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Abstract

We present type-independent computations of the KO-groups of full flag
varieties, i. e. of quotient spaces G/T of compact Lie groups by their
maximal tori. Our main tool is the identification of the Witt ring, a
quotient of the KO-ring, of these varieties with the Tate cohomology of
their complex K-ring. The computations show that the Witt ring is an
exterior algebra whose generators are determined by representations of G.
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Introduction

The complex K-ring of a homogeneous space X of the form G/H, where G
is a compact Lie group and H is a subgroup of maximal rank, has a classical
description in terms of the representation rings of G and H. In particular, every
stable isomorphism class of complex vector bundles over X lies in the image of
a natural ring homomorphism

α : R(H)→ K0(X)

that was already studied by Atiyah and Hirzebruch in their seminal paper
[AH61].
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For real vector bundles, the situation is far more subtle. In particular, while it
is straight-forward to define an analogous ring homomorphism

αO : RO(H)→ KO0(X),

it is easy to see that it is almost never surjective (Proposition 2.2).

On the whole, our current understanding of the KO-groups of homogeneous
spaces is still rather patchy. The problem of computing these groups is just as
old as the corresponding problem for complex K-groups, yet no general solution
is known to date. More recent progress includes a series of papers of Kishimoto,
Kono, Ohsita and Yagita computing the KO-groups of all full flag varieties,
i. e. of the homogeneous spaces of the form G/T , where G is as above and T is a
maximal torus [KKO04, KO13, Yag11]. As in earlier work [Fuj67,KH91,KH92],
the main strategy is to show that the Atiyah-Hirzebruch spectral sequence
collapses after the second differential, allowing a computation of the two-torsion
of the KO-groups via the second Steenrod square. However, the arguments
needed to put this strategy into practice are intricate. In particular, so far it
has been possible to establish that the spectral sequence collapses only on a
case-by-case basis, and the arguments used for the Lie groups of classical types
in [KKO04], for E6, F4 and G2 in [KO13] and for E7 and E8 in [Yag11] each
have different flavour. No relationship between vector bundles on G/T and
representations of G is apparent from these calculations.

In this paper, we present a more conceptual, type-independent computation of
the KO-groups of all full flag varieties based on the known description of their
K-rings. Our approach focuses on the “Witt ring” of X, for which we give the
following ad-hoc definition: Let ri : K2i(X)→ KO2i(X) denote the realification
maps. We define the Witt groups and the (total) Witt ring of X as the
cokernels of these maps and their direct sum, respectively:

Wi(X) := KO2i(X)/ri

W∗(X) :=
⊕
i∈Z/4

KO2i(X)/ri

We will seek to justify our terminology at the end of this introduction. First,
let us mention the key points that make these quotients interesting:

• The Witt groups capture the two-torsion of the KO-groups of X. In
particular, since the free parts of the KO-groups may easily be determined
by cell-counting, a description of the Witt groups leads to a full additive
description of KO∗(X) (Lemma 1.2).

• As a quotient ring of KOeven(X), the Witt ring W∗(X) provides a first
approximation to the ring structure of KO∗(X). In fact, it completely de-
scribes the products KOodd(X)⊗KOodd(X)→ KOeven(X) (Remark 1.3).

• The ring W0(X) detects all non-homogeneous vector bundles: elements of
KO0(X) not contained in the image of αO. More precisely, the cokernel
of αO may be identified with a quotient of W0(X) (Proposition 2.2).

• The Witt ring is computable: it follows from an observation of Bousfield
that W∗(X) may be identified with the Tate cohomology of the complex
K-ring K0(X) (see Section 1.2).
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Type G bC bR bH

An SU(n+ 1) n− 1 − 1 if n ≡ 1 mod 4
(n≥1) n− 1 1 − if n ≡ 3 mod 4

n − − if n is even

Bn Spin(2n+ 1) − n− 1 1 if n ≡ 1, 2 mod 4
(n≥2) − n − if n ≡ 0, 3 mod 4

Cn Sp(n) − (n− 1)/2 (n+ 1)/2 if n is odd
(n≥3) − n/2 n/2 if n is even

Dn Spin(2n) − n − if n ≡ 0 mod 4
(n≥4) − n− 2 2 if n ≡ 2 mod 4

2 n− 2 − if n is odd

E6 (E6) 4 2 −
E7 (E7) − 4 3
E8 (E8) − 8 −

F4 (F4) − 4 −

G2 (G2) − 2 −

Table 1: The numbers of basic representations for the simply-connected simple
compact Lie groups G of different types

Theorem 6.7 of [Yag11], summarizing the existing calculations for full flag
varieties, shows that their Witt rings are exterior algebras on generators of
odd degrees; in each case, the explicit number of generators in each degree may
be extracted from one of the papers mentioned. The independent computations
presented here yield the following concise formulation:

Theorem. Let G be a simply-connected compact Lie group. The Witt ring of
G/T is an exterior algebra on bH generators of degree 1 and bC

2 + bR generators
of degree 3, where bC, bR and bH denote the numbers of basic representations of
G of complex, real and quaternionic type, respectively.

This is Theorem 3.3 below. Precise definitions of bC, bR and bH are given in
Section 2.1. Their values for simple G, taken from [Dav03, Table 3.1], are
displayed in Table 1.

Our justification for the above terminology is based on the following connec-
tion with algebraic geometry. In [Bal00], Balmer constructs a four-periodic
cohomology theory W∗ on algebraic varieties such that, when F is a field of
characteristic not two, W0(Spec(F )) agrees with the classical Witt group of F .
In [Zib11], we show that for complex flag varieties Balmer’s Witt ring agrees with
the “topological” Witt ring defined above (see also Remark 1.4). In particular,
the theorem immediately translates into a description of Balmer’s Witt ring of
a full complex flag variety.

