H) and
RSp(H) are also analogous to those described in Section 2.1 for K(M), KO(M)
and KSp(M); see [Ada69, Ch. 3] for details. In particular, R(H) and RO(H)
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are rings via the tensor product, and RO(H) ⊕ RSp(H) is a Z2-graded ring.
However, in some ways representation rings are simpler than K-rings:

• The representation ring RH is always free as an abelian group. A basis is
given by the complex irreducible representations of H.

• The complexification maps c : RO(H)→ R(H) and c′ : RSp(H)→ R(H)
are always injective [Ada69, Prop. 3.22].

• The negative Tate cohomology h−(RH, t) always vanishes, as is immediate
from the following description of t in terms of the given basis: Let us say that
an irreducible complex representation is of real or quaternionic type if it is
the complexification of a real or a quaternionic representation, respectively;
otherwise we say that it is of complex type. On the basis elements of RH
corresponding to irreducible representations of real or quaternionic type, t
acts as the identity. The irreducible complex representations of complex
type, on the other hand, come in pairs that are interchanged by t.

The construction of homogeneous vector bundles above yields well-defined morph-
isms of semigroups:

RepF(H) −→ VectF(G/H)
ρ 7−→ Eρ

These extend to group homomorphisms αF : RF(H)→ KF(G/H), which we also
denote by α, αO and αSp, respectively. The following lemmas are well known
and can be checked directly from the definitions.

Lemma 3.3. The maps α, αO and αSp commute with the maps c, r , t, c′
and q defined on representation and K-groups. They also commute with tensor
products and exterior powers, i. e. they define λ-ring homomorphisms:

α : R(H) → K(G/H)
αO : RO(H)→ KO(G/H)

αO ⊕ αSp : RO(H)⊕RSp(H)→ KO(G/H)⊕KSp(G/H)

The third of these is of course a graded homomorphism of Z2-graded λ-rings.

The product of two homogeneous spaces G1/H1 and G2/H2 is again a homo-
geneous space: (G1/H1)× (G2/H2) ∼= (G1 ×G2)/(H1 ×H2). The maps αF also
commute with the external products defined on representation and K-rings, i. e.
we have commutative diagrams of the form:

RF1(H1)⊗RF2(H2) µ //

αF1⊗αF2
��

RF12(H1 ×H2)

αF12

��
KF1(G1/H1)⊗KF2(G2/H2) µ // KF12(G1/H1 ×G2/H2)

Here, (F1,F2,F12) may be any of the triples (C,C,C), (R,R,R), (R,H,H),
(H,R,H) or (H,H,R). The commutativity of the square follows from the previous
Lemma and the fact that αF commutes with the pullback maps along the
projections to each factor. More generally, the maps αF are natural in the
following sense:
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Lemma 3.4 (Naturality). Let G and G′ be compact Lie groups with closed
subgroups H and H ′. Let f : G′ → G be a homomorphism of Lie groups such
that f(H ′) ⊂ H, and let f̄ : G′/H ′ → G/H be the induced map. Then we have
commutative diagrams as follows:

RF(H)
αH′

F //

f∗

��

KF(G/H)

f̄∗

��
RF(H ′)

αH
F // KF(G′/H ′)

In the next two subsections, we discuss some general situations in which αF is
known to be surjective. Of course, given a homogeneous spaceM , the surjectivity
of αF may depend on the chosen presentation ofM as G/H. For simply connected
M , we may restrict our attention to presentations with simply connected G:

Lemma 3.5. Let M be a simply connected compact homogeneous space. If there
is any presentation of M as G/H such that α : R(H) → K(M) is surjective,
then there is also such presentation with simply connected G and connected H.

Indeed, this is immediate from Lemma 3.1 and naturality (Lemma 3.4).

3.3 Complex bundles: Pittie and Steinberg’s Theorem

It turns out that the complex version of α is surjective in many interesting cases:

Theorem 3.6. Let G be a compact connected Lie group with π1(G) torsion-free,
and let H ⊂ G be a closed connected subgroup such that rankG − rankH ≤
1. Then the natural map α : RH → K0(G/H) is surjective and induces an
isomorphism

Z⊗RG RH ∼= K0(G/H).

If rankH = rankG, then moreover K0(G/H) is a finitely generated free abelian
group, and K1(G/H) = 0.

Remark 3.7. The rank assumptions here are optimal:
– When rankG − rankH = 1, the higher K-group K1(G/H) may no longer
vanish, and K0(G/H) may not be free. For example, this happens for the
Berger space B13 (Proposition 6.5).

– When rankG− rankH = 2, even the first part of the result no longer holds.
Consider for example G = Spin(4) = S3×S3 and H the trivial subgroup. The
map α is clearly trivial, whereas K(S3 × S3) = [Z]⊕ Z is not trivial.

When rankH = rankG, Theorem 3.6 is well-known. In many cases, it was
already verified by Atiyah and Hirzebruch in the paper that founded topological
K-theory [AH61, Thm 5.8]. In general, it can be obtained from a spectral
sequence due to Hodgkin and a theorem of Pittie and Steinberg. We recall both
these ingredients here, derive a corollary of the latter result, and explain how to
obtain Theorem 3.6 under the stated weaker hypothesis that rankG−rankH ≤ 1.
Hodgkin’s spectral sequence is as follows:

17



· · · 0 0 0 0 1

· · · TorRG3 (Z, RH) TorRG2 (Z, RH) TorRG1 (Z, RH) Z⊗RG RH 0

... -3 -2 -1 0

q

p

Figure 1: The E2-page of Hodgkin’s spectral sequence converging to K∗(G/H).
The shaded entries compute K0(G/H), the remaining entries K1(G/H).

Theorem 3.8 ([Hod75; McL79, Thm 4.1]). Suppose G is a compact, connected
Lie group with torsion-free fundamental group. Then for G-spaces X and Y we
have a strongly convergent spectral sequence

Ep,q2 = {TorRG−p (K∗G(X),K∗G(Y ))}q ⇒ Kp+q
G (X × Y ).

(The G-spaces are assumed to be compactly generated and have the homotopy
type of a CW complex, see [Hod75, § I.1].)

In this theorem, the complex representation ring RG is to be viewed as a Z2-
graded ring concentrated in degree zero, the equivariant K-groups K∗G(X) and
K∗G(Y ) are graded modules over this graded ring, and the Tor functors TorRG−p
are to be taken in the category of such graded modules. The q-coordinate
refers to the internal grading of these Tor modules. To prove Theorem 3.6, one
applies the spectral sequence to X := G and Y := G/H. Then K∗G(X) ∼= Z,
K∗G(Y ) ∼= RH and K∗G(X×Y ) ∼= K∗(G/H). In particular, all rings and modules
appearing on the E2-page are concentrated in degree zero, so that we can replace
the graded Tor functor by the usual Tor functor. The spectral sequence thus
takes the simple form displayed in Fig. 1. Moreover, the edge homomorphism
E0

2 = Z ⊗RG RH → K0(G/H) is induced by α [Hod75, Lemma 9.1]. The
contribution of Pittie and Steinberg is that, when rankH = rankG, all the other
groups on the E2-page vanish:

Theorem 3.9 ([Pit72,Ste75]). Let G be as in Theorem 3.6. For every closed
connected subgroup H ⊂ G of maximal rank, RH is a finitely generated free
RG-module.

This implies Theorem 3.6 in the maximal rank case.
Note that the representation ring of Lie group G as above is isomorphic to
the tensor product of a polynomial ring with a ring of Laurent polynomials.
Therefore, a finitely generated RG-module is free if and only if it is projective
if and only if it is flat: the first two notions coincide by a generalization of
the Quillen-Suslin theorem [Swa78,Swa92], the second two coincide for finitely
generated modules over arbitrary Noetherian rings. In particular, the notions
of “projective dimension” and “weak/flat dimension” are equivalent over such
RG. Below, we always write “projective dimension”, but we use Tor rather than
Ext in all arguments because the Tor-functors are the ones we are ultimately
interested in.
Starting from Pittie and Steinberg’s result, we prove:
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Corollary 3.10. Let G be as in Theorem 3.6, and let H ⊂ G be an arbitrary
closed connected subgroup. Then the projective dimension of RH as an RG-
module is at most rankG− rankH.

