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Abstract

The representation ring of an affine algebraic group scheme can be
endowed with the structure of a (special) λ-ring. We show that the
same is true for the ring of symmetric representations, i. e. for the
Grothendieck-Witt ring of the representation category, for any affine
algebraic group scheme over a field of characteristic not two.
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Introduction

It is well-known that both the complex and the real representation ring of
any compact Lie group are λ-rings1 [AT69]. Similarly, for any affine algebraic
group scheme G over a field, with representation category Rep(G), the

1By a λ-ring, we mean a “special λ-ring”—see the paragraph on terminology below.
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exterior power operations endow the representation ring K(G) := K(Rep(G))
with the structure of a λ-ring. Indeed, this is a direct consequence of Serre’s
beautiful 1968 paper “Groupes de Grothendieck des schémas en groupes
réductifs déployés” [Ser68], in which Serre shows that the representation ring
of a split reductive group over an arbitrary field can be computed in the
same way as—and is in fact isomorphic to—the representation ring of the
corresponding group over C. According to Serre’s introduction, establishing
the λ-ring structure was in fact one of his motivations for writing his article.

The purpose of the present article is to complete the picture by establishing
the λ-ring structure on the “symmetric representation ring” GW(G), gene-
rated by isotropy classes of representations equipped with equivariant non-
degenerate symmetric forms. This ring GW(G) is to the usual representation
ring K(G) what the real representation ring is to the complex representation
ring in topology. See Section 1.1 for precise definitions. We will show:

Theorem. For any affine algebraic group scheme G over a field of charac-
teristic not two, the exterior power operations induce a λ-ring structure on
the symmetric representation ring GW(G).

To the best of our knowledge, this fundamental structure on GW(G) has
not been exposed before, except in the case when G is the trivial group: the
λ-ring structure on the Grothendieck-Witt ring of a field has been studied
by McGarraghy [McG02].

λ-Terminology. There are at least two problems with the term “λ-ring”.
Firstly, the term is ambiguous: while Grothendieck originally distinguished
between

(1) “λ-rings” and (2) “special λ-rings” [SGA6, Exposé 0 App],

Berthelot instead refers to these objects as

(1) pre-λ-rings and (2) λ-rings [SGA6, Exposé V].

In this article, we follow Berthelot. This seems to be the current trend, and
it has the merit that the shorter term is reserved for the more natural object.
In any case, the bulk of this article is devoted to proving that we have a
structure of type (2), not just of type (1).

Secondly, the term “λ-ring” is misleading in that it puts undue emphasis
on λ-operations/exterior powers. For example, from a purely algebraic
perspective, the symmetric powers have just as good a claim to the title as the
exterior powers. We refer to [Bor13] for a beautiful coordinate-free definition
of λ-rings as “rings equipped with all possible symmetric operations” in a
precise sense. Suffice it to remark here that the existence of a λ-structure
on a ring includes the existence of many other natural operations such as
symmetric powers and Adams operations.

That said, we will nevertheless work with the traditional definition in terms
of exterior powers below. One technical reason for this is that exterior
powers behave well under dualization: the dual of the exterior power of
a representation is the exterior power of the dual representation, in any
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characteristic. The same is not true of symmetric operations. Thus, in this
case the existence of well-defined symmetric powers on GW(G) follows only
a posteriori from the existence of a λ-structure.

Outline. The article begins with a certain amount of overhead. We recall
some definitions and facts concerning symmetric representations, including
a discussion of the additive structure of GW(G) following Calmès and
Hornbostel’s preprint [CH04].

Our proof in Section 2 that the exterior powers induce well-defined maps on
GW(G) follows a similar pattern as the usual argument for K(G), using in
addition only the well-known technique of “sub-Lagrangian reduction”.

When the ground field is algebraically closed, the fact that the resulting pre-
λ-structure on GW(G) is a λ-structure can easily be deduced in the same
way as in topology: in this case, the forgetful map GW(G)→ K(G) exhibits
GW(G) as a sub-λ-ring of the λ-ring K(G). However, over general fields this
argument breaks down. Section 3 is devoted to mending it: we reduce to
the “universal case”, i. e. the case when G is a product of split orthogonal
groups, show that the symmetric representation ring of such G embeds into
the symmetric representation ring of an extension of a maximal split torus,
and verify that the latter is a λ-ring by a direct calculation.

The implications of the universal case are in fact not restricted to representa-
tion rings. The main application we have in mind is to the Grothendieck-Witt
ring of vector bundles on a scheme, in the same way that Serre’s result is
applied to the K-ring of vector bundles in [SGA6, Exposé VI, Theorem 3.3].
Details are to appear in forthcoming work.

Notation and conventions. Throughout, F denotes a fixed field of
characteristic not two. Our notation for group schemes, characters etc. tends
to follow [Jan03]. All representations are assumed to be finite-dimensional.

1 Symmetric representations

An affine algebraic group scheme is a functor G from the category of F -
algebras to the category of groups representable by a finitely-generated F -
algebra:

G : AlgF → Groups
A 7→ G(A)

We assume that the reader is familiar with the basic notions surrounding
such group schemes and their representations as can be found in [Wat79]
and [Jan03] or [Ser68]. In particular, while the basic notions involved in the
statement of our main theorem are recalled below, we undertake no attempt
to explain the structure and representation theory of reductive groups used
in the proof.

The terms representation of G and G-module are used interchangeably
to denote a finite-dimensional F -vector space M together with a natural A-
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linear action of G(A) on M ⊗A for every F -algebra A. Equivalently, such a
representation may be viewed as a group homomorphism

G→ GL(M).

Given two G-modules M and N , the set of G-equivariant morphisms from
M to N is denoted HomG(M,N).

Many constructions available on vector spaces can be extended to G-modules.
In particular, G-modules form an F -linear abelian category Rep(G). Tensor
products ofG-modules, the dualM∨ of aG-moduleM and its exterior powers
Λi(M) are also again G-modules in a natural way. There is, however, an
important difference between the categories of G-modules and the category of
vector spaces: not every G-module is semi-simple, and a short exact sequence
of G-modules does not necessarily split.