In fact, more is true. We have set up the computations presented here in such
a way that they can be done directly in the algebraic setting. This allows us to
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generalize the theorem to full flag varieties over any algebraically closed field of
characteristic not two:

Theorema. Let G be a simply-connected semi-simple algebraic group over an
algebraically closed field of characteristic not two, and let B ⊂ G be a Borel
subgroup. The graded Witt ring (in the sense of Balmer) W∗(G/B) is an
exterior algebra on bH generators of degree 1 and bC

2 + bR generators of degree
3, where bC, bR and bH are the numbers of non-self-dual, symmetric and anti-
symmetric basic representations of G.

In this generality, we believe the result to be new. Complete algebraic
computations of Witt groups of flag varieties are in fact still only known in
special cases, for example for projective spaces [Wal03b], (split) quadrics [Nen09]
and Grassmannians [BC12].

That said, our main focus in this article will be on the topological situation. In
particular, some auxiliary results needed for the proof of Theorema in Section 3
will simply be quoted from our article [Zib14], in which we apply similar ideas
to “twisted” Witt groups of general flag varieties.

Notation and conventions. Throughout this paper, a (topological) space
will be a space of the homotopy type of a finite CW complex. We do not deviate
from the standard convention that simply-connected spaces are in particular
path-connected when referring to Lie groups. The K- and KO-groups of a
space will be thought of as graded by Z/2 and Z/8, respectively. In particular,
periodicity isomorphisms are never mentioned explicitly. The notation

KO0,4(X)

will indicate the direct sum KO0(X)⊕KO4(X), and similarly for other graded
groups and indexes.

1 Witt rings and Tate cohomology

1.1 Witt rings capture two-torsion

In this section, we summarize a few lemmas concerning the additive structure
of the KO-groups of flag varieties on which all existing computations rely. To
be specific, we use the term flag variety to refer to a homogeneous space of
the form

G/H,

where G is a semi-simple compact Lie group and H is a centralizer of a torus.
In particular, H is always connected and of maximal rank, i. e. it contains a
maximal torus T of G. In the special case when H = T , we speak of the full
flag variety G/T . We may and will always assume that G is simply-connected.

The thus defined flag varieties are indeed complex varieties. In fact, they may
be realized algebraically as quotients

GC/P,
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where GC is the semi-simple algebraic group over C corresponding to G and P
is a parabolic subgroup [Ser95, Théorème 2]. Then the Bruhat decomposition
of GC yields a cellular decomposition, in the algebraic sense, of GC/P . In
particular, flag varieties may be given the structure of CW complexes with cells
only in even dimensions. This immediately implies:

Lemma 1.1. The K-groups of a flag variety X are given by

K0(X) = Z⊕n

K1(X) = 0

where n is the number of cells of X.

Indeed, since the singular cohomology of X is concentrated in even degrees,
the Atiyah-Hirzebruch spectral sequence computing its K-theory must collapse.
The number of cells of a flag variety G/H is equal to the index of the Weyl
group of H in the Weyl group of G.

In contrast, the Atiyah-Hirzebruch spectral sequence computing the KO-groups
of X does not collapse. Taken by its own, this spectral sequence only yields a
description of the free parts of the KO-groups (see Lemma 1.2 below). However,
further structural information may be obtained by studying the relation of real
to complex K-theory. Let η denote the generator of KO−1(point) = Z/2, and
let

KO2i(X)
ci−→ K0(X)

ri−→ KO2i(X)

denote the realification and complexification maps, composed with appropriate
powers of the periodicity isomorphism Ki(X) ∼= Ki−2(X). These maps fit into
a long exact sequence known as the Bott sequence, which, when K1(X) = 0,
breaks up into 6-term exact sequences of the following form:

0→ KO2i−1(X)
η−→ KO2i−2(X)

ci−1−−−→ K0(X)
ri−→ KO2i(X)

η−→ KO2i−1(X)→ 0

In particular, multiplication by η2 induces an isomorphism from the cokernel of
ri to the kernel of ci−1, which in turn may be identified with the 2-torsion
subgroup of KO2i−2(X). Writing Wi(X) for the cokernel of ri as in the
introduction, we obtain the following structural lemma:

Lemma 1.2 ([Hog69, 2.1, 2.2]). The KO-groups of a CW complex X with cells
only in even dimensions have the following structure:

KO2i(X) = Wi+1(X) · η2 ⊕ Z⊕n2i

KO2i+1(X) = Wi+1(X) · η

Here, the ranks of the free parts of the groups of even degrees are
n0 = n4 = the number of cells of X of dimension a multiple of 4,
n2 = n6 = the number of remaining cells of X.
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Remark 1.3 (Mulitplicative structure). It follows from Lemma 1.2 that the
products KOodd(X) ⊗ KOodd(X) → KOeven(X) are completely described by
the products in W∗(X), in view of the following commutative diagram:

Wi(X)⊗Wj(X) //

η⊗η∼=
��

Wi+j(X)
_�

η2

��

KO2i−1(X)⊗KO2j−1(X) // KO2i+2j−2(X)

1.2 Witt rings are Tate cohomology rings

We now describe how the Witt ring W∗(X) of a flag variety may be obtained
directly from the K-ring K0(X). In general, the K-ring of a space X comes
equipped with an involution

K0(X)
∗−→ K0(X)

which sends the class of a vector bundle E to the class of the dual bundle E∨.
This involution allows us to view K0(X) as a Z/2-module. Let hi(X) denote
the Tate cohomology groups of Z/2 with coefficients in K0(X). These groups
are 2-periodic in i, and we will write h+(−) and h−(−) to denote the groups of
even and odd degrees, respectively. Concretely, these groups may be defined as
follows:

h+(X) =
ker(id− ∗)
im(id + ∗)

h−(X) =
ker(id + ∗)
im(id− ∗)

The realification and complexification maps descend to the following well-
defined maps between the Tate cohomology groups and quotients/subgroups
of the KO-groups of X:1

KO2i(X)/r
ci−→ hi(X)

ri−→ c\KO2i(X)

The cokernels KO2i(X)/r are of course precisely the Witt groups Wi(X). A
crucial observation is that these maps even allow us to identify the Witt groups
of X with its Tate cohomology groups, at least up to a slight difference in
grading.