The corollary implies, in particular, that for G and H as stated we have:

TorRGp (RH,Z) = 0 for p > rankG− rankH (7)

Together with Hodgkin’s spectral sequence (Fig. 1), this implies the general form
of Theorem 3.6.
The vanishing result (7) was observed even before Pittie announced his result by
Snaith [Sna71, Thm 4.2]. His strategy for passing from full rank to arbitrary
rank is similar to the strategy used in the proof below. However, in the absence
of Steinberg and Pittie’s result, Snaith had to work with completions.

Proof of Corollary 3.10. We use the usual notation pdRM to denote the project-
ive dimension of a module M over a ring R. Consider first the case that H ⊂ G
is an inclusion of tori T ′ ⊂ T . Then T ′ is a direct factor of T [HN12, Lem. 15.3.2],
and R(T ) ∼= R(T ′)[x±1

1 , . . . , x±1
m ], where m is the difference of ranks between T

and T ′. In this case, the projective dimension pdRT RT ′ is exactly m: we need
only apply the First Change of Rings Theorem [Wei94, Thm 4.3.3] inductively
to the elements (x1 − 1), (x2 − 1), . . . , (xm − 1).
Next, consider the case of a torus T ′ contained in an arbitrary compact Lie
group G with torsion-free fundamental group. Choose a maximal torus T of G
such that T ′ ⊂ T , so that we may again view RT ′ as an RT -module. Applying
the General Change of Rings Theorem [Wei94, Thm 4.3.1] to the restriction
map RG → RT , we obtain the inequality pdRGRT ′ ≤ pdRT RT ′ + pdRGRT .
By Theorem 3.9, the second summand on the right side vanishes, and by the
previous step pdRT (RT ′) ≤ rankG − rank T ′. So altogether we obtain the
required inequality.
Finally, for an arbitrary closed connected subgroup H ⊂ G, consider the inclusion
of a maximal torus i : T ′ ↪→ H. By [Ati68, Rem. 1 after Prop. 4.9], there exists
a morphism of RH-modules i∗ : RT ′ → RH providing a left inverse to the
restriction morphism i∗. In the situation at hand, we can view i∗ and i∗ as
morphisms of RG-modules. This shows that the vanishing of TorRGp (RT ′,−)
implies the vanishing of TorRGp (RH,−), and hence that pdRGRH ≤ pdRGRT ′.

Remark 3.11. The results on the projective dimensions can be extended to a
slightly larger class of groups. Let us say that a Lie group is good if it is compact
and connected and if its complex representation ring RG is isomorphic to a
polynomial ring tensored with a Laurent ring. As mentioned above, all compact
connected Lie groups whose fundamental group is torsion-free are good. More
precisely, a compact connected Lie group is good if and only if each simple factor
of its semisimple part is either simply connected or of the form SO(2n + 1)
[Ste75]. Steinberg’s theorem in fact says:

Let G be a compact connected Lie group. Then RH is free over RG
for every closed connected subgroup H ⊂ G of maximal rank if and
only if G is good.
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Corollary 3.10 and its proof above likewise hold more generally for good G.
However, in Theorem 3.6, the assumption that π1(G) is torsion-free cannot
be weakened to “G is good”. For example, consider SO(2n + 1)/SO(2n) ∼=
Spin(2n+ 1)/Spin(2n) ∼= S2n. Both SO(2n+ 1) and Spin(2n+ 1) are good, but
the natural map RH → K(S2n) referred to in the theorem is only surjective for
the presentation withG = Spin(2n+1). Indeed, by Lemma 3.4 the pullback along
the covering homomorphism π : Spin(2n) � SO(2n) fits into a commutative
triangle:

R(Spin(2n)) α(Spin)
,,
K(S2n)

R(SO(2n))
π∗
OO

α(SO)

22

The theorem implies that α(Spin) is an epimorphism that identifies K(S2n)
with Z[∆̃+]/(∆̃2

+), where ∆̃+ = ∆+ − rank(∆+) is one of the reduced half-spin
representations. This generator does not lie in the image of α(SO).

3.4 Real bundles

Suppose that G and H are as above: G is a compact connected Lie group with
torsion-free fundamental group, and H is a closed connected subgroup. The
real and quaternionic versions of α are surjective only under far more restrictive
conditions than those of Theorem 3.6. In [Sey73, Thm5.24], Seymour describes
how to compute the cokernel of αO : RO(H)→ KO(G/H) based on a detailed
understanding of how the complex version of α interacts with the involution
on K(G/H) and the decomposition of R(H) into representations of different
types. The precise result is both difficult to state and to work with, but it has
the following simple corollary, of which we here provide a short and independent
proof:

Proposition 3.12 ([Sey73, Cor. 5.25]). Let G and H be as in Theorem 3.6,
with rankG = rankH. If the conjugation on R(H) is the identity map, then both
αO : RO(H)→ KO(G/H) and αSp : RSp(H)→ KSp(G/H) are surjective.

Remark 3.13. The condition on R(H) is satisfied for a large class of Lie groups:
conjugation acts trivially on R(H) for any compact connected Lie group H that
has no circle factor and no simple factors of types An with n ≥ 2, D2n+1 with
n ≥ 4 or E6. For simply connected H, this follows from [Zib15, Table 1]. In
general, H will be a quotient of a simply connected group H̃ by a finite central
subgroup, and then R(H) will embed into R(H̃); see the proof of Lemma 6.1.

On the other hand, the condition on R(H) is by no means a necessary one. For
example, αO and αSp are both surjective for even-dimensional projective spaces
CP2n = U(2n+1)/(U(2n)×U(1)), even though the conjugation acts nontrivially
on R(U(2n)× U(1)).
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Proof. As K1(GH ) vanishes, we can apply Lemma 2.1. Thus, the different
versions of α fit into the following exact diagram with exact rows (compare
[Zib15, Prop. 2.2]):

R(H)⊕R(H) //

α⊕α
��

RO(H)⊕RSp(H) //

αO⊕αSp

��

h+(RH) //

h+(α)
��

0

K(GH )⊕K(GH ) // KO(GH )⊕KSp(GH ) // h+(K(GH )) // 0

We already know that α is surjective. As the involution on R(H) is trivial, so is
the involution on K(GH ). Therefore, h+(α) is obtained from α by tensoring with
Z2. In particular, h+(α) is also surjective. The surjectivity of αO and αSp now
follows from the diagram.

Note that the class of spaces satisfying the hypotheses in Proposition 3.12 is
closed under products: if the conjugation acts as the identity both on R(H1)
and R(H2), then it also acts as the identity on R(H1 ×H2) ∼= R(H1)⊗R(H2).
In fact, we have the slightly more general “product theorem”:

Proposition 3.14. Let G1, H1 and G2, H2 be as in Theorem 3.6, with
rankGi = rankHi. Then αO and αSp are surjective for the product G1/H1 ×
G2/H2 if and only if they are surjective for both G1/H1 and G2/H2 and one of
h−(K(G1/H1)), h−(K(G2/H2)) is zero.

Remark 3.15. The condition h−(K(M)) = 0 is satisfied in each of the following
cases:
– When M is any of the homogeneous spaces included in Proposition 3.12, since
for these conjugation acts trivially on K(M) and K(M) is torsion-free by
Theorem 3.6.

– When M = CP2n. This can be verified directly, or using Lemma 2.1 and the
known results for KO2i(CP2n)/r [Zib15, § 4.2].

– When the cohomology of M is concentrated in degrees multiples of 4. This
can be seen using the AHSS: we find that the conjugation acts trivially on
each homogeneous summand of the graded ring associated with the cellular
filtration on K(M), and hence that h− vanishes on each summand. It then
follows inductively that h− vanishes for the whole K-ring.

In contrast, when M is S8n+2, S8n+6 or CP2n+1, we have h−(K(M)) = Z2.