The duality functor M 7→M∨ and the double-dual identification M ∼= M∨∨

giveRep(G) the structure of a category with duality, which immediately gives
rise to the notion of a symmetric G-module in the sense of [QSS79]. We hope
there is no harm in providing a direct definition, even if we occasionally fall
back into the abstract setting later on. We first discuss all relevant notions
on the level of vector spaces.

A symmetric vector space is a vector space M together with a linear
isomorphism µ : M → M∨ which is symmetric in the sense that µ and
µ∨ agree up to the usual double-dual identification ω : M ∼= M∨∨. The
orthogonal sum (M,µ) ⊥ (N, ν) of two symmetric vector spaces is defined
as the direct sum M⊕N equipped with the symmetry µ⊕ν. Tensor products
and exterior powers of symmetric vector spaces can be defined similarly, using
the canonical isomorphisms M∨⊗N∨ ∼= (M ⊗N)∨ and Λi(M∨) ∼= (ΛiM)∨.2

A morphism from (M,µ) to (N, ν) is a morphism ι : M → N compatible with
µ and ν in the sense that ι∨νι = µ. An isomorphism with this property is an
isometry. The isometries from (M,µ) to itself form a reductive subgroup
O(M,µ) of GL(M). If we equip F 2n and F 2n+1 with the standard symmetric
forms given by  0 1

1 0
...

...
0 1
1 0

 and


0 1
1 0

...
...

0 1
1 0

1

 (1)

with respect to the canonical bases, we obtain the usual split orthogonal
groups O2n and O2n+1.

We also have a canonical symmetry on any vector space of the form M⊕M∨,
given by interchanging the factors. We write H(M) := (M ⊕M∨, ( 0 1

1 0 )) for
this symmetric vector space; it is the hyperbolic space associated with M .
The associated orthogonal group O(H(M)) is isomorphic to O2 dimM .

2In characteristic zero, one can likewise form symmetric powers Si(M,µ) of symmetric
vector spaces. However, we do not have a canonical isomorphism Si(M∨) ∼= (SiM)∨ in
positive characteristic (c. f. [McG05] or [Eis95, App. A.2]).
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A sub-Lagrangian of a symmetric vector space (M,µ) is a subspace i : N ↪→
M on which µ vanishes, i. e. for which i∨µi = 0. Equivalently, if for an
arbitrary subspace N ⊂M we define

N⊥ := {m ∈M | µ(m)(n) = 0 for all n ∈ N},

then N is a sub-Lagrangian if and only if N ⊂ N⊥. If in fact N⊥ = N ,
we say that M is metabolic with Lagrangian N . For example, H(M) is
metabolic with Lagrangian M .

A symmetric G-module is defined completely analogously, as a pair
(M,µ) consisting of a G-module M and an isomorphism of G-modules
µ : M → M∨ which is symmetric in the sense that µ and µ∨ agree up to
the double-dual identification of G-modules ω : M ∼= M∨∨. Equivalently, we
may view such a symmetric module

• as a symmetric vector space (M,µ) together with a G-module structure
on M such that µ is G-equivariant, or
• as a morphism G → O(M,µ), where (M,µ) is some symmetric vector

space.

All of the notions introduced for symmetric vector spaces carry over to this
situation.

We end this section with a well-known lemma that makes use of the
assumption that our field F has characteristic different from two.

1.1 Lemma. For any symmetric G-module (M,µ), the orthogonal sum
(M,µ)⊕ (M,−µ) is isometric to the hyperbolic G-module H(M).

Proof. (M ⊕ M,
(
µ 0
0 −µ

)
) ∼=(

1 1
1/2 −1/2

) (M ⊕ M,
(

0 µ
µ 0

)
) ∼=(

1 0
0 µ

) (M ⊕

M∨, ( 0 1
1 0 ))

1.1 The symmetric representation ring

The (finite-dimensional) representations of an affine algebraic group scheme
over F form an abelian category with duality (RepF (G),∨, ω). Its K-group
and its Grothendieck-Witt group are defined as follows:

1.2 Definition. K(G) is the free abelian group on isomorphism classes of
G-modules modulo the relation M = M ′ +M ′′ for any short exact sequence
of G-modules 0→M ′ →M →M ′′ → 0.

GW(G) is the free abelian group on isometry classes of symmetric G-modules
modulo the relation ((M,µ) ⊥ (N, ν)) = (Mµ) + (N, ν) for arbitrary
symmetric (M,µ) and (N, ν) and the relation (M,µ) = H(L) for any
metabolic G-module M with Lagrangian L.

We use the established notation K(F ) and GW(F ) for the K- and Grothen-
dieck-Witt groups of the category of finite-dimensional vector spaces. So in
the our notation GW(F ) = GW(1), where 1 denotes the trivial constant
group scheme.
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The tensor product yields well-defined ring structures on both K(G) and
GW(G). The ring K(G) is usually referred to as the representation ring
of G, and we refer to GW(G) as the symmetric representation ring of
G.3 They can be related via the forgetful and hyperbolic maps:

GW(G)
F−→ K(G)

GW(G)←−
H

K(G)

The forgetful map simply sends the class of (M,µ) to the class of M , while
the hyperbolic map sends M to H(M). Note that F is a ring homomorphism,
while H is only a morphism of groups.4 We will need the following fact.

1.3 Sub-Lagrangian Reduction. For any sub-Lagrangian N of a symme-
tric G-module (M,µ), the symmetry µ induces a symmetry µ on N⊥/N .
Moreover, in GW(G) we have

(M,µ) = (N⊥/N, µ) +H(N).

Proof. This is essentially Lemma 5.3 in [QSS79], simplified by our assumption
that 2 is invertible:

(M,µ) = −(N⊥/N,−µ) +H(N⊥) by [QSS79, Lemma 5.3]

= (N⊥/N, µ)−H(N⊥/N) +H(N⊥) by Lemma 1.1

= (N⊥/N, µ) +H(N)

1.2 The additive structure

We recall some material from [QSS79] and [CH04] concerning the additive
structure of K(G) and GW(G). The group K(G) is the free abelian group
on the isomorphism classes of simple G-modules. Given a complete set Σ of
representatives of the isomorphism classes of simple G-modules, we can thus
write

K(G) ∼= Z 〈S〉S∈Σ .