Bousfield’s Lemma. For any space X with K1(X) = 0, the complexification
and realification maps induce isomorphisms

W0(X)⊕W2(X)
∼=−−−−−→

( c0 c2 )
h+(X)

∼=−−−−→(
r−1

r1

) c\KO−2⊕ c\KO2(X)

W1(X)⊕W3(X)
∼=−−−−−→

( c1 c3 )
h−(X)

∼=−−−→(
r0
r2

) c\KO0 ⊕ c\KO4(X)

The composition along each row is given by
(
η2 0

0 η2

)
.

1We use the notation f\A and B/f to denote the kernel and cokernel of a morphism
f : A → B, respectively.
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Proof. This is essentially [Bou05, Lemma 4.7]. The realification and complexi-
fication maps and the involution satisfy the following relations [Bou90, 4.7]:

ciri = id +(−1)i∗ ∗ci = (−1)ici ri−1ci = η2

rici = 2 ri∗ = (−1)iri

The claim of the lemma concerning the composition along each row follows
immediately. Moreover, we have already seen in Lemma 1.2 that multiplication
by η2 induces an isomorphism from the Witt groups of X to the kernels of the
complexification maps, so the first map in each row must be injective while the
second map must be surjective.

We now show that injectivity of (ci−2 ci) implies injectivity of
t
(ri−1 ri+1):

Suppose x ∈ hi(X) is contained in the kernel of
t
(ri−1 ri+1). Choose a

representative x ∈ K0(X) such that x∗ = (−1)ix. Then ri±1(x) = 0 and Bott’s
sequence implies that for j = i− 2 and j = i there are elements yj ∈ KO2j(X)
such that cj(yj) = x. Consequently, the image of (yi−2, yi) under (ci−2 ci) is
zero in the two-torsion group h+(X). So the injectivity of the latter map implies
that yi−2 and yi vanish in Wi−2(X) and Wi(X), respectively. In particular,
yi is contained in the image of ri and, thus, x is contained in the image of
ciri = id +(−1)i∗. We deduce that x = 0 in hi(X), as required.

The ring structure of K0(X) induces a ring structure on the direct sum of the
Tate cohomology groups

h∗(X) := h+(X)⊕ h−(X),

so we will call h∗(X) the Tate cohomology ring of X. Since complexification
is a ring homomorphism KO∗(X) → K∗(X), the first two isomorphisms in
Bousfield’s Lemma even induce an isomorphism of rings

c : W∗(X)
∼=−−→ h∗(X) (1.1)

mapping the sum of the Witt groups of even degrees to h+(X) and the sum of the
Witt groups of odd degrees to h−(X). This ring isomorphism will be our main
tool in the computation of the Witt rings of full flag varieties. The isomorphism
induced by realification will be used only to identify the Z/4-grading of W∗(X).

Remark 1.4. An analogue of Bousfield’s Lemma holds for Balmer’s algebraic
Witt ring of any smooth cellular variety over an algebraically closed field of
characteristic not two [Zib14, Theorem 2.3]. As a corollary, we obtain a new
proof of the fact that the algebraic Witt groups of complex flag varieties agree
with the topological Witt groups considered here. This approach is significantly
more elementary than the one taken in [Zib11]. Moreover, it is immediate that
we have an isomorphism of Witt rings.

2 Representations and homogeneous bundles

As we have seen, the K-group K0(G/H) of a flag variety is rather simple.
However, a theorem of Hodgkin asserts that it has an interesting ring structure
which may be described in terms of representations of H and G:

K0(G/H) ∼= R(H)
/
a(G) ,
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where R(H) is the complex representation ring of H and a(G) is the ideal
generated by rank zero virtual representations of G. The theorem may be
divided into two separate assertions:

(a) We have an epimorphism α : R(H) � K0(G/H).

(b) The kernel of this epimorphism is given by a(G).

In Section 2.2, we briefly explain why the first assertion for real representations
and vector bundles fails. The second assertion is briefly discussed in Section 2.3.
Apart from Hodgkin’s Theorem itself, the only part of this discussion that will
be relevant to our computations is the existence of a real analogue of α. First,
however, we need to fix some notation regarding representation rings.

2.1 Representation rings of compact Lie groups

The complex representation ring of a compact Lie group G will be denoted R(G).
Similarly, the K-groups of the categories of real and quaternionic representations
of G will be denoted RO(G) and RSp(G), respectively. While RO(G) again
has a natural ring structure, RSp(G) does not: the tensor product of two
quaternionic representations is not quaternionic but real [Ada69, Definition 3.7].
It is therefore often convenient to consider real and quaternionic representations
simultaneously, i. e. to consider the Z/2-graded ring RO(G)⊕ RSp(G).

Just as for vector bundles, we have dualization, realification/quaternionification
and complexification maps:2

R(G)
∗−→ R(G)

RO(G)
c0−→ R(G)

r0−→ RO(G)

RSp(G)
c2−→ R(G)

r2−→ RSp(G)

Moreover, for any complex representation λ of G, the tensor product λλ∗ carries
a canonical real structure [Ada69, Lemma 7.2]. This induces a map

R(G)
φ−→ RO(G)

such that cφ(x) = xx∗.

The complexification maps c0 and c2 are injective for any compact Lie group G
[Ada69, Proposition 3.27]. An irreducible complex representation of G is said
to be of real type if it is contained in the image of c0, and it is said to be of
quaternionic type if it is contained in the image of c2.