Proof of Proposition 3.14. Consider the diagram used in the previous proof, with
H1 ×H2 in place of H and G1 ×G2 in place of G. Using the Künneth theorems
for complex representation rings [Ada69, Thm 3.65], for K-theory [Ati62] and
for Tate cohomology (see Lemma 2.3 and Remark 2.2), we obtain:

R(H1 ×H2) ∼= R(H1)⊗R(H2) h+(R(H1 ×H2)) ∼= h+(RH1)⊗ h+(RH2)
K
(
G1
H1
× G2

H2

) ∼= K
(
G1
H1

)
⊗K

(
G2
H2

)
h+(K

(
G1
H1
× G2

H2

)
) ∼= h+(K

(
G1
H1

)
)⊗ h+(K

(
G2
H2

)
)

⊕ h−(K
(
G1
H1

)
)⊗ h−(K

(
G2
H2

)
)

The vertical map αO ⊕αSp is surjective if and only if the vertical map h+(α) on
the right is surjective, which is the case if and only if it is surjective for both G1

H1

and G2
H2

and if the additional summand h−(K(G1
H1

))⊗ h−(K(G2
H2

)) vanishes.
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When one of the factors in the product is a sphere whose dimension is a multiple
of eight, the other factor may be arbitrary — the isomorphism (1) in Section 2.1
and the surjectivity of αO for S8n imply:

Proposition 3.16. If M = G/H is a compact homogeneous space such that
αO is surjective, then

αO : RO(H × Spin(8n))→ KO(M × S8n)

is also surjective.

4 Curvature on vector bundles

4.1 Curvature on homogeneous bundles

Any compact Lie group G admits a biinvariant metric, which in particular has
non-negative sectional curvature. Moreover, isometric quotients of non-negatively
curved manifolds also have non-negative sectional curvature by O’Neill’s theorem
on Riemannian submersions. It easily follows that compact homogeneous spaces
G/H and homogeneous vector bundles Eρ = G×HFm over compact homogeneous
spaces admit metrics with non-negative sectional curvature (where Fm is endowed
with the Euclidean flat metric).
We will use the following result that relates the K and KO-theory of a homogen-
eous space to the SCSQ.

Proposition 4.1 ([Gon17]). Let M = G/H be a compact homogeneous space,
where G is a compact Lie group, and assume that the map αO : RO(H) →
KO(M) (respectively α : R(H) → K(M)) is surjective. Then for every real
(resp. complex) vector bundle E over M , the product E × Rk carries a metric
of non-negative sectional curvature for some integer k.

We give here the idea of the proof, which consists in showing that every vector
bundle E is stably isomorphic to a homogeneous vector bundle (see [Gon17]
for the details). By assumption, the virtual class E − 0 ∈ KF(G/H) equals
Eρ1 − Eρ2 for some representations ρ1, ρ2 of H. It is well known that one can
choose a representation ρ3 such that Eρ2 ⊕ Eρ3 is a trivial bundle m. Thus

E = Eρ1 − Eρ2 + Eρ3 − Eρ3 = Eρ1⊕ρ3 −m

in KF(G/H), and it follows that E × Rk ∼= Eρ1⊕ρ3⊕(k−m) for some k.

4.2 Vector bundles over tangentially homotopy equivalent
spaces

In this section we prove Proposition 1.3. It is a consequence of the “Work Horse
Theorem” 4.2 below, which follows from classical results by Haefliger [Hae61]
and Siebenmann [Sie69].
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“Work Horse Theorem” 4.2 ([TW15, Theorem 10.1.6]). Let Ei → Mn
i be

vector bundles over compact manifolds of the same rank l, for i = 1, 2. Suppose
that f : E1 → E2 is a tangential homotopy equivalence, where l ≥ 3 and l > n.
Then f is homotopic to a diffeomorphism.

Proof of Proposition 1.3. Let f : M → N be a tangential homotopy equivalence
and π : E → N an arbitrary smooth real (resp. complex) vector bundle. We
shall prove that the manifold E×Rk carries a metric with non-negative sectional
curvature for some k.
Consider the pullback of E along f :

f∗E

π′

��

h // E

π

��
M

f // N

When E is a complex vector bundle, the pullback f∗E is a also a complex
vector bundle. But let us first ignore any possible complex structure on E and
concentrate on the (underlying) real bundle/the total space of E. The map f is
a homotopy equivalence, and the same holds for the bundle projections π and
π′. Hence h is also a homotopy equivalence. By our assumption on f , we have
f∗(TN) = TM in KO(M). Using the isomorphisms

TE ∼= π∗TN ⊕ π∗E
T (f∗E) ∼= (π′)∗(TM)⊕ (π′)∗f∗E

[tD91, Satz IX.6.9] together with the commutativity of the above square we obtain
that h∗(TE) = T (f∗E) in KO(f∗E). Thus h is also a tangential homotopy
equivalence.
If necessary, replace E by E × Rk, where k is chosen large enough to satisfy the
assumptions of the “Work Horse Theorem” 4.2. Possibly increasing k once more,
we may by our assumption on M equip f∗(E×Rk) = f∗E×Rk with a metric of
non-negative sectional curvature. Then the “Work Horse Theorem” 4.2 implies
that h defines a diffeomorphism f∗E ×Rk → E ×Rk, and hence E ×Rk can be
equipped with a metric of non-negative sectional curvature.

4.3 Products with the real line

Here we provide a proof of the claim in Example 1.2. The starting point is the
following consequence of Smale’s h-cobordism theorem.

Lemma 4.3 ([Bro65]). Let Mn, Nn be compact simply connected manifolds of
dimension n ≥ 5. If M ×R is diffeomorphic to N ×R, then M is diffeomorphic
to N .

We obtain the following equivalence for the existence of non-negatively curved
metrics.

Lemma 4.4. Let Mn be a compact simply connected manifold of dimension
n ≥ 5. Then M × R admits a metric with non-negative sectional curvature if
and only if so does M .
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Proof. One implication is trivial: if M admits a non-negatively curved metric,
take the product metric on M × R.
Suppose conversely that M × R admits a metric with non-negative sectional
curvature. Then by the Soul Theorem, M ×R is diffeomorphic to the total space
of a vector bundle over a soul S of M ×R. Since any vector bundle projection is
a homotopy equivalence, it follows that S is homotopy equivalent to M , and in
particular of the same dimension. Hence M × R is diffeomorphic to the total
space of a real line bundle over S, which must be S×R as S is simply connected.
Using Lemma 4.3 we see that M is diffeomorphic to S. This completes the
proof: recall that a soul S of M × R inherits a metric of non-negative sectional
curvature, as it is a totally geodesic submanifold.

5 The positive cases

We are now ready to apply the tools developed in the previous sections to the
Stable Converse Soul Question (SCSQ). Almost all statements made in Section 1
are direct consequences of the results obtained in Propositions 5.3, 5.5 and 5.6
below:

Proof of Theorem 1.5. By Theorem 3.6, the map α : R(H) → K(G/H) is sur-
jective for all homogeneous spaces G/H in Theorem 1.5. Now apply the complex
versions of Propositions 4.1 and 1.3.

Proofs of Theorems 1.6 to 1.11. For all the homogeneous spaces contained in
each theorem, there is a presentation G/H for which the map αO : RO(H)→
KO(G/H) is surjective: the summary below provides a reference for surjectivity
of αO in each case. Therefore Proposition 4.1 gives the result.

Theorem 1.6 ⇐ Proposition 5.6
Theorem 1.7 ⇐ Proposition 5.3
Theorem 1.8 ⇐ Proposition 3.12
Theorem 1.9 ⇐ Proposition 3.14, Prop. 5.1 in [Gon17] and Remark 3.15
Theorem 1.10 ⇐ Proposition 5.5
Theorem 1.11 ⇐ Proposition 3.16

(Theorem 1.11 also relies on Proposition 1.3.)