The structure of GW(G) is slightly more interesting. For simplicity, we
concentrate on the case when the endomorphism ring EndG(S) of every
simpleG-module S is equal to the ground field F . This assumption is satisfied
by all examples that we later study in more detail. In particular, it is satisfied
by all reductive groups [CH04, Proposition 2.2.]. It ensures that every simple
G-module is either symmetric, anti-symmetric or not self-dual at all, and that
any two given (anti-)symmetries on a simple G-module differ at most by a
scalar.

Let Σ+ ∈ Σ and Σ− ∈ Σ be the subsets of symmetric and anti-symmetric
objects, and let Σ0 ∈ Σ be a subset containing one object for each pair of
non-self-dual objects (S, S∨). On each S ∈ Σ+, we fix a symmetry σs.

3We concede that this neologism is skew-whiff since it is not the ring itself but rather
its elements that are supposed to be symmetric. However, this terminology is in line with
the usage of the words “complex representation ring” and “real representation ring” in
the context of compact Lie groups. More precise alternatives would be “ring of symmetric
representations” or “symmetric representations’ ring”.

4In fact, H is a morphism of GW(G)-modules, but we do not need this.
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1.4 Theorem. Let G be an affine algebraic group scheme over F such
that every simple G-module has endomorphism ring F . Then we have an
isomorphism of GW(F )-modules

GW(G) ∼= GW(F ) 〈(S, σs)〉S∈Σ+
⊕ Z 〈H(S)〉S∈Σ−

⊕ Z 〈H(S)〉S∈Σ0
.

The theorem may require a few explanations. The GW(F )-module structure
on GW(G) is induced by the tensor product on Rep(G) and the identific-
ation of the subcategory of trivial G-modules with the category of finite-
dimensional vector spaces. On the right-hand side, we can consider each
copy of GW(F ) as a module over itself, with a canonical generator given by
the trivial symmetry on F . The free abelian group Z can be viewed as a
GW(F )-module via the rank homomorphism GW(F ) → Z. As such, it is
of course generated by 1 ∈ Z. We can thus define a morphism of GW(F )-
modules

GW(G)
α←−
⊕
S∈Σ+

GW(F )⊕
⊕
S∈Σ−

Z⊕
⊕
S∈Σ0

Z

that sends the canonical generator of the copy of GW(F ) corresponding to
S ∈ Σ+ to (S, σS) and the generator of the copy of Z corresponding to S ∈
Σ− ∪Σ0 to H(S). The theorem says that this morphism is an isomorphism.

The inverse to α can be described as follows. A semi-simple G-module M
can be decomposed into its S-isotypical summands MS . A symmetry µ on
M necessarily decomposes into an orthogonal sum of its restrictions to MS

for each S ∈ Σ+ and its restrictions to MS ⊕MS∨ for each S ∈ Σ− ∪ Σ0. In
fact, we can always find an isometry

(M,µ) ∼=
⊕
S∈Σ+

φS · (S, σS)⊕
⊕
S∈Σ−

nS ·H(S)⊕
⊕
S∈Σ0

mS ·H(S) (2)

for certain symmetric forms φS over F and non-negative integers nS and mS .

In general, any symmetric G-module (M,µ) contains an isotropic G-
submodule N ⊂M such that N⊥/N is semi-simple [QSS79, Theorem 6.10].
By Sub-Lagrangian Reduction 1.3, we then have

(M,µ) = (N⊥/N, µ) +H(N) in GW(G).

The first summand can be decomposed as in (2), and a decomposition of
the second summand can be obtained from the decomposition of N into its
simple factors in K(G). Thus, even for general (M,µ), in GW(G) we have a
decomposition of the form

(M,µ) =
∑
S∈Σ+

φS · (S, σS) +
∑
S∈Σ−

nS ·H(S) +
∑
S∈Σ0

mS ·H(S) (3)

for certain symmetric forms φS over F and non-negative integers nS and mS .
In particular, (M,µ) decomposes into a sum, not a difference.

1.5 Remark (c. f. [CH04, Remark 1.15]). We can determine which summands
in (3) have non-zero coefficients from the decomposition of M in K(G).
Indeed, the forgetful map GW → K is compatible with the decompositions
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of GW(G) and K(G). On the summand corresponding to S ∈ Σ0, it can
be identified with the diagonal embedding Z ↪→ Z ⊕ Z, on the summand
corresponding to S ∈ Σ− with multiplication by two Z ↪→ Z, and on
the summand corresponding to S ∈ Σ+ with the rank homomorphism
GW(F ) → Z. This last map is of course not generally injective, but it
does have the property that no non-zero symmetric form is sent to zero.

We will use this observation to analyse the restriction GW(SOm)→ GW(Om)
in the proof of Corollary 3.18.

2 The pre-λ-structure

In this section we show that the exterior power operations define a pre-λ-
structure on the symmetric representation rings GW(G). We quickly recall
the relevant definition from [SGA6, Exposé V, Définition 2.1].

Given any commutative unital ring R, we write Λ(R) := (1+ tR[[t]])× for the
multiplicative group of invertible power series over R with constant coefficient
1. A pre-λ-structure on R is a collection of maps λi : R→ R, one for each
i ∈ N0, such that λ0 is the constant map with value 1, λ1 is the identity, and
the induced map

λt : R→ Λ(R)

r 7→
∑

i≥0 λ
i(r)ti

is a group homomorphism. A pre-λ-ring is a pair (R, λ•) consisting of a ring
R and a fixed such structure. A morphism of pre-λ-rings (R, λ•)→ (R′, λ′•)
is a ring homomorphisms that commutes with the maps λi. Following the
terminology of Berthelot in loc. cit., we sometimes refer to such a morphism
as a λ-homomorphism regardless of whether source and target are pre-λ-
rings or in fact λ-rings (see Section 3.1).

2.1 Proposition. Let G be an affine algebraic group scheme over a field
of characteristic not two. Then the exterior power operations λk : (M,µ) 7→
(ΛkM,Λkµ) induce well-defined maps on GW(G) which provide GW(G) with
the structure of a pre-λ-ring.