G-equivariant K-theory

Representations may be viewed as equivariant vector bundles over a point, so
we can identify R(G) and RO(G) with the G-equivariant K-groups K0

G(point)

2We deviate from the traditional notations c′ and q for c2 and r2 to emphasize the analogy
with K-theory.
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and KO0
G(point). We use equivariant K-theory to define Z/2- and Z/8-graded

complex and real representation rings as follows:

Ri(G) := Ki
G(point)

ROi(G) := KOi
G(point)

The values of these groups in each degree may be expressed purely in terms of
R(G), RO(G) and RSp(G) [BG10, Theorem 2.2.12]:

R0(G) = R(G) R1(G) = 0

RO0(G) = RO(G) RO−1(G) = RO(G)
/
r0 (∼= W 0(G))

RO2(G) = R(G)
/

RO(G) RO1(G) = 0 (= W 1(G))

RO4(G) = RSp(G) RO3(G) = RSp(G)
/
r2 (∼= W 2(G))

RO6(G) = R(G)
/

RSp(G) RO5(G) = 0 (= W 3(G))

The maps η : RO2i(G) � RO2i−1(G) are the obvious epimorphisms, while the
maps η : RO2i+1(G) ↪→ RO2i(G) are monomorphisms induced by complexi-
fication. Define the Witt groups of G by Wi(G) := RO2i(G)/ri and write
h±(R(G)) for the Tate cohomology of R(G) with respect to the involution ∗.
Then Bousfield’s Lemma holds with the same proof as in Section 1.2:

h+(R(G)) ∼= W0,2(G)

h−(R(G)) ∼= 0
(2.1)

The case of a torus

The complex representation ring of a torus T may be identified with the ring of
Laurent polynomials in dimT variables:

R(T ) = Z[x±11 , · · · , x±1dimT ]

The Tate cohomology of this ring is easy to compute: dualization corresponds
to the involution sending xi to x−1i , and this implies that h∗(R(T )) is trivial:

h∗(R(T )) = Z/2 · 1 (2.2)

This triviality is the main simplification in the computation of the Witt rings
of full flag varieties G/T as opposed to Witt rings of arbitrary flag varieties.

Remark 2.1. If follows from the triviality of h∗(R(T )) that the real repres-
entation ring RO(T ) may be identified with the subring of R(T ) fixed by
the involution. However, an explicit description of this subring in terms of
generators and relations is fairly complicated: see [ABB+13, Theorem 3.2].

The simply-connected case

In general, for any compact Lie group G with maximal torus T , the complex
representation ring R(G) may be identified with a subring of R(T ) via the
restriction map — it is the subring fixed by the action of the Weyl group.
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When G is simply-connected, one may deduce that R(G) is a polynomial ring
on certain irreducible representations known as the basic representations of G
[Ada69, Theorem 6.4.1]. Moreover, the set B(G) of these basic representations
may be partitioned into disjoint subsets

B(G) = BC ∪ c0(BR) ∪ c2(BH)

consisting of the basic representations of complex, real and quaternionic types,
respectively (c. f. [Dav03]). The numbers bC(G), bR(G) and bH(G) appearing in
Theorem 3.3 are the sizes of these subsets.

While representations of real and quaternionic types are self-dual, the basic
representations of complex type arise as mutually dual pairs. We may thus
choose a subset B′C ⊂ BC such that we obtain a refined decomposition

B(G) = B′C ∪ (B′C)∗ ∪ c0(BR) ∪ c2(BH).

Finally, it will often be convenient to replace the given generators by generators
of rank zero. To indicate this, we will write ζ̃ for the reduced virtual
representation associated with a representation ζ, i. e. we define ζ̃ := ζ − rkζ.
Thus, we may write the representation ring as

R(G) = Z[λ̃, λ̃∗, c0(µ̃), c2(ν̃)]λ∈B′C,µ∈BR,ν∈BH .

2.2 Homogeneous bundles

In [AH61, Conjecture 5.7], Atiyah and Hirzebruch conjectured that all stable
isomorphism classes of complex vector bundles on a flag variety G/H arise from
representations of H, in the following way: Given a complex representation ζ
of H of rank r, we may consider G × Cr as an H-space, with H acting on G
via multiplication and on Cr via ζ. Then the quotient space (G × Cr)/H is
a G-equivariant complex vector bundle over G/H. In fact, this construction
induces a ring isomorphism

R(H)
∼=−→ K0

G(G/H) (2.3)

[Seg68, §1]. Forgetting the equivariant structure, we obtain a ring homomorph-
ism

α : R(H) −→ K0(G/H). (2.4)

Atiyah and Hirzebruch checked by direct computation that this homomorphism
is surjective in many cases [AH61, Theorem 5.8]; their conjecture asserted that
it is so in general. The conjecture was verified by Hodgkin and Pittie [Hod75,
Lemma 9.2; Pit72, Theorem 3].

Of course, the construction of α works equally well with real representations
and vector bundles. Moreover, the map can be extended to higher degrees:
if we interpret R(H) as K0

H(point), we may regard (2.3) as an incarnation of
a general isomorphism for equivariant cohomology theories [May96, (4.4) in
XVI§4]. For equivariant KO-theory [May96, XIV§4; BG10, 2.2], we thus have
an isomorphism

RO∗(H)
∼=−→ KO∗G(G/H) (2.5)
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which, composed with the forgetful map KO∗G(G/H) → KO∗(G/H), yields a
ring homomorphism

α∗O : RO∗(H) −→ KO∗(G/H) (2.6)

analogous to the morphism α above.

However, α∗O is not generally surjective, even in degree zero. We may easily pin
down its cokernel in terms of Witt groups.

Proposition 2.2. The cokernel of

RO2∗(H)
α2∗

O−−→ KO2∗(G/H)

coincides with the cokernel of the induced map W∗(H)→W∗(G/H).

Example 2.3. Consider a full flag variety G/T . By equations (2.1) and (2.2)
of Section 2.1 we have W∗(T ) = Z/2, and the map induced by αO is simply
the inclusion of the trivial subring Z/2 ↪→ W∗(G/T ). Our computation of the
Witt ring of G/T in Theorem 3.3 will show in particular that the cokernel
of this inclusion is far from being trivial. For example, Table 1 tells us that
W∗(SU(6)/T ) is an exterior algebra on one generator of degree one and two
generators of degree three, so said cokernel is non-trivial in all degrees.

Proof of Proposition 2.2. It follows from the construction of α and αO that these
maps are compatible with the structure maps ri and ci. In particular, we may
consider the following commutative diagram:

R0(H)

α
����

ri // RO2i(H)

α2i
O

��

// //Wi(H)

��

K0(G/H)
ri // KO2i(G/H) // //Wi(G/H)

This diagram has exact rows by our definition of the Witt groups, and α is
surjective by the work of Hodgkin and Pittie mentioned above. This implies
that the cokernel of the second vertical map agrees with the cokernel of the
third, as claimed.