Proof of the Main Theorem. Given Proposition 1.3 and the classification of ho-
mogeneous spaces with positive curvature [WZ], we have to prove the statement
for the CROSSes and for the spaces W 6, B7, W 7

p,q, W 12 and W 24. For any of
the CROSSes, it is shown in [Gon17] that there is a presentation G/H for which
αO : RO(H)→ KO(G/H) is surjective, so Proposition 4.1 gives the result. For
the spaces W 6, B7 and W 7

p,q the result follows from Theorem 1.7. Finally, recall
that the usual presentations of W 12 and W 24 are Sp(3)/Sp(1)3 and F4/Spin(8),
respectively, and observe that conjugation acts trivially on both Sp(1)3 and
Spin(8). Thus Theorem 1.8 completes the proof.
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space H0 H1 H2 H3 H4 H5 H6 H7 reference

Wu Z 0 0 Z2 0 Z [Bar65, pp. 9–10]
W 6 Z 0 Z2 0 Z2 0 Z [AZ16, p. 1005]
G̃r2,5 Z 0 Z 0 Z 0 Z [Van99, Thm 11]
B7 Z 0 0 0 Z10 0 0 Z [CE03, p. 365]
T1S4 Z 0 0 0 Z2 0 0 Z [CE03, p. 379]
W 7
p,q Z 0 Z 0 Z|p2+q2+pq| Z 0 Z [Esc82, Prop. 36]

N7
p,q Z 0 Z 0 Zq2 Z 0 Z [KS88, p. 375]

N7
p,q,r Z 0 Z2 0 Z|2pqr| Z2 0 Z [Ber91, p. 85]

Table 1: Cohomologies of homogeneous spaces of dimension at most seven

5.1 Homogeneous spaces of dimension at most seven

Compact simply connected homogeneous spaces of dimension ≤ 7 are classified
(see [Gor12,Kla88]). Such a space is diffeomorphic to one of the following:

• Sn = Spin(n+ 1)/Spin(n), with 2 ≤ n ≤ 7

• CPn = U(n+ 1)/(U(n)× U(1)) with n = 2 or n = 3

• a product of spheres, CP2 × S2, or CP2 × S3

• one of the following spaces appearing in the corresponding dimensions:

n = 5 : Wu = SU(3)/SO(3), the Wu-manifold
n = 6 : W 6 = SU(3)/T 2, the Wallach flag manifold

n = 6 : G̃r2,5 = SO(5)/(SO(2)× SO(3)), the oriented real Grassmannian
n = 7 : T1S4 = Spin(5)/Spin(3), the unit tangent bundle of S4

(Here, the inclusion Spin(3) ⊂ Spin(5) is the obvious one.)
n = 7 : B7 = Spin(5)/Spin(3), the Berger space

(Here, the inclusion of Spin(3) is defined by a nontrivial 5-
dimensional real representation.)

n = 7 : W 7
p,q = SU(3)/T 1

p,q, the Aloff-Wallach spaces
n = 7 : N7

p,q = (SU(2)×SU(3))/(U(1)×SU(2))p,q, the Witten manifolds
n = 7 : N7

p,q,r = SU(2)3/T 2
p,q,r

n = 7 : S2 ×Wu

T 1 and T 2 denote the circle and the torus groups respectively. The subscripts in
the quotient groups denote different inclusions parametrized by coprime integers
p, q, r.
Table 1 displays the integer cohomology groups Hk(−,Z) of the spaces described
above, together with the corresponding references. Using Proposition 2.7, we
easily deduce:
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Lemma 5.1. The reduced realification map r : K̃(M) → K̃O(M) is surjective
for all compact simply connected homogeneous spaces of dimension at most 7,
except for Wu and S2 ×Wu.

Proof. As the integer cohomology of Sn and CPm has no torsion, the same holds
for any possible productM = Sn1×· · ·×Sni×CPm1×· · ·×CPmj . In particular,
they all satisfy the hypothesis on Hn−2 in Proposition 2.7. All the spaces in
Table 1 except forWu likewise satisfy the hypothesis on Hn−2. So for all of these
spaces, the reduced realification is surjective. For Wu, the same Proposition
shows that the reduced realification is not surjective. For the only remaining
space, S2 ×Wu, we will see non-surjectivity in the proof of Proposition 5.3
below.

The ranks of the Lie groups involved in the spaces listed above are:

rank (U(n)) = rank (SU(n)) + 1 = n

rank (Spin(2n+ 1)) = rank (Spin(2n)) = n

It is immediate to check which spaces satisfy rankG − rankH ≤ 1, for which
Theorem 3.6 gives the following result.

Lemma 5.2. Let G/H be a compact simply connected homogeneous space of
dimension at most 7 and nondiffeomorphic to S3 × S3, with G compact and
simply connected. Then the map α : R(H)→ K(G/H) is surjective.

Moreover, we show that the real version αO is surjective for all homogeneous
spaces of dimension at most 7.

Proposition 5.3. Let G/H be a compact simply connected homogeneous space
of dimension at most 7 with G compact and simply connected. Then the map
αO : RO(H)→ KO(G/H) is surjective.

Remark 5.4. Proposition 5.3 is optimal in the sense that in dimension n = 8
it is no longer true: by Proposition 5.6 below, surjectivity of αO fails for the
presentation SU(2)×4/T of the product S2 × S2 × S2 × S2.

Proof of Proposition 5.3. When G/H is nondiffeomorphic to S3 × S3,Wu or
S2 ×Wu, the result follows immediately from Lemmas 5.1 and 5.2.
For G/H = S3 × S3, recall that KO(S3 × S3) = [Z] (see Lemma 2.4), hence αO
is surjective for trivial reasons.
It remains to consider the cases when G/H is diffeomorphic to Wu or S2 ×Wu.
For G/H = Wu, the AHSS’s and the description of the cohomology in Table 1
show that K̃(Wu) vanishes while K̃O(Wu) ∼= Z2, so clearly realification is not
surjective in this case. An explicit generator of K̃O(Wu) is given by the reduced
stable class of the tangent bundle ofWu. Indeed, by (d) in Section 2.4, the second
Stiefel-Whitney class defines an isomorphism K̃O(Wu)→ H2(Wu;Z2), and it is
known that the second Stiefel-Whitney class of Wu is nontrivial (see for example
[Bar65, Lem. 1.1], where the Wu-manifold is denoted by X−1). On the other
hand, the tangent bundle of a homogeneous space is a homogeneous vector bundle
(see Section 3.2). This implies the surjectivity of αO : RO(H)→ KO(Wu).
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Essentially the same argument works for the product M = S2 ×Wu = G/H.
Its cohomology is easily computed using the Künneth theorem. The AHSS’s
identify K̃(M) and K̃O(M) with the kernels of the corresponding differentials
d3 : E2,−2

2 → E5,−4
2 , both of which vanish according to the Leibniz rule. Using

above the description of the realification map above Lemma 2.5, we can thus
identify the cokernel of r : K̃(M)→ K̃O(M) with the cokernel of the reduction
map red : H2(M,Z)→ H2(M,Z2). This cokernel in turn can be identified with
the Z2-term of H2(M,Z2) corresponding to H2(Wu,Z2) under the Künneth
formula. Since the second Stiefel-Whitney class of S2 vanishes, it follows from
the Whitney product formula that the cokernel of red is generated by the second
Stiefel-Whitney class of M . So again, the reduced tangent bundle generates the
cokernel of r, and hence αO : RO(H)→ KO(M) is surjective.

5.2 Some products of spheres

A product of spheres is a homogeneous space G/H and the difference rankG−
rankH equals the number of odd-dimensional factors.

Proposition 5.5. Each of the products of spheres in Theorem 1.10 has a
presentation G/H for which the map αO : RO(H)→ KO(G/H) is surjective.