We divide the proof into several steps, of which only the last differs somewhat
from the construction of the λ-operations on K(G).

Step 1. We check that λi(M,µ) := (ΛiM,Λiµ) is well-defined on the set of
isometry classes of G-modules, so that we have an induced map

λt :
{

isometry
classes

}
→ Λ(GW(G)).

Step 2. We check that λt is additive in the sense that

λt((M,µ) ⊥ (N, ν)) = λt(M,µ)λt(N, ν).
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Then we extend λt linearly to obtain a group homomorphism

λt :
⊕

Z(M,µ)→ Λ(GW(G)),

where the sum on the left is over all isometry classes of G-modules. By the
additivity property, this extension factors through the quotient of

⊕
Z(M,µ)

by the ideal generated by the relations

((M,µ) ⊥ (N, ν)) = (M,µ) + (N, ν).

Step 3. Finally, in order to obtain a factorization

λt : GW(G)→ Λ(GW(G)),

we check that λt respects the relation (M,µ) = H(L) for every metabolic
G-bundle (M,µ) with Lagrangian L. For this step, we need the following
refinement of the usual lemma used in the context of K-theory (see for
example [SGA6, Exposé V, Lemme 2.2.1]).

2.2 Filtration Lemma. Let 0 → L → M → N → 0 be an extension of
G-modules. Then we can find a filtration of ΛnM by G-submodules ΛnM =
M0 ⊃M1 ⊃M2 ⊃ · · · together with isomorphisms of G-modules

M i
/
M i+1 ∼= ΛiL⊗ Λn−iN. (4)

More precisely, there is a unique choice of such filtrations and isomorphisms
subject to the following conditions:

(1) The filtration is natural with respect to vector space isomorphisms of

extensions. That is, given two extensions M and M̃ of G-modules of L
by N , any vector space isomorphism φ : M → M̃ for which

0 // L //M //

φ∼=
��

N // 0

0 // L // M̃ // N // 0

commutes restricts to vector space isomorphisms M i → M̃ i compatible
with (4) in the sense that

M i
/
M i+1

∼=
''

∼=
φ

// M̃ i
/
M̃ i+1

∼=
ww

ΛiL⊗ Λn−iN

commutes. In particular, the induced isomorphisms φ on the quotients
are isomorphisms of G-modules.

(2) For the trivial extension, (L ⊕ N)i ⊂ Λn(L ⊕ N) corresponds to the
submodule ⊕

j≥i ΛjL⊗ Λn−jN ⊂
⊕

j ΛjL⊗ Λn−jN
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under the canonical isomorphism Λn(L ⊕ N) ∼=
⊕

j ΛjL ⊗ Λn−jN , and
the isomorphisms

(L⊕N)i
/

(L⊕N)i+1
∼=−→ ΛiL⊗ Λn−iN

correspond to the canonical projections.

Proof of the Filtration Lemma 2.2. Uniqueness is clear: if filtrations and
isomorphisms satisfying the above conditions exist, they are determined on
all split extensions by (2) and hence on arbitrary extensions by (1).

Existence may be proved via the following direct construction. Let 0→ L
i−→

M
p−→ N → 0 be an arbitrary short exact sequence of G-modules. Consider

the G-morphism ΛiL ⊗ Λn−iM → ΛnM induced by i. Let Mi be its kernel
and M i its image, so that we have a short exact sequence of G-modules

0 //Mi
// ΛiL⊗ Λn−iM //M i // 0

We claim that the images M i define the desired filtration of M .

Indeed, they define the desired filtration in the case M = L ⊕ N , and an
isomorphism φ : M → M̃ as in (1) induces (vector space) isomorphisms
on each term of the corresponding exact sequences. Moreover, the induced
isomorphism on the central terms of these exact sequences is compatible with
the projection to ΛiL⊗Λn−iN . The situation is summarized by the following
commutative diagram:

0 //Mi
//

∼=
��

ΛiL⊗ Λn−iM //

∼=
��

�� ��

M i //

∼=
��

}}

0

0 // M̃i
// ΛiL⊗ Λn−iM̃ //

����

M̃ i //

xx

0

ΛiL⊗ Λn−iN

We claim that the projection to ΛiL⊗Λn−iN factors through M i, as indicated
by the dotted arrows. This can easily be checked in the case of the trivial
extension L⊕N . In general, we may pick a vector space isomorphism φ : M →
L⊕N as in (1). Then the claim follows from the above diagram with L⊕N
in place of M̃ . The same method shows that the induced morphisms M i →
ΛiL⊗ Λn−iN induce isomorphisms

M i
/
M i+1

∼=−→ ΛiL⊗ Λn−iN.

Note that while we use vector-space level arguments to verify that they are
isomorphisms, they are, by construction, morphisms of G-modules.

Proof of Proposition 2.1, Step 1. The exterior power operation

Λi : RepG → RepG
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is a duality functor in the sense that we have a natural isomorphism η
identifying Λi(M∨) and (ΛiM)∨ for each G-module M . Indeed, we have
natural isomorphisms of vector spaces

ηM : Λi(M∨)
∼=−→ (ΛiM)∨

φ1 ∧ · · · ∧ φi 7→ (m1 ∧ · · · ∧mi 7→ det(φα(mβ))

[Eis95, Prop. A.2.7; Bou70, Ch. 3, § 11.5, (30 bis)]. These isomorphisms are
equivariant with respect to the G-module structures induced on both sides
by a G-module structure on M . We therefore obtain a well-defined operation
on the set of isometry classes of symmetric G-modules by defining

λi(M,µ) := (ΛiM,ηM ◦ Λi(µ)).

Note however that the functor Λi is not additive or even exact, so it does not
induce a homomorphism GW(G)→ GW(G).

Proof of Proposition 2.1, Step 2. In order to verify the claimed additivity
property of λt, we need to check that, for any pair of symmetric G-modules
(M,µ) and (N, ν), the natural isomorphism

Λn(M ⊕N)
∼=←−
⊕
i

ΛiM ⊗ Λn−iN

defines an isometry

λn((M,µ) ⊥ (N, ν))
∼=←−
⊕
i

λi(M,µ)⊗ λn−i(N, ν).