The maps α2i−1
O : RO2i−1(H)→ KO2i−1(G/H) in odd degrees may of course be

identified directly with the maps Wi(H)→Wi(G/H).

2.3 Hodgkin’s Theorem

At the beginning of the previous section, we explained how α associates vector
bundles over G/H with representations ζ of H. It follows from the construction
that when ζ is the restriction of a representation of G, the associated vector
bundle may be trivialized. In particular, the ideal

a(G) ⊂ R(H)

generated by virtual representations of G of rank zero is contained in the kernel
of α. In [Hod75, Lemma 9.2], Hodgkin shows not only that α is surjective but
also that its kernel is precisely this ideal:
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Hodgkin’s Theorem. For any flag variety G/H with G simply-connected, α
induces a ring isomorphism

α : R(H)
/
a(G)

∼=−→ K0(G/H). (2.7)

Hodgkin’s proof is based on the construction of a Künneth spectral sequence
for equivariant K-theory. A different proof, leading to a more general algebraic
version of the theorem, is due to Panin [Pan94]. A key ingredient in both
approaches which we will need later is the following theorem of Pittie and
Steinberg:

Steinberg’s Theorem ([Ste75, Theorem 1.1]). The representation ring R(H)
of a connected subgroup H of maximal rank in a simply-connected compact Lie
group G is a free R(G)-module of finite rank.

Steinberg’s proof also shows that the rank of R(H) over R(G) is equal to the
index of the Weyl group of H in the Weyl group of G. In particular, the additive
description of K0(G/H) given in Lemma 1.1 may easily be recovered.

We now define a factorization of α∗O analogous to the factorization α of α. Let

R̃O∗(G) denote the kernel of the forgetful map RO∗(G)→ RO∗({1}), and let

a∗O(G) ⊂ RO∗(H)

be the ideal generated by the image of R̃O∗(G) and by the images of a(G) under
the maps ri. Then α∗O factors through

α∗O : RO∗(H)
/
a∗O(G) → KO∗(G/H), (2.8)

and the factorization is compatible with the structure maps ri and ci. In
particular, the following diagram commutes:

R0(H)
/
a(G)

ri
��

α // K0(G/H)

ri

��

RO2i(H)
/
a2iO (G)

α2i
O // KO2i(G/H)

(2.9)

This will be used to identify the Z/4-grading of W∗(G/H) in the proof of
Theorem 3.3.

Remark 2.4 (Description of a0,4O (G)). The ideal a0,4O (G) ⊂ RO0,4(H) is generated
by real and quaternionic virtual representations of G of rank zero, together with
the images of a(G) under realification and quaternionification. In the notation
of Section 2.1, a(G) and a0,4O (G) may be written as follows:

a(G) = (λ̃, λ̃∗, c0µ̃, c2ν̃)λ,µ,ν

a0,4O (G) = (φλ̃, µ̃, ν̃)λ,µ,ν + r0(a(G)) + r2(a(G))

Remark 2.5 (Injectivity of α0,4
O ). It seems natural to ask whether the ideal

a0,4O (G) coincides with the kernel of α0,4
O . Our computations for flag varieties in

Section 4 imply that this is true only in special cases:
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Proposition 2.6. For a complete flag variety G/T , the map

α0,4
O : RO0,4(T )

/
a0,4O (G) → KO0,4(G/T )

is injective only when G is of one of the following low-dimensional types:

An with 1 ≤ n ≤ 4, An ×Am with 1 ≤ n,m ≤ 2, B2, G2.

Proof. Since this proposition is not central to the aims of this paper, we include
only a brief sketch of the argument. For any compact Lie group H, and for any
space X, the pairs of abelian groups (R(H),RO0,4(H)) and (K0(X),KO0,4(X))
fit into complexes of the form

... // R(H)
1−∗
// R(H)

( r0r2 )
// RO0,4(H)

( c0 −c2 )
// R(H)

1−∗
// R(H) // ...

... // K0(X)
1−∗
// K0(X)

( r0r2 )
// KO0,4(X)

( c0 −c2 )
// K0(X)

1−∗
// K0(X) // ...

The relevant Bott exact sequences imply that these complexes are exact [Bou05,
Theorem 4.4]. Taking X to be a flag variety G/H, we may compare the two
sequences via the maps α and α0,4

O . Basic homological algebra then shows that

the kernel of α0,4
O may be identified with the homology of the corresponding

complex for (a(G), a0,4O (G)) at a0,4O (G) → a(G) → a(G), which we may view as
the cokernel of

a0O(G)⊕ a4O(G)
/

( r0r2 )
( c0 −c2 )−−−−−−→ ker(a(G)

1−∗−−→ a(G)).

This cokernel maps isomorphically to the cokernel of

a0O(G)
/
r0 ⊕ a4O(G)

/
r2

( c0 c2 )−−−−−→ h+(a(G)).

In particular, α0,4
O is injective if and only if (c0 c2) is surjective. For a full flag

variety G/T , the domain of (c0 c2) is easy to compute: the fact that

RO0(T )/r0 ⊕ RO4(T )/r2 = W0,2(T ) = Z/2 · 1R
implies that a0O(G)/r0⊕a4O(G)/r2 is generated as a Z/2-module by the elements

φλ̃, µ̃ and ν̃ with λ, µ and ν in B′C(G), BR(G) and BH(G) respectively.

On the other hand, the computations in Section 4 will imply that h+(a(G)) is
additively isomorphic to the odd-degree part of an exterior algebra on bC

2 +bR+bH
generators of degree 1:

h+(a(G)) ∼= h−(R(T )/a(G)) =
[
ΛZ/2(uλ, vµ, wν)λ,µ,ν

]odd
Moreover, one may check that under this additive isomorphism the generators
uλ, vµ and wν correspond to the elements c0φλ̃, c0µ̃ and c2ν̃ in h+(a(G)),
respectively. The map (c0 c2) is simply the inclusion of the Z/2-linear subspace
spanned by these elements. It is surjective if and only if the exterior algebra
ΛZ/2(uλ, vµ, wν)λ,µ,ν is generated by at most 2 elements, i. e. if and only if

bC(G)

2
+ bR(G) + bH(G) ≤ 2.