Proof. The case ` = 1 has already been discussed in [Gon17]. Here, the most
delicate case is the case of spheres of dimensions n ≡ 1: it is a result of Rigas
[Rig78] that in this case αO is surjective for some presentation of Sn, though it
is not apparent which presentation this is. In all other dimensions, and for all
products of spheres considered below, the usual presentation of (products) of Sn
as (products of) Spin(n+ 1)/Spin(n) does the job, and we implicitly use this
presentation without further specification.
For the tuples {3, 3}, {7, 7}, {7, 7, 7}, the product G/H satisfies KO(G/H) = [Z]
by Lemma 2.4, hence αO : RO(H) → KO(G/H) is trivially surjective. For
the remaining tuples in the cases ` = 2, 3, 4, we have rankG− rankH ≤ 1, so
that α : R(H)→ K(G/H) is surjective by Theorem 3.6. All of these remaining
tuples (except for those of the form {0, n} and {0, even, odd}, which are covered
by the last item) also satisfy the numerical condition of Corollary 2.6, hence
realification r : K(G/H)→ KO(G/H) is surjective. Thus we get the surjectivity
of αO : RO(H)→ KO(G/H).
Now let us consider the tuples {even, n2, . . . , n`} where ni ≡ 0 or 4 for all i. For
the product G2/H2 corresponding to the tuple {n2, . . . , n`}, Proposition 3.12
implies that the map α0 : RO(H2) → KO(G2/H2) is surjective and that
h−(K(G2/H2)) = 0 (see Remark 3.15). Observe that for the usual present-
ation of an even dimensional sphere G1/H1 we have that rankG1 = rankH1 and
αO : RO(H1)→ KO(G1/H1) is surjective, hence Proposition 3.14 applies to the
product G/H = G1/H1 ×G2/H2 and shows that αO : RO(H)→ KO(G/H) is
surjective.
Finally, consider A ∪ {nk, . . . , n`}, where ni ≡ 0 for all i and A is any of the
tuples above. We have already shown that αO is surjective for the appropriate
presentation of the product corresponding to the tuple A, so the claim follows
directly from Proposition 3.16.
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5.3 Few full flag manifolds

When T ⊂ G is a maximal torus, the homogeneous space G/T is referred to
as a full flag manifold. As always, we may and will assume that G is simply
connected. The KO-theory such full flag manifolds is investigated in [Zib15].
The results there easily imply:

Proposition 5.6. The only full flag varieties for which αO : R(T )→ KO(G/T )
is surjective are SU(m)/T with m ∈ {2, 3, 4, 5, 7}, Spin(7)/T and G2/T , and
the following products:

SU(2)×2/T SU(3)×2/T (SU(3)× SU(4))/T (SU(3)×G2)/T
SU(2)×3/T SU(3)×3/T (SU(3)× SU(5))/T

Proof. Let bC, bR and bH denote the number of basic representations of G
of complex, real and quaternionic type, respectively. By the main result of
[Zib15], the Z4-graded “Witt ring”

⊕
iKO

2i(G/T )/r is an exterior algebra over
Z2 on bH generators of degree 1 and (bC/2) + bR generators of degree 3. By
[Zib15, Example 2.3], αO is surjective if and only if KO0(G/T )/r = Z2, i. e. if
the only additive generator of the Witt ring in degree zero is the multiplicative
unit. This happens if and only if all of the following conditions are met:
- There are at most 3 generators in degree 1, i. e. bH ≤ 3.
- There are at most 3 generators in degree 3, i. e. (bC/2) + bR ≤ 3.
- We do not simultaneously have generators in degree 1 and in degree 3, i. e.
bH = 0 or bC + bR = 0.

The claim now follows from [Zib15, Table 1].

6 The 13-dimensional Berger manifold

In this section we prove Theorem 1.12 — see Propositions 6.6, 6.9 and 6.10
below.
The space under consideration can be constructed as follows. Consider the
standard embedding j : Sp(2)→ SU(4), and define:

i : Sp(2)× S1 −→ SU(5)
(A, z) 7→ diag(j(A)z, z4)

(8)

The homomorphism i has nontrivial kernel given by {(Id, 1), (−Id,−1)} ∼= Z2.
So i defines a two-fold covering from Sp(2)× S1 onto its image, which is usually
denoted Sp(2)×Z2 S

1 or simply Sp(2) · S1. The 13-dimensional Berger space
B13 is the quotient

B13 := SU(5)
Sp(2)×Z2 S

1

It is the total space of a differentiable RP5-bundle over CP4 [Zil07]:

RP5 → B13 → CP4 (9)
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6.1 Representation rings

We collect here some information on the representation rings of the groups used to
constructB13. Let v denote the standard five-dimensional complex representation
of SU(5), and let x be the standard one-dimensional representation of the
circle group S1. Let u denote the restriction of the standard four-dimensional
representation of SU(4) to Sp(2), viewed as a quaternionic representation. The
complex representation rings of SU(5) and of Sp(2) × S1 can be written as
follows:

R(SU(5)) ∼= Z[v, λ2v, λ3v, λ4v]
R(Sp(2)× S1) ∼= R(Sp(2))⊗R(S1)

∼= Z[c′u, λ2(c′u), x±1]

There are no hidden relations: the first is a polynomial ring, while the second
is a tensor product of a polynomial ring and the ring of Laurent polynomials
Z[x±1].

Lemma 6.1. The representation ring R(Sp(2) ×Z2 S
1) is the subring of

R(Sp(2)× S1) generated by (c′u)2, λ2(c′u), (c′u)x±1 and x±2. We may some-
times write this ring as

R(Sp(2)×Z2 S
1) ∼= Z[(c′u)2, λ2(c′u), (c′u)x±1, x±2],

but note that there are relations among the generators.

Proof. In general, given a finite central subgroup of a compact Lie group, Γ ⊂ G,
the representation ring of the quotient G/Γ can be computed as the ring of fixed
points under the action of Γ on R(G). More precisely, we have an action of Γ
on R(G)⊗Z C, as follows. Take some γ ∈ Γ and an irreducible representation
ρ. As γ is central, Schur’s Lemma implies that ρ(γ) acts as multiplication by
some complex scalar. Identify ρ(γ) with this scalar. Define γ.ρ to be the element
ρ⊗ ρ(γ) ∈ R(G)⊗Z C, for any irreducible ρ, and extend this action C-linearly.
A representation of G descends to a representation of G/Γ if and only if is fixed
by this action, so:

R(G/Γ) ∼= (R(G)⊗ C)Γ ∩R(G)

[Ste75, § 3]. In our case, where Γ = {(I, 1), (−I,−1)} and G = Sp(2)× S1, the
action of Γ on the ring generators of R(G) is easily computed: (−I,−1) acts as
multiplication by −1 on c′u and x±1, but as the identity on λ2(c′u). It follows
that the monomials in these generators that are fixed by the action of Γ are
those monomials (c′u)i(x)j(λ2c′u)k with i + j even. All these monomials are
linearly independent, so the above result follows.

Lemma 6.2. Let ι : Sp(2)×Z2 S
1 ↪→ SU(5) denote the inclusion of the image

of i (8). The restriction ι∗ : R(SU(5))→ R(Sp(2)×Z2 S
1) is determined by:

ι∗(v) = (c′u)x1 + x−4 ι∗(λ2v) = λ2(c′u)x2 + (c′u)x−3

ι∗(λ3v) = λ2(c′u)x−2 + (c′u)x3 ι∗(λ4v) = (c′u)x−1 + x4
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Proof. The restriction of v can be read off the definition of i. For the other ring
generators, we observe that restriction commutes with exterior powers and use
the usual formulas for manipulating exterior powers (e. g. [FL85, p. 5]). Note
that λ3(u) = u: as a representation of SU(4), the standard representation u is
only conjugate to λ3u, but its restriction to Sp(2) is of quaternionic type, hence
self-conjugate.

Lemma 6.3. RO(Sp(2) ×Z2 S
1) is generated as a ring by 1, u2, λ2u and the

image of the realification map.

Proof. We first consider the real representation ring of the product H̃ :=
Sp(2) × S1. As u is a quaternionic representation, both u2 and λ2u are real
representations. We claim that RO(H̃) is generated as a ring by 1, u2, λ2u and
the image of the realification map. To see this, recall from Remark 2.2 that c and
c′ define an isomorphism RO(H̃)/r ⊕RSp(H̃)/q ∼= h+(RH̃) while h−(RH̃) = 0.
Using Lemma 2.3, we find that:

h+(R(H̃)) = h+(R(Sp(2)))⊗ h+(R(S1))
= Z2[c′u, λ2(c′u)]⊗ Z2

= Z2[c′u, λ2(c′u)]

As we know which monomials in c′u and λ2(c′u) are real and quaternionic,
respectively, we find that RO(H̃)/r = Z2[u2, λ2u]. This implies the claim.
Now consider the quotient H := Sp(2)×Z2 S

1. We will show that the inclusion
RH ↪→ RH̃ induces an isomorphism h∗(RH) ∼= h∗(RH̃). To simplify the
notation, we introduce the polynomial ring A := Z[λ2(c′u)], which we view as a
subring of R(H). Lemma 6.1 implies that, additively, we can decompose R(H)
and R(H̃) as follows:

R(H̃) ∼=
⊕

(i,j)∈J̃ A · (c
′u)ixj

R(H) ∼=
⊕

(i,j)∈J A · (c′u)ixj

The index set J̃ ranges over all pairs (i, j) with i ∈ N0 and j ∈ Z, while the
subset J ⊂ J̃ ranges only over those pairs with i+ j even. The involution t is
trivial on A and on c′u, while t(x) = x−1. Thus:

h+(RH) ∼= h+(⊕
i+j even A · (c′u)ixj

)
= h+(⊕

i even A · (c′u)i
)
⊕
⊕

j>0
i+j even

h+ (A · (c′u)ixj ⊕ t(A · (c′u)ixj)
)︸ ︷︷ ︸

0= h+(Z[λ2(c′u), (c′u)2])
∼= h+(RH̃)

The claim of the Lemma concerning RO(H) now follows as it did above for
RO(H̃).