Denoting the ith component of this natural isomorphism by Φi, the claim
boils down to the commutativity of the following diagrams (one for each i),
which can be checked by a direct computation.

Λn(M∨ ⊕N∨)

ηN⊕M

��

Λi(M∨)⊗ Λn−i(N∨)
Φioo

ηM⊗ηN
��

(ΛiM)∨ ⊗ (Λn−iN)∨

∼=
��

(Λn(M ⊕N))∨
Φ∨i

// (ΛiM ⊗ Λn−iN)∨

Proof of Proposition 2.1, Step 3. Let (M,µ) be metabolic with Lagrangian
L, so that we have a short exact sequence

0→ L
i−→M

i∨µ−−→ L∨ → 0. (5)

We need to show that λn(M,µ) = λnH(L) in GW(G).
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On the level of vector spaces, the exact sequence (5) necessarily splits. In
fact, we can find an isometry of vector spaces φ : (M,µ) → H(L) such that
the diagram

0 // L //M //

φ∼=
��

L∨ // 0

0 // L // H(L) // L∨ // 0

of the Filtration Lemma 2.2, (1) commutes. For example, given any splitting
s of i∨µ, let s̃ be the alternative splitting s̃ := s − 1

2 is
∨µs and define φ to

be the inverse of (i, s̃). We then have filtrations M• and H(L)• of ΛnM and
ΛnH(L) such that the isometry Λnφ restricts to isomorphisms M i ∼= H(L)i

and induces isomorphisms of G-modules

M i
/
M i+1 φ−→∼=

H(L)i
/
H(L)i+1 .

If n is odd, say n = 2k−1, then H(L)k is a Lagrangian of λnH(L) and hence
Mk is a Lagrangian of λn(M,µ). Therefore, in GW(G) we have:

λn(M,µ) = H(Mk)

λnH(L) = H(H(L)k)

On the other hand, Mk = H(L)k in K(G), since these two G-modules have
filtrations with isomorphic quotients. So the right-hand sides of the above
two equations agree, and the desired equality λn(M,µ) = λnH(L) in GW(G)
follows.

If n is even, say n = 2k, then H(L)k+1 is a sub-Lagrangian of λnH(L), and
(H(L)k+1)⊥ = H(L)k. Again, it follows from the fact that φ is an isometry
that likewise Mk+1 is an admissible sub-Lagrangian of λn(M,µ), and that
(Mk+1)⊥ = Mk. Moreover, φ induces an isometry of symmetric G-modules(

Mk
/
Mk+1 , µ

)
∼=
(
H(L)k

/
H(L)k+1 , ( 0 1

1 0 )
)

The desired identity in GW(G) follows:

λ2k(M,µ) = H(Mk) + (Mk/Mk+1, µ) (by Sub-Lagrangian Reduction 1.3)

= H(H(L)k) + (H(L)k/H(L)k+1, ( 0 1
1 0 ))

= λ2kH(L)

Note that, by construction, λ0 = 1 (constant), λ1 = id, and λt is a ring
homomorphism. Thus GW(G) is indeed a pre-λ-ring. We observe a few
additional structural properties.

2.3 Definition. An augmentation of a pre-λ-ring R is a λ-homomorphism

d : R→ Z,

where the pre-λ-structure on Z is defined by λi(n) :=
(
n
i

)
.
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A positive structure on a pre-λ-ring R with augmentation is a subset
R>0 ⊂ R satisfying the axioms below.5 Elements of R are referred to as
positive elements; a line element is a positive element l with d(l) = 1.
The axioms are as follows:

• R≥0 := R>0 ∪ {0} is closed under addition, under multiplication and
under the λ-operations.

• Every element of R can be written as a difference of positive elements.

• The element n · 1R is positive for every n ∈ Z>0.

• d(x) > 0

• λd(x)(x) is a unit in R

• λix = 0 for all i > d(x)

 for all positive elements x

• The multiplicative inverse of a line element is a positive element (and
hence again a line element).

On GW(G), we can define a positive structure by taking d(M,µ) := dim(M)
and letting GW(G)>0 ⊂ GW(G) be the image of the set of isometry classes
of G-modules in GW(G). Then the line elements are the classes of symmetric
characters of G.

2.4 Definition. A pre-λ-ring R with a positive structure is line-special if

λk(l · x) = lkλk(x)

for all line elements l, all elements x ∈ R and all positive integers k.

2.5 Lemma. The symmetric representation ring GW(G) of an affine
algebraic group scheme is line-special.

Proof. It suffices to check this property on a set of additive generators of the
λ-ring, for example on all positive elements. Thus, it suffices to check that
for any one-dimensional symmetric representation (O,ω) and any symmetric
representation (M,µ), the canonical isomorphism O⊗k⊗ΛkM ∼= Λk(O⊗M)
extends to an isometry (O,ω)⊗k ⊗ λk(M,µ) ∼= λk((O,ω)⊗ (M,µ)).

3 The pre-λ-structure is a λ-structure

Having established a pre-λ-structure on GW(G), our aim is to show that it is
in fact a λ-structure. We briefly recall the definition and some general facts
before focusing on GW(G) from Section 3.2 onwards.

5Definitions in the literature vary. The last of the axioms we require here, introduced by
Grinberg in [Gri12], appears to be missing in both [FL85, § I.1] and [Wei13, Def. II.4.2.1.].
Without it, it is not clear that the set of line elements forms a subgroup of the group of
units of R.
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3.1 λ-rings

A pre-λ-ring R is a λ-ring if the group homomorphism

λt : R→ Λ(R)

is in fact a λ-homomorphism, for a certain universal pre-λ-ring structure on
Λ(R) [SGA6, Exposé V, Définition 2.4.16]. This property can be encoded by
certain universal polynomials

Pk ∈ Z[x1, . . . , xk, y1, . . . , yk]

Pk,j ∈ Z[x1, . . . , xkj ]

as follows: a pre-λ-ring R is a λ-ring if and only if λt(1) = 1 + t and7

λk(x · y) = Pk(λ
1x, . . . , λkx, λ1y, . . . , λky) (λ1)

λk(λj(x)) = Pkj(λ
1x, . . . , λkjx) (λ2)

for all x, y ∈ R and all positive integers j, k. We refer to the equations
(λ1) and (λ2) as the first and second λ-identity. Precise definitions of the
polynomials Pk and Pk,j are given in equations (6) and (7) below. Essentially,
the λ-identities say that any element behaves like a sum of line elements. A
morphism of λ-rings is the same as a morphism of the underlying pre-λ-
rings, i. e. a ring homomorphism that commutes with the λ-operations. We
continue to refer to such morphisms as λ-homomorphisms.