This holds only in the cases listed in the proposition.
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3 Witt rings of full flag varieties

Hodgkin’s Theorem (Section 2.3) and Bousfield’s Lemma (Section 1.2) have the
following corollary:

Corollary 3.1. For any flag variety G/H with G simply-connected, we have
an isomorphism of Z/2-graded rings

W∗(G/H)
∼=−→ h∗

(
R(H)

/
a(G)

)
,

where h∗(−) := h+(−)⊕ h−(−) denotes Tate cohomology.

Proof. It suffices to observe that the isomorphism α : R(H)
/
a(G) ∼= K0(G/H)

of Hodgkin’s Theorem is an isomorphism of rings with involution, for the
involutions induced by dualizing representations and vector bundles. We
thus obtain an isomorphism of Tate cohomology rings, which, combined with
Bousfield’s Lemma (1.1), yields the desired identification:

W∗(G/H)
∼=−→
c
h∗(G/H)

∼=←−
α
h∗
(

R(H)
/
a(G)

)
(3.1)

Note that h∗(G/H) is our notation for h∗(K0(G/H)).

We now apply this corollary to a full flag variety G/T . Recall from Section 2.1
that h∗(R(T )) is trivial:

h+(R(T )) = Z/2 · 1
h−(R(T )) = 0

On the other hand, we have seen that the complex representation ring of G may
be written as

R(G) = Z[λ̃, λ̃∗, c0(µ̃), c2(ν̃)]λ∈B′C,µ∈BR,ν∈BH .

Viewing R(G) as a subring of R(T ) via the restriction map, we may consider
the following virtual representations of G as elements of R(T ):

λ̃λ̃∗ with λ ∈ B′C
c0(µ̃) with µ ∈ BR

c2(ν̃) with ν ∈ BH

All of these elements are self-dual, so they define classes in h+(R(T )). But
since h+(R(T )) is so simple and the elements have rank zero, the corresponding
classes must vanish. By definition of h+, this means that we may find elements
uλ, vµ and wν in R(T ) such that

uλ + u∗λ = λ̃λ̃∗

vµ + v∗µ = c0(µ̃)

wν + w∗ν = c2(ν̃)

 in R(T ). (3.2)

Consider these equations in K0(G/T ) ∼= R(T )/a(G). Here, the right-hand sides
vanish since they are given by virtual representations of G of rank zero. Thus,
the images of uλ, vµ and wν in K0(G/T ) are anti-self-dual. With a little more
work one may see that these images generate the Tate cohomology ring of G/T .
In fact, we have the following:

14



Proposition 3.2. Let G/T be a full flag variety with G simply-connected. The
Tate cohomology ring

h∗(R(T )
/
a(G) )

is an exterior Z/2-algebra on certain generators uλ, vµ, wν ∈ h−(−). These
generators may be represented by elements of R(T ) satisfying (3.2) above.

Proof, assuming Corollary 4.5. We defer the main part of the argument to
Section 4. Here, we simply observe that the claim follows directly from
Corollary 4.5 with R := R(G) and A := R(T ). Indeed, all assumptions needed
have already been checked: R is a polynomial ring on pairs of mutually dual
generators and certain self-dual generators, A is a free R-module of finite rank
by Steinberg’s Theorem (Equation 2.3), and h∗(A) is trivial.

Theorem 3.3. Let G/T be a flag variety with G simply-connected. The total
Witt ring of G/T is an exterior Z/2-algebra on certain generators

cν ∈W1(G/T )

aλ, bµ ∈W3(G/T )

indexed by the basic representations λ ∈ B′C, µ ∈ BR and ν ∈ BH:

W∗(G/T ) ∼= Λ(aλ, bµ, cν)λ∈B′C,µ∈BR,ν∈BH

Proof. Let uλ, vµ and wν be the generators of Proposition 3.2, and let aλ, bµ
and cν be their preimages under the isomorphism (3.1) (with H = T ), that is,
the preimages of the elements αuλ, αvµ and αwν under c. Since uλ, vµ and wν
are elements of h−(−), we have aλ, bµ, cν ∈W1,3(G/T ).

It remains to show that these elements remain homogeneous with respect to the
Z/4-grading of the total Witt group, of degrees 3, 3 and 1, respectively. To see
this, we first observe that the second isomorphism(

r0
r2

)
: h−(G/T )

∼=−→ c\KO0(G/T )⊕ c\KO4(G/T )

of Bousfield’s Lemma preserves the grading of h−(G/T ) corresponding to the
decomposition into W1(G/T )⊕W3(G/T ). It therefore suffices to show that:

r0(αuλ) = 0 in KO0(G/T )

r0(αvµ) = 0 in KO0(G/T ) (3.3)

r2(αwν) = 0 in KO4(G/T )

In order to obtain these relations, we note that the injectivity of the complexi-
fication maps c0 and c2 on representations of G allows us to rewrite equations
(3.2) as

r0uλ = φ(λ̃i) in RO0(T )

r0vµ = µ̃i in RO0(T )

r2wν = ν̃i in RO4(T )
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Since all representations on the right-hand sides are restrictions of representa-
tions of G,

r0uλ = 0

r0vµ = 0

r2wν = 0

 in RO0,4(T )
/
a0,4O (G) .

We now apply the map αO defined in Section 2.3 to these equations. By (2.9)
this yields the desired relations (3.3).

Finally, we indicate how to translate the above computation to the algebraic set-
ting of a full flag variety G/B over an algebraically closed field of characteristic
not two.

Proof of Theorema. In the algebraic setting, the role of the topological K-group
is played by the algebraic K-group K0(G/B), while the roles of the KO-groups
of even degrees KO2i are played by Balmer and Walter’s Grothendieck-Witt
groups GWi(G/B) [Wal03]. The complexification maps correspond to the
forgetful maps GWi(G/B) → K0(G/B), the realification maps correspond
to the hyperbolic maps K0(G/B) → GWi(G/B), and the cokernels of the
hyperbolic maps are Balmer’s Witt groups Wi(G/B). Moreover, over an
algebraically closed field, Bousfield’s Lemma (Section 1.2) holds as before
[Zib14, Theorem 2.3].