6.2 Cohomology

The cohomology of the Bazaikin spaces is known. For the Berger space B13,
we have H∗(Bq,Z) ∼= Z[β, γ]/(5β3, β5, γ2, γβ3) with deg β = 2 and deg γ = 9
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[FZ09, Prop. 2.1]. Thus, the Atiyah-Hirzebruch spectral sequences (AHSS)
computing K- and KO-theory will have the following lines:

(0) (2) (4) (6) (8) (9) (11) (13)

H∗(B13,Z) : Z · 1 Z · β Z · β2 Z5 · β3 Z5 · β4 Z · γ Z · γβ Z · γβ2

H∗(B13,Z2) : Z2 · 1 Z2 · β Z2 · β2 Z2 · γ Z2 · γβ Z2 · γβ2

Lemma 6.4. The total Stiefel-Whitney class of B13 is w(B13) = 1+β+β2 and
its total Wu class is ν(B13) = 1 + β. The second Steenrod square Sq2 operates
on H∗(B13,Z2) as follows:

Sq2(β) = β2 Sq2(β2) = 0 Sq2(γ) = 0 Sq2(γβ) = γβ2

Proof. We first compute the low degree Stiefel-Whitney classes using the fibre
bundle (9). In general, given a differentiable fibre bundle F i−→ E

π−→ X, we
have i∗w(E) = w(F ), c. f. [BH60, p. 5.1]. In our situation, F = RP5 with
H∗(RP5,Z2) = Z2[α]/α6 and w(RP5) = 1 + α2 + α4 [MS74, Cor. 11.15 (p. 133)].
So we find

w(B13) = 1 + β + β2 + terms of degrees ≥ 9.

The Wu classes νk are determined by the Steenrod squares by the formula
Sqk(x) = νk ∪ x for x ∈ H13−k(B13,Z2) [MS74, top of p. 132]. As Sqk vanishes
on elements of degree less than k, we necessarily have νk = 0 for k > 13− k, i. e.
for k ≥ 7. So the total Wu class reduces to

ν(B13) = 1 + ν2 + ν4.

Both ν2 and ν4 and the higher Stiefel-Whitney classes are now determined by
the relation between the Wu classes and the Stiefel-Whitney classes [MS74,
Thm 11.14]:

wk = νk + Sq1(νk−1) + Sq2(νk−2) + · · ·

Keeping in mind that Sqi vanishes on classes of degree less than i, we find that
ν2 = β, ν4 = 0 and w9 = w11 = w13 = 0.
Finally, we compute all Steenrod squares. For β and β2 the claims are clear.
For γβ, we use the formula Sq2(γβ) = ν2 ∪ γβ defining ν2 and the result ν2 = β
from above. The second Steenrod square of γ is now determined by the Cartan
formula Sq2(ab) = Sq2(a)b+ Sq1(a)Sq1(b) + aSq2(b).

6.3 K-theory: additive structure

Proposition 6.5. The complex K-groups of the Berger space B13 are as follows:

K0(B13) = [Z]⊕ Z⊕ Z⊕ Z5 ⊕ Z5

K1(B13) = Z⊕ Z⊕ Z

The (reduced) real K-groups K̃O∗(B13) and the maps η, c and r are as displayed
in Fig. 2. In particular, the quaternionification q : K̃0(B13)→ K̃O−4(B13) is sur-
jective, while the realification r : K̃0(B13)→ K̃O0(B13) has cokernel isomorphic
to Z2.
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Figure 2: The Bott sequence for B13. Missing arrows indicate the zero map.

Proof. The AHSS for complex K-theory collapses: the torsion elements in Z5
cannot be reached by any nontrivial differential. This immediately determines
K1(B13), and it determines K0(B13) up to an extension problem: there is a
subgroup F5 ⊂ K0(B13) that fits into a short exact sequence 0→ Z5 → F5 →
Z5 → 0. In order to determine whether F5 is Z5 ⊕ Z5 or Z25, we consider the
involution t on K0 and the induced morphism of spectral sequences, as described
in Section 2.4. We obtain, in particular, the following commutative diagram,
which implies F5 = Z5 ⊕ Z5.

0 Z5 F5 Z5 0

0 Z5 F5 Z5 0
id t −id

We now turn to KO-theory. A portion of the E2-page of the AHSS is displayed
in Fig. 3. The differentials d2 on the E2-page are determined by Sq2, which we
computed in Lemma 6.4. Figure 3 displays those d2’s which are zero in gray and
those which are not in red. Once we have passed to the E3-page, there are only
three further differentials which could be nonzero, two d7’s and one d9. However,
a comparison with the spectral sequence for K-theory shows that they all vanish.
Thus, the non-circled entries in Fig. 3 constitute the E∞-page.
The groups K̃Oi(B13) with i = −2, . . . ,−6 can be read off the spectral se-
quence directly. To compute KO−1(B13), consider the morphism of spectral
sequences induced by realification, and concentrate first on the diagonals comput-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 Z 0 2Z 0 Z 0 Z5 0 Z5 Z 0 2Z 0 Z

-1 Z2 0 Z2 0 Z2 0 0 0 0 Z2 0 Z2 0 Z2

-2 Z2 0 Z2 0 Z2 0 0 0 0 Z2 0 Z2 0 Z2

-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-4 Z 0 Z 0 Z 0 Z5 0 Z5 Z 0 Z 0 Z

-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-8 Z 0 2Z 0 Z 0 Z5 0 Z5 Z 0 2Z 0 Z

-9 Z2 0 Z2 0 Z2 0 0 0 0 Z2 0 Z2 0 Z2

-10 Z2 0 Z2 0 Z2 0 0 0 0 Z2 0 Z2 0 Z2

-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-12 Z 0 Z 0 Z 0 Z5 0 Z5 Z 0 Z 0 Z

-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p

q

Figure 3: The AHSS computing KO∗(B13), with shaded zero diagonal. The
red arrows are the nonzero differentials, and entries circled in red are those that
vanish when passing to the E3-page. The red twos indicate that Z is replaced
by the subgroup 2Z when passing to the E3-page.
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ing K0(B13) and KO0(B13). Compare the filtrations and the exact sequences
that we obtain from the spectral sequences:

0 Fn+1K FnK En,−n∞ (K) 0

0 Fn+1KO FnKO En,−n∞ (KO) 0

r r r∞

The vertical arrow on the right comes from the change-of-coefficients morph-
ism Hn(−,K−n) → Hn(−,KO−n) induced by the realification r : K−n(pt) →
KO−n(pt), described in detail in Section 2.4. So we can compute cokernel and
kernel of the realification map step by step. This gives us the following exact
sequences:

0→ 0→ F 8K → F 8KO → Z2 → 0
0→ Z5 → F 6K → F 6KO → Z2 → 0
0→ Z5 → F 4K → F 4KO → Z2 → 0

0→ Z⊕ Z5 → F 2K → F 2KO → (Z2 or 0)→ 0

(10)

Note that F 2K = K̃ and F 2KO = K̃O, so that we find:

The realification map K̃(B13)→ K̃O(B13) has cokernel at most Z2.

Next, we analyse the map η : K̃O−1(B13)→ K̃O0(B13), playing the same game
with the filtrations as above. There is only one step:

0 0 F 9KO0 Z2 0

0 Z F 9KO−1 Z2 0

∼=

Thus, we find that K̃O−1(B13) ∼= Z ⊕ Z2. On the other hand, we know from
above that K̃−1(B13) is free. So the Bott sequence K̃ → K̃O → K̃O−1 → K̃−1

implies:

The realification map K̃(B13)→ K̃O(B13) has cokernel exactly Z2.