Let us recall a few general criteria for verifying that a pre-λ-ring R with a
positive structure is a λ-ring.

Embedding If we can enlarge R to a λ-ring, i. e. if we can find a λ-ring R′

and a λ-monomorphism R ↪→ R′, then R itself is a λ-ring.

Splitting If all positive elements of R decompose into sums of line elements,
then R is a λ-ring.

Generation If R is additively generated by elements satisfying the λ-
identities, then R is a λ-ring.

More generally, if R is generated by line elements over some set of
elements that satisfy the λ-identities, and if R is line-special, then R is
a λ-ring. Precise definitions are given below.

Detection If an element x ∈ R lies in the image of a λ-ring R′ under a
λ-morphism R′ → R, then the second λ-identity (λ2) is satisfied for x.
Likewise, if two elements x, y ∈ R simultaneously lie in the image of a
λ-ring R′ → R, then both λ-identities (λ1) and (λ2) are satisfied for
{x, y}.

6There are four different choices of multiplication on Λ(R) that yield isomorphic ring
structures, with respective multiplicative units of the form (1± t)±1. We stick to loc. cit.
and use the multiplication whose unit is 1 + t.

7For a pre-λ-ring with a positive structure, λt(1) = 1 + t is automatically satisfied.
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This criterion is particularly useful in combination with the generation
criterion: in order to show that a pre-λ-ring is a λ-ring, it suffices to
check that each pair of elements from a set of additive generators is
contained in the image of some λ-ring.

The embedding and detection criteria are easily verified directly from the
definition of a λ-ring in terms of the λ-identities. The splitting criterion
follows from the generation criterion and the first part of Lemma 3.4 below.
We discuss the generation criterion in some detail:

3.1 Generation Lemma. Let R be a pre-λ-ring with a positive structure,
and let E ⊂ R be a subset that generates R as an abelian group (e. g. E =
R≥0). Then R is a λ-ring if and only if the λ-identities (λ1) and (λ2) hold
for all elements of E.

Proof. In general, given any group homomorphism between rings l : R → L
and a subset E ⊂ R that generates R as a an abelian group, l is a morphism of
rings if and only if it maps 1 to 1 and e1e2 to l(e1)l(e2) for all elements e1, e2 ∈
E. Likewise, if R and L are pre-λ-rings, then l is a morphism of pre-λ-rings
if and only if it maps e1e2 to l(e1)l(e2) and λi(e) to λi(l(e)) for all e1, e2, e ∈
E and all i ∈ N. The lemma is proved by applying these observations to
λt : R → Λ(R). The assumption that R has a positive structure is needed
only to verify that λt sends the multiplicative unit 1 ∈ R to the multiplicative
unit 1 + t ∈ Λ(R).

Both the generation criterion and the splitting criterion are special cases of
the following Line Generation Lemma.

3.2 Definition. Let E ⊂ R be a subset of a pre-λ-ring with a positive
structure. We say that R is generated by line elements over E if every
element of R can be written as a finite sum∑

le · e

for certain elements e ∈ E and certain line elements le in R.

3.3 Line Generation Lemma. Let R be a pre-λ-ring generated by line
elements over some subset E. If R is line-special and if the λ-identities hold
for all elements of E, then R is a λ-ring.

The proofs of this lemma and the next are the only places where we will need
the definitions of the polynomials Pk and Pk,j . Given a tuple xxx = (x1, . . . , xn),
let λi(xxx) denote the ith elementary symmetric polynomial in its entries. The
polynomials Pk and Pk,j are uniquely determined by the requirement that
the following equations be satisfied in Z[x1, . . . , xn], for all n:∑

k≥0

Pk(λ1(xxx), . . . , λk(xxx), λ1(yyy), . . . , λk(yyy))T k =
∏

1≤i,j≤n
(1 + xiyjT ) (6)

∑
k≥0

Pk,j(λ1(xxx), . . . , λkj(xxx))T k =
∏

1≤i1<···<ij≤n
(1 + xi1 · · ·xijT ) (7)
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Proof of the Line Generation Lemma 3.3. We claim that the following equa-
tions hold in Z[α, x1, . . . , xk, β, y1, . . . , yk] and in Z[α, x1, . . . , xk]:

Pk(αx1, . . . , α
kxk, βy1, . . . , β

kyk) = αkβkPk(x1, . . . , xk, y1, . . . , yk) (8)

Pk,j(αx1, α
2x2 . . . , α

kjxkj) = αkjPk,j(x1, . . . , xk) (9)

Indeed, this follows easily from the fact that λi(αxxx) = αiλi(xxx) by comparing
the coefficients of T k in the defining equations. Let us now apply the
Generation Lemma 3.1 to the subset

E′ := {le | e ∈ E, l a line element in R}.

We check that all elements of E′ satisfy the λ-identities: for e ∈ E and l ∈ R,
we have

λk(λj(le)) = lkjλk(λje) since R is line-special

= lkjPk,j(e, λ
2e, . . . , λkje) by the assumption on E

= Pk,j(le, l
2λ2e, . . . , lkjλkje) by eq. (9)

= Pk,j(le, λ
2(le), . . . , λkj(le)) since R is line-special

Similarly, for e1, e2 ∈ E and any line elements l1, l2 ∈ R we have

λk(l1e1 · l2e2) = Pk(λ
1(l1e1), . . . , λk(l1e1), λ1(l2e2), . . . , λk(l2e2)).