Similarly, we can consider the algebraic K-group K0(Rep(G)) and the Grothen-
dieck-Witt and Witt groups GWi(Rep(G)) and Wi(Rep(G)) of the category
Rep(G) of finite-dimensional representations of an affine algebraic group G in
place of the groups R(G), RO2i(G) and RO2i+1(G). Then again h∗(G) = W∗(G)
for an affine algebraic group over an algebraically closed field [Zib14, Theo-
rem 2.2].

Finally, as already mentioned in Section 2.3, Hodgkin’s Theorem also holds in
the algebraic setting [Pan94]: for any simply-connected semi-simple algebraic
group G, and for any parabolic subgroup P ⊂ G, there is a ring isomorphism

K0(G/P ) ∼= K0(Rep(P ))
/
a ,

where a ⊂ K0(Rep(P )) is the ideal generated by restrictions of rank zero classes
in K0(Rep(G)). This allows us to carry over the topological computations
described above.

4 Tate cohomology of some quotient rings

The aim of this section is to complete our computations by proving Proposi-
tion 3.2. This is accomplished in Corollary 4.5.

We first need some terminology. We define a ∗-module to be an abelian group
equipped with an involution ∗ which is a group isomorphism, a ∗-ring to
be a commutative unital ring equipped with an involution ∗ which is a ring
isomorphism, and a ∗-ideal in a ∗-ring A to be an ideal preserved by the
involution on A. We will say that a ∗-ideal a ⊂ A is generated by certain
elements a1, . . . , an and write

a = (a1, . . . , an)
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if a is generated as an ideal in the usual sense by the elements a1, a
∗
1, . . . , an, a

∗
n.

An element x of a ∗-module M will be called self-dual if x = x∗ and anti-self-
dual if x∗ = −x∗. The Tate cohomology of M may be defined as in Section 1.2:

h+(M) :=
ker(id− ∗)
im(id + ∗)

h−(M) :=
ker(id + ∗)
im(id− ∗)

In other words, h+(M) is the quotient of the subgroup of self-dual elements
by those elements which are “obviously self-dual”, and similarly h−(M) is a
quotient of the subgroup of anti-self-dual elements. For a ∗-ring A, the direct
sum

h∗(A) := h+(A)⊕ h−(A)

inherits a commutative ring structure, so we will refer to h∗(A) as the Tate
cohomology ring of A. It is easily checked that this ring is Z/2-graded,
i. e. that:

h+(A) · h+(A) ⊂ h+(A)

h+(A) · h−(A) ⊂ h−(A)

h−(A) · h−(A) ⊂ h+(A)

We begin with a simple Lemma relating the Tate cohomology of principal ideals
in a ∗-ring A to the Tate cohomology of A.

Proposition 4.1. Let A be a ∗-ring.

• If µ̃ ∈ A is a self-dual element which is not a zero divisor, then
multiplication by µ̃ induces a graded isomorphism

h∗(A)
∼=−→
·µ̃

h∗(µ̃A).

If, in addition, the class of µ̃ in h+(A) is trivial, then

h∗(A/(µ̃)) ∼= h∗(A)⊕ u · h∗(A),

where u may be represented by any element of A with the property that
u+ u∗ = µ̃.

• If (λ̃, λ̃∗) is a regular sequence in A, then multiplication by the product

λ̃λ̃∗ induces a graded isomorphism

h∗(A)
∼=−−−→
·λ̃λ̃∗

h∗((λ̃, λ̃∗)A)

If, in addition, the class of λ̃λ̃∗ in h+(A) is trivial, then

h∗(A/(λ̃, λ̃∗)) ∼= h∗(A)⊕ u · h∗(A),

where u may be represented by any element of A with the property that
u+ u∗ = λ̃λ̃∗.
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Proof. We prove the second part; the proof of the first is analogous. Since λ̃λ̃∗

is self-dual, the map

h∗(A)
·λ̃λ̃∗−−−→ h∗((λ̃, λ̃∗)A)

is well-defined. For injectivity, suppose first that λ̃λ̃∗x = 0 in h+((λ̃, λ̃∗)A)

for some x ∈ h+(A). Then λ̃λ̃∗x = y + y∗ for some y ∈ (λ̃, λ̃∗)A. Write

y = λ̃y1 + λ̃∗y2 for certain y1, y2 ∈ A. Then

λ̃λ̃∗x = λ̃(y1 + y∗2) + λ̃∗(y∗1 + y2).

In particular, λ̃∗(y∗1 + y2) = 0 in A/(λ̃). By regularity of the sequence (λ̃, λ̃∗),

this implies that y∗1 + y2 = 0 in A/(λ̃). So y∗1 + y2 = λ̃z in A, for some z ∈ A.
Thus,

λ̃λ̃∗x = λ̃λ̃∗(z + z∗).

By assumption, λ̃ is not a zero-divisor in A. Its dual λ̃∗ cannot be a zero-divisor
in A either. We may therefore conclude that x = z+z∗, which shows that x = 0
in h+(A). The case when x ∈ h−(A) works analogously.

For surjectivity, suppose that y ∈ (λ̃, λ̃∗)A is an arbitrary self-dual element.

Writing y = λ̃y1 + λ̃∗y2 as in the proof of injectivity, we see that

λ̃(y1 − y∗2) + λ̃∗(y2 − y∗1) = 0.

It follows that y2 − y∗1 = 0 in A/(λ̃), so y2 − y∗1 = λ̃z for some z ∈ A. Thus, we

find that y = λ̃y1 + λ̃∗y∗1 + λ̃λ̃∗z. So y is equivalent to λ̃λ̃∗z in h+((λ̃, λ̃∗)A).
Moreover, z defines an element in h+(A): the fact that y is self-dual implies that

λ̃λ̃∗z∗ = λ̃λ̃∗z and thus z = z∗ as neither λ̃ nor λ̃∗ is a zero divisor. Preimages
of elements of h−((λ̃, λ̃∗)A) may be found in an analogous fashion.