Next, to compute K̃O−7(B13), we consider the realification K̃−6(B13) →
K̃O−6(B13). Note that the entries H2(B13,Z) ∼= Z in the rows q = 0 of the
spectral sequence for KO-theory get replaced by the subgroup 2Z when passing to
the E3-page, so that r2,0∞ is surjective. Again arguing filtration-step-by-filtration-
step, we find that K̃−6(B13) → K̃O−6(B13) is surjective. The Bott sequence
therefore implies that K̃O−7(B13) injects into K̃−1(B13), so K̃O−7(B13) must
be torsion-free. Thus, we find that K̃O−7(B13) is as displayed.
Finally, for KO0(B13), the spectral sequence initially only tells us that
K̃O0(B13) ∼= Z ⊕ Z5 ⊕ X with X = Z2 or X = Z2 ⊕ Z2 or X = Z4. But
we also find that r : K̃1(B13)→ K̃O1(B13) has cokernel Z2. As K̃0(B13) contains
no two-torsion, the Bott sequence implies that K̃O0(B13) can contain at most
one element of order a power of two. Thus, K̃O0(B13) is as displayed.
The remaining maps in the Bott sequence are easily computed. As η ∈ KO−1(∗)
is two-torsion, the fact that most of the maps η are zero is clear. For the two

34



nonzero maps, we again use the spectral sequence and argue filtration-step-by-
filtration-step. The additional partial information concerning the maps r and c
displayed in Fig. 2 follows from the exactness of the sequence.

6.4 K-theory: multiplicative structure

Proposition 6.6. The real and complex K-rings of B13 are as follows:1

K(B13) ∼= Z[u, y]/(5u3, 5u4, u5, y3, uy2, u3y, y2 − u4,
y − u2 + u3 − u4, uy − u3 + u4, u2y − u4)

∼= Z · 1⊕ Zu⊕ Zy ⊕ Z5u
3 ⊕ Z5u

4

KO(B13) = Z[y′, w]/(5y′2, 2w,w2, wy′, y′3)
= Z · 1⊕ Zy′ ⊕ Z5y

′2 ⊕ Z2w

The ring homomorphisms t : K(B13) → K(B13) and c : KO(B13) → K(B13)
and the group homomorphism r : K(B13)→ KO(B13) are determined by:

t(y) = y c(y′) = y r(u) = y′ r(u3) = 3y′2

t(u) = y − u c(w) = 0 r(y) = 2y′ r(u4) = 2y′2

Proof. Let G = SU(5) and H = Sp(2) ×Z2 S
1, so that B13 = G/H. We first

compute the complex K-ring. By Theorem 3.6, K(B13) is isomorphic to R(H)
modulo the ideal generated by the restrictions of reduced generators of R(G).
Let us write

a := (c′u)2 b := x2 c := x−2 d := (c′u)x e := λ2(c′u)

for the generators of R(H) determined in Lemma 6.1. Then in R(H) we have
the relations displayed in line (11) below. Using Lemma 6.2, we find that the
restriction of reduced generators from R(G) to R(H) yield lines (12) and (13)
as additional relations in K(B13):

bc = 1 ab = d2 (11)
d+ c2 = 5 eb+ dc2 = 10 (12)
ec+ db = 10 dc+ b2 = 5 (13)

Thus, K(B13) is isomorphic to a quotient of the polynomial ring Z[a, b, c, d, e] by
all relations above. In particular, we see that a possible set of additive generators
is given by {b2, b, 1, c, c2}. Equivalently, a set of additive generators is given by
{b′2, b′, 1, c′, c′2}, where now b′ := b−1 and c′ := c−1 both lie K̃(B13). However,
for our purposes, the following set of additive generators seems most suitable:

1 u := b′ u3 = 2b′2 + c′2 − 3b′ − 3c′

y := b′ + c′ u4 = b′2 + c′2 − 2b′ − 2c′

A tedious but straightforward calculation shows that these satisfy the relations
and have the properties indicated above.

1The set of relations displayed for the complex K-ring is not minimal.
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For our computation of the KO-ring, we will also need to understand in terms
of our chosen generators the filtration F iK := F iK(B13) that appears in the
AHSS. We claim that this filtration is as follows:

F 1K = F 2K = (u, y)
F 3K = F 4K = (u2, y)
F 5K = F 6K = (u3, uy, y2)
F 7K = F 8K = (u4)

F 9K = 0

(14)

For F 1K, the kernel of the rank homomorphism, the claim is clear. As the
filtration is multiplicative, we moreover know “⊃” in each of the indicated
equalities:
F 3K = F 4K must contain (F 2K)2, in particular u2 and uy = u2 − y, so u2

and y.
F 5K = F 6K must contain F 1K · F 2K, in particular u3, uy and y2.
F 7K = F 8K must contain (F 1K)4, in particular u4.

In our specific situation, equality in (14) will follow if we can show that, assuming
equality, each quotient F iK/F i+1K is isomorphic to the corresponding entry of
the E2 = E∞-page of the AHSS. This is indeed the case:

F 2K/F 4K ∼= Z · u
F 4K/F 6K ∼= Z · {u2, y}/F 6K ∼= Z · u2 (since u2 = y modulo uy)
F 6K/F 8K ∼= Z · {u3, uy, u2y, u3y}/F 8K ∼= Z5 · u3

F 8K ∼= Z5 · u4

For F 6K/F 8K note that uy = u3 mod F 8K: We know that u2 = uy + y, so
multiplying by u we obtain u3 = u2y + uy. Using that u2y = y2, we can rewrite
this as: u3 = y2 + uy. The other possible generators of F 6K/F 8K vanish:
u2y = y2 vanishes modulo F 8K, and u3y = y3 = 0 anyway.
We now turn to the KO-ring. The associated graded ring that the AHSS
converges to has no nontrivial products, so this ring is not very helpful. We
therefore run through the additive computation again, choosing names for all
generators and taking a note of where they map under complexification.
First, we have F 9KO = Z2w for some mysterious element w mapping to
zero under complexification. Next we know that F 8KO ∼= Z5 ⊕ Z2, and that
F 8K → F 8KO has cokernel Z2. So the five-torsion in F 8KO must be generated
by some element of the form r(y2). The image of r(y2) under c is 2y2, since y2 is
self-conjugate. Equivalently:

F 8KO = Z5y
′′ ⊕ Z2w

for y′′ := 3r(y2), and c(y′′) = y2. The next filtration step for c : KO → K is:

Z2w ⊕ Z5y
′′ //

��
F 4KO //
��

Z
2��

Z5u
3 ⊕ Z5y

2 // Zy ⊕ Z5u
3 ⊕ Z5y

2 // Zy
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The vertical map on the right is c : KSp(∗)→ K(∗), which is multiplication by 2.
So F 4KO contains an element mapping to 2y + αu3 + βy2 for some α, β. As y′′
maps to y2, there must also be an element mapping to 2y + αu3. As the image
of any element under complexification is self-conjugate, we must have α = 0. We
conclude that there must be some element v ∈ F 4KO such that c(v) = 2y. So
F 4KO = Zv ⊕ Z5y

′′ ⊕ Z2w.
Finally, F 2KO = K̃O, F 2K = K̃, and we have seen that the cokernel of
c : K̃O → K̃ has no two-torsion. This implies that there is an element y′ ∈ F 2KO
such that c(y′) = y. Consider the two short exact sequences corresponding to
this last filtration step:

Zu ⊕ Z5y
′′ ⊕ Z2w //

��

F 2KO //

��

Z2y
′

0��
Zy ⊕ Zu3 ⊕ Z5y

2 // Zu⊕ Zy ⊕ Z5u
3 ⊕ Z5y

2 // Zu

The short exact sequence along the top gives us:

F 2KO = Zy′ ⊕ Z5y
′′ ⊕ Z2w.