3.4 Lemma. Let K be a pre-λ-ring with a positive structure.

(i) The λ-identities (λ1) and (λ2) are satisfied by arbitrary line elements.
(ii) The λ-identities (λ1) and (λ2) are satisfied by a pair of positive

elements x and y both of rank at most two if and only if the identities
(λ1) hold for k ∈ {2, 3, 4}. Explicitly, for positive x and y of rank at
most two said identities read as follows:

λ2(xy) = (x2 − 2λ2x) · λ2y + (y2 − 2λ2y) · λ2x+ 2λ2x · λ2y

λ3(xy) = xy · λ2x · λ2y

λ4(xy) = (λ2x)2 · (λ2y)2

(iii) K is line-special if and only if the identity (λ1) is satisfied for any pair
of elements x, y ∈ K with x a line element.

Proof. We sketch the proof of part (ii). Consider first the identities (λ2). If
we set all variables x3, x4, . . . to zero in the defining equations (7) for Pk,j ,
we obtain the identities∑

k Pk,1(λ1x, λ2x, 0, . . . , 0)T k = (1 + x1T )(1 + x2T ) = 1 + λ1x · T + λ2x · T 2∑
k Pk,2(λ1x, λ2x, 0, . . . , 0)T k = 1 + x1x2 · T = 1 + λ2x · T∑
k Pk,j(λ1x, λ2x, 0, . . . , 0)T k = 1 for all j ≥ 3

Thus, for any element x ∈ K satisfying λkx = 0 for k ≥ 3, the identities (λ2)
may be written as

λ1(λ1x) = λ1x, λ2(λ1x) = λ2x, λk(λ1x) = 0 for all k ≥ 3

λ1(λ2x) = λ2x, λk(λ2x) = 0 for all k ≥ 2

λk(λjx) = 0 for all j ≥ 3 and all k ≥ 1
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If x is positive of rank at most two, then λ2x is positive of rank at most one
and all these relations are trivial.

Similarly, if we set all variables x3, x4, . . . and y3, y4, . . . to zero in the defining
equation (6) for the polynomials Pk, we obtain the following identity:∑

kPk(λ1x, λ2x, 0, . . . , 0, λ1y, λ2y, 0, . . . , 0)

= (1 + x1y1T )(1 + x1y2T )(1 + x2y1T )(1 + x2y2T )

= 1 + (λ1x · λ1y)T

+
(
(λ1x)2 − 2λ2x)λ2y + ((λ1y)2 − 2λ2y)λ2x+ 2λ2x · λ2y

)
T 2

+ (λ1x · λ1y · λ2x · λ2y)T 3 +
(
(λ2x)2 · (λ2y)2

)
T 4

The claims follow.

3.2 Reduction to the case of split orthogonal groups

Our goal is to show that the pre-λ-structure on the symmetric representation
ring of an affine algebraic group scheme defined above is in fact a λ-structure.
As a first step, we reduce to the case of the split orthogonal group Om and
its products Om1 ×Om2 .

For comparison and later use, we recall from [SGA6, Exposé 0, App. RRR,
§ 2, 1) and 3)] the corresponding argument for the usual representation rings:
the fact that these are λ-rings for any affine algebraic group scheme follows
from the case of products of general linear groups GLm1 ×GLm2 .

3.5 Theorem (Serre). The representation ring K(G) of any affine algebraic
group scheme G is a λ-ring.

Proof, assuming the theorem for GLm1 ×GLm2. Any finite-dimensional lin-
ear G-module can be obtained by pulling pack the standard representation
of GLm along some morphism G → GLm. Its class in K(G) is therefore
contained in the image of the induced morphism of λ-rings K(GLm)→ K(G).

Similarly, given two G-modules corresponding to morphisms G
ρ1−→ GLm1 and

G
ρ2−→ GLm2 , we can consider the composition

G→ G×G (ρ1,ρ2)−−−−→ GLm1 ×GLm2 ,

where the first map is the diagonal. Under this composition, the standard
representation of GLm1 pulls back to the first G-module, while the standard
representation of GLm2 pulls back to the second. Thus, the classes of these
G-modules are both contained in the image of the induced morphism

K(GLm1 ×GLm2)→ K(G).

Therefore, by the detection criterion, it suffices to know that K(GLm1×GLm2)
is a λ-ring.

For the case of GLm1 ×GLm2 itself, see for example [Ser68] and the remarks
below.
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3.6 Theorem. The symmetric representation ring GW(G) of any affine
algebraic group scheme G over a field of characteristic not two is a λ-ring.

Proof, assuming the theorem for Om1 ×Om2. A symmetric representation
(ρE , ε) of G corresponds to a morphism G → O(E, ε), where (E, ε) is some
symmetric vector space. Of course, in general (E, ε) will not be split, but we
can achieve this as follows:

As 2 is invertible, the orthogonal sum (E, ε) ⊕ (E,−ε) is isometric to the
hyperbolic space H(E) (Lemma 1.1). Let cE denote the trivial G-module
with underlying vector space E. Then the symmetric G-module (ρE , ε) ⊕
(cE ,−ε) corresponds to a morphism

G→ O ((E, ε)⊕ (E,−ε)) ∼= O (H(E)) ∼= O2 dimE .

Thus, the class of (ρE , ε)⊕ (cE ,−ε) is contained in the image of a morphism
of λ-rings

GW(O2 dimE)→ GW(G).

The second summand, the trivial representation (cE ,−ε), can be obtained by
pulling back the corresponding trivial representation from O2 dimE . So the
first summand, the class of (ρE , ε), is itself in the image of (3.2).

Likewise, given two symmetric representations (ρE , ε) and (ρF , φ) of G, we
can obtain (ρE , ε) ⊕ (cE ,−ε) and (ρF , φ) ⊕ (cF ,−φ) by restricting from
O2 dimE × O2 dimF ; both (ρE , ε) and (ρF , φ) are therefore contained in the
image of a morphism

GW(O2 dimE ×O2 dimF )→ GW(G).

So under the assumption that GW(O2 dimE × O2 dimF ) is a λ-ring, we can
conclude as in the proof of Theorem 3.5.