Finally, consider the Tate cohomology sequence associated with the short exact
sequence of ∗-modules

0→ (λ̃, λ̃∗)A→ A→ A/(λ̃, λ̃∗)→ 0

The assumption on the class of λ̃λ̃∗ in h+(A) shows that the map induced by

the inclusion of (λ̃, λ̃∗)A into A is zero on cohomology. Thus, the cohomology
sequence splits into short exact sequences from which the stated result for
h∗(A/(λ̃, λ̃∗)) follows.

Corollary 4.2. Let A be a ∗-ring. Let a := (λ̃1, . . . , λ̃k, µ̃k+1, . . . µ̃k+l) be a
∗-ideal in A such that:

• λ̃1, λ̃∗1, . . . , λ̃k, λ̃∗k, µ̃k+1, . . . µ̃k+l is a regular sequence in A.

• The generators µ̃k+1, . . . , µ̃k+l are self-dual.

• The class of each of the elements λ̃iλ̃
∗
i and µ̃i is trivial in h+(A).

Then we have an isomorphism of h∗(A)-modules

h∗(A/a) ∼= h∗(A)⊗Z/2 Λ(u1, . . . , uk+l),
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where the generators ui may be represented by elements ui ∈ A such that

ui + u∗i =

{
λ̃iλ̃
∗
i for i = 1, . . . , k

µ̃i for i = k + 1, . . . , k + l

Proof. Write aj for the ∗-ideal in A generated by the first j generators, i. e. by

λ̃1, . . . , λ̃j or λ̃1, . . . , λ̃k, . . . , µ̃j , respectively. Since λ̃iλ̃
∗
i and µ̃i are trivial in

h+(A), they are a fortiori trivial in h+(A/b) for any ∗-quotient A/b of A. More

precisely, if u ∈ A has the property that u+ u∗ = λ̃iλ̃
∗
i or u+ u∗ = µ̃i, then the

class of u in any ∗-quotient of A still has this property. Thus, we may proceed
by induction. The case when a has zero generators is trivial. To pass from j
to j + 1 generators, we apply Prop. 4.1 to the classes of λ̃j+1, λ̃

∗
j+1 or µ̃j+1 in

A/aj .

We now analyse a special case in which we can show that the additive
isomorphism in Corollary 4.2 is in fact an isomorphism of rings. By an
augmented ∗-ring we will mean a ∗-ring A together with a surjective ∗-
morphism rk: A � Z, where Z is equipped with the trivial involution. The
image of an element of A under the augmentation will be referred to as the
rank of that element. If a is a ∗-ideal in A generated by elements of rank
zero, then the quotient A/a again has a canonical augmentation. Moreover,
an augmentation of A descends to an augmentation rk: h∗(A) � Z/2 mapping
elements of h+(A) to their rank modulo two and elements of h−(A) to zero.

Lemma 4.3. Let A be an augmented ∗-ring with h∗(A) trivial (i. e. such that
h+(A) = Z/2 · 1 and h−(A) = 0). Let a be any ∗-ideal in A generated by
elements of rank zero. Then all elements of rank zero in h∗(A/a) square to
zero.

Proof. Take u ∈ h∗(A/a) such that rk(u) = 0. Pick a representative u ∈ A.
Then uu∗ defines an element in h+(A), which, for rank reasons, must be zero.
It follows that, a fortiori, uu∗ = 0 in h+(A/a). Since u was in h∗(A/a) to begin
with, we have uu∗ = u2 in h∗(A/a).

Corollary 4.4. Let A be an augmented ∗-ring containing a ∗-ideal a generated
by elements λ̃1, . . . , λ̃k, µ̃k+1, . . . µ̃k+l of rank zero. Assume that:

• λ̃1, λ̃∗1, . . . , λ̃k, λ̃∗k, µ̃k+1, . . . µ̃k+l is a regular sequence in A.

• The generators µ̃k+1, . . . , µ̃k+l are self-dual.

• h∗(A) is trivial.

Then we have an isomorphism of rings

h∗(A/a) ∼= Λ(u1, . . . , uk+l).

In particular, u2i = 0 in h∗(A/a) for all i. Representatives of the generators ui
may be chosen as in Corollary 4.2.

Proof. Since λ̃iλ̃
∗
i and µ̃i have rank zero, they must be trivial in h+(A). We may

thus apply Corollary 4.2 to obtain the module structure of h∗(A) and Lemma 4.3
to obtain the algebra structure.
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Finally, we specialize to the situation of Proposition 3.2. Let R be an augmented
∗-ring, and let A be an augmented ∗-algebra over R. That is, A is simultaneously
a ∗-ring and an augmented algebra over R such that (r ·a)∗ = r∗a∗ for all r ∈ R
and a ∈ A. Given an arbitrary element λ in R (or in A), we write λ̃ for the
element λ− rk(λ) of rank zero.

Corollary 4.5. Let A be an augmented algebra over an augmented ∗-ring R.
Suppose that:

• R is a polynomial ring of the form R = Z[λ1, λ
∗
1, . . . , λk, λ

∗
k, µk+1, . . . µk+l]

with µk+1, . . . , µk+l self-dual.

• A is a free R-module of finite rank.

• h∗(A) is trivial, i. e. h+(A) = Z/2 · 1 and h−(A) = 0.

Let a ⊂ A be the ideal generated by all elements of R of rank zero. Then

h∗ (A/a ) = Λ(u1, . . . , uk+l),

where the classes ui may be represented by elements ui ∈ A such that

ui + u∗i =

{
λ̃iλ̃
∗
i for i = 1, . . . , k

µ̃i for i = k + 1, . . . , k + l

Proof. The ideal a may be generated by the reduced generators λ̃, λ̃∗1, . . . , λ̃k, λ̃
∗
k,

µ̃k+1, . . . , µ̃k+l of R. These generators form a regular sequence in R. Since A
is free of finite rank over R, they also form a regular sequence in A. So we may
apply Corollary 4.4.
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