As c(2y′) = c(v), we have v = 2y′+αw for some α. As w is in the smallest piece
of the filtration, we can replace the generator v by 2y′ everywhere above. Thus,
altogether, the filtration on KO(B13) may be written as follows:

F 1KO = F 2KO = (y′, w) = Z · y′ ⊕ Z5 · y′2 ⊕ Z2 · w
F 3KO = F 4KO = (2y′, w) = Z · 2y′ ⊕ Z5 · y′2 ⊕ Z2 · w
F 5KO = F 8KO = (y′2, w) = Z5 · y′2 ⊕ Z2 · w

F 9KO = (w) = Z2 · w
F 10KO = 0

It remains to determine the products of y′, y′′ and w. For filtration reasons, we
have (y′)3 = (y′′)2 = w2 = y′w = y′′w = 0. As c((y′)2) = c(y′′), we moreover
obtain the relation (y′)2 = y′′ + δw for some δ ∈ {0, 1}. We will return to the
value of δ at the end of the proof.
The behaviour of c has already been determined. It follows that r(y) = r(cy′) =
2y′ and likewise r(y2) = r(cy′′) = 2y′′. From cr(u) = u + tu = y = c(y′), we
deduce r(u) = y′ + αw for some α ∈ Z2. As we already know that w does not
lie in the image of r (c. f. (10) in the additive computation), α must be zero.
Similarly, cr(u3) = u3 + t(u3) = u3 + (y − u)3 = · · · = 3y2 implies r(u3) = 3y′′.
Now (y′)2 = r(u)y′ = r(u · cy′) and y′′ = r(3y2) are both in the image of r, so
their difference δw must also be in the image of r. But again, we already know
that w is not in the image of r. So δ = 0, i. e. (y′)2 = y′′.

6.5 The multiplicative map φ

For any Lie group G, there is a multiplicative map

φ : R(G)→ RO(G)

such that cφ(x) = x(tx) for any element x [Ada69, Lemma 7.2]. Likewise, we
have such map φ : K(X) → KO(X). The idea is that for any complex vector
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bundle E, there is a canonical conjugate linear automorphism J on E ⊗ tE such
that J2 = id. More precisely, we have the following:

Proposition 6.7 (Bousfield). For any finite CW complex X, there is a natural
map

φ : K(X)→ KO(X)
such that for all x, y ∈ K(X):

φ(xy) = φ(x)φ(y)
φ(x+ y) = φ(x) + φ(y) + r((tx)y)

cφ(x) = x(tx)
φ(tx) = φ(x)
φ(x) = λ2(rx)− r(λ2x)

Reference. See [Bou05]: the existence of φ and the first three properties are
asserted at the beginning of 6.11 and in Thm 6.5. The expression for φ(x) for
x ∈ K0(X) in terms of exterior powers is implicit in Thm 6.7, see 6.2 (iv). The
relation φ(tx) = φ(x) follows.

Note that the above properties allow us to easily compute φ modulo the kernel
of c. For example, in the case of X = B13, we must have φ(y) = y′2 + δw for
some δ ∈ {0, 1}. In fact, δ = 0 in this case:

Lemma 6.8. The map φ : K(B13)→ KO(B13) is determined by

φ(u) = −y′

φ(y) = y′2

and the above properties. In particular, the image of φ is contained in the image
of r, and hence does not contain the two-torsion summand of KO(B13).

Proof. φ(u) can be computed as follows. It is easy to compute φ on representation
rings because there c is injective, so φ is completely determined by cφ(x) = x(tx).
For the generator x ∈ R(S1), we find φ(x) = 1, so φ(x2) = 1 for the element
x2 ∈ R(H). Moreover, φ is compatible with the maps α, i. e. φ ◦ α = αO ◦ φ.
Thus, we find:

φ(u) = φ(α(x2 − 1)) = αO(φ(x2 − 1)) = αO(2− r(x2))
= αO(r(1− x2)) = r(α(1− x2)) = r(−u)
= −y′

The value of φ(y) can be deduced from this:

φ(y) = φ(u+ tu) = φ(u) + φ(tu) + r(u2)
= 2φ(u) + r(y + u3 − u4) = −2y′ + 2y′ + y′2

= y′2

Finally, note that K(B13) is generated by u and y as a ring. Both φ(u) and
φ(y) lie in the image of r. The properties of φ therefore imply that the whole
image of φ is contained in the image of r. The image of r does not contain the
two-torsion.
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6.6 Non-surjectivity of αO

Proposition 6.9. In the notation of Proposition 6.6, the image of the ring
homomorphism αO : RO(Sp(2)×Z2 S

1)→ KO(B13) is the subring

S := Z · 1⊕ Zy′ ⊕ Z5y
′2

generated by y′. As a subgroup, S is of index two.

Note that the product of y′ with the additional generator w of KO(B13) is
trivial. Thus, if we take S̃ := Zy′ ⊕ Z5y

′2 to denote the rank zero ideal of S, we
obtain the splitting K̃O(B13) ∼= S̃ × Z2w alluded to in Theorem 1.12.

Proof. By Proposition 6.6, the subring S is additively generated by the multi-
plicative unit 1 and by the image im(r) of the realification map r : K(B13) →
KO(B13). For the inclusion S ⊂ im(αO), it therefore suffices to note that
1 ∈ im(αO) (as αO is a ring homomorphism) and im(r) ⊂ im(αO) (as the com-
plex version α is surjective by Theorem 3.6 and αOr = rα by Lemma 3.3). It
remains to show the converse inclusion: the image of αO is contained in the
subgroup of KO(B13) generated by 1 and im(r).
By Lemma 6.3, RO(H) is generated as a ring by 1, u2, λ2u and the image
of the realification map. Clearly, αO maps the image of the realification map
to im(r), and it maps 1 to 1. So it suffices to show that αO also sends the
two additional generators u2 and λ2u to im(r). As noted in Lemma 3.3, the
different flavours of α are compatible with multiplication and exterior powers.
In particular, αO(u2) = αSp(u)2 and αO(λ2u) = λ2(αSpu). It therefore suffices
to show that:

KSp(B13) ·KSp(B13) ⊂ im(r) in KO(B13)
λ2(KSp(B13)) ⊂ im(r) in KO(B13)

As the quaternionification q : K(B13)→ KSp(B13) is surjective (Proposition 6.5),
we only need to show that im q · im q ⊂ im r and λ2(im q) ⊂ im r. The first
inclusion is clear from the usual multiplication rules for r: explicitly, qx · qy =
r(x · c′qy). For the second inclusion, note that, for any X and any z ∈ K(X),
we have λ2(qz) = λ2(rz) = r(λ2z) + φ(z) (Proposition 6.7). For X = B13,
Lemma 6.8 shows that imφ ⊂ im r, so the claim follows.

6.7 Pontryagin classes

Proposition 6.10. In the notation of Proposition 6.6, the generator w ∈
K̃O(B13) is the unique nonzero element with trivial Pontryagin classes.

Proof. We first compute the total Chern class c = 1+c1+c2+. . . of the generators
u and y of K(B13). We know that b = u+ 1 represents a line bundle, and the
spectral sequence computations imply c1(b) = c1(u) = ±β. So c(u) = 1± β, and
we deduce:

c(y) = c(u+ tu) = 1− β2

c(y2) = c(b2 + tb2 − 4b− 4tb+ 6) = (1± 2β)(1∓ 2β)/
(
(1± β)4(1∓ β)4)

= (1− 4β2)/(1− β2)4 = 1− 6β4 = 1− β4
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The only nontrivial Pontryagin classes that the cohomology of B13 admits are
p1, with values in Zβ2, and p2, with values in Z5β

4. For the total Pontryagin
classes p = 1 + p1 + p2 we find:

p(y′) = 1− c2(y) + c4(y) = 1 + β2

p(y′2) = 1− c2(y2) + c4(y2) = 1− β4

p(w) = 1− c2(c(w)) + c4(c(w)) = 1 (as c(w) = 0)

So for an arbitrary element µy′ + νy′2 + δw ∈ K̃O(B13), we find:

p(µy′ + νy′2 + δw) = (1 + β2)µ(1− β4)ν

= (1 + µβ2 +
(
µ
2
)
β4)(1− νβ4)

= 1 + µβ2 + (
(
µ
2
)
− ν)β4 ∈ 1 + Zβ2 + Z5β

4

This is equal to 1 if and only if µ = 0 in Z and ν = 0 in Z5.
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