It remains to show that the theorem is indeed true for products of split
orthogonal groups. This is the aim of the following sections, finally achieved
in Corollary 3.18.

3.3 Outline of the proof for split orthogonal groups

The usual strategy for showing that the representation ring of a split reductive
group is a λ-ring is to use its embedding into the representation ring K(T )
of a maximal torus, and the fact that the latter ring is generated by line
elements. However, on the level of Grothendieck-Witt groups, the restriction
to T cannot be injective: none but the trivial character of T are symmetric,
and hence the symmetric representation ring GW(T ) only contains one copy
of the Grothendieck-Witt group of our base field. In contrast, all simple
Om-modules are symmetric (see Proposition 3.17).

We are therefore led to look for a replacement for T with a larger supply of
symmetric representations. The candidate we choose is a semi-direct product
T oZ/2 of the torus with a cyclic group of order two, which we will refer to
as an “extended torus”. As we will see, all representations of T o Z/2 are
symmetric.

Our proof can be summarized as follows:
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Step 1. GW(T oZ/2) is a λ-ring. As all simple representations of T oZ/2
are of rank at most two, this can be checked directly in terms of the
λ-identities. See Lemma 3.4 and Proposition 3.11 below.

Step 2. GW(SO2n1+1×SO2n2+1) is a λ-ring: it embeds into GW(T oZ/2),
where T is a maximal torus in the product of special orthogonal
groups. See Proposition 3.16.

Step 3. GW(Om1 × Om2) is a λ-ring: it is generated by line elements over
the image of GW(SO2n1+1 × SO2n2+1) for appropriate n1 and n2.
See Corollary 3.18.

3.4 Representations of extended tori

The group O2 is a twisted product of SO2 = Gm and Z/2: for any connected
F -algebra A, we have an isomorphism

Gm(A) o Z/2
∼=−→ O2(A)

(a, x) 7→
(
a 0
0 a−1

)(
0 1
1 0

)x
We consider more generally semi-direct products T oZ/2, where T = Gr

m is
a split torus on which Z/2 acts by multiplicative inversion, i. e.

1.(a1, · · · , ar) := (a−1
1 , · · · , a−1

r )

for (a1, . . . , ar) ∈ T (A) and 1 ∈ Z/2. If we introduce the notation |x| :=
(−1)x for x ∈ Z/2, we can write the action as

x.(a1, · · · , ar) = (a
|x|
1 , · · · , a|x|r ).

The group structure on T o Z/2 is given by (aaa, x)(bbb, y) = (aaa · bbb|x|, x + y) in
this notation.

We write T ∗ := Hom(T,Gm) for the character group of the torus, a free
abelian group of rank r. The one-dimensional T -representation corresponding
to a character γγγ ∈ T ∗ is denoted eγγγ .

3.7 Proposition (T o Z/2-modules). All representation of T o Z/2 are
semi-simple. The isomorphism classes of simple T o Z/2-modules can be
enumerated as follows:

1, the trivial one-dimensional representation
δ, the one-dimensional representation on which T acts trivially while the

generator of Z/2 acts as −1.
[eγγγ ] := eγγγ⊕e−γγγ, for each pair of characters {γγγ,−γγγ} of T with γγγ 6= 0. Here,

Z/2 acts by interchanging the two factors.

The representation [e000] := 1⊕ 1 with Z/2 switching the factors is isomorphic
to the direct sum 1⊕ δ. For r = 1, [e1] is the standard representation of O2.
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Proof. Let V be a T o Z/2-representation. As T is diagonalizable, the
restriction of V to T decomposes into a direct sum of eigenspaces Vγγγ . Writing
1 for the generator of Z/2, we find that 1.Vγγγ ⊂ V−γγγ . Thus, V000 is a T o Z/2-
submodule of V , as is Vγγγ ⊕ V−γγγ for each non-zero γγγ.

The zero-eigenspace V000 may be further decomposed into copies of 1 and δ.
For non-zero γγγ, we can decompose Vγγγ into a direct sum of copies of eγγγ , and
then Vγγγ ⊕ Vγγγ decomposes into a direct sum of copies of eγγγ ⊕ 1.eγγγ ∼= [eγγγ ].

Alternatively, we may find all simple T o Z/2-representations by applying
Proposition 4.4 and lemma 4.5. Indeed, if we twist the T -action on eγγγ by
1 ∈ Z/2 (see Definition 4.2), we obtain e−γγγ , which is isomorphic to eγγγ if and
only if γγγ = 0.

All representations of T oZ/2 are symmetric. For later reference, we choose
a distinguished symmetry on each simple representation as follows.

3.8 Proposition. The following symmetric representations form a basis of
GW(T o Z/2) as a GW(F )-module:

1+ := (1, (1)), the trivial representation equipped with the trivial
symmetric form.

δ+ := (δ, (−1)), the representation δ equipped with the symmetric form
(−1).

[eγγγ ]+ := ([eγγγ ], ( 0 1
1 0 )) for each pair {γγγ,−γγγ} with γ 6= 0: the representation

[eγγγ ] equipped with the equivariant symmetric form

( 0 1
1 0 ) : eγγγ ⊕ e−γγγ

∼=−−−−−→ (eγγγ ⊕ e−γγγ)∨ = e−γγγ ⊕ eγγγ .

In short, the proposition says that we have an isomorphism of GW(F )-
modules

GW(T o Z/2) = GW(F )
〈
1+, δ+, [eγγγ ]+

〉
{γγγ,−γγγ}
γγγ 6=0

In analogy with the notation [eγγγ ]+, we write [e000]+ for the representation [e000]
equipped with the symmetric form ( 0 1

1 0 ). There is an equivariant isometry

[e000]+
∼=←−− (1⊕ δ,

(
2 0
0 −2

)
)

given by
(

1 1
1 −1

)
, so [e000]+ = (2) · 1+ + (2) · δ+ in GW(T o Z/2).

In order to check the λ-identities for GW(ToZ/2), we will need to understand
tensor products and exterior powers in GW(T oZ/2). This is the subject of
the next two lemmas.

3.9 Lemma. The tensor products of the above T o Z/2-modules are as
follows:

δ⊗2 ∼= 1 (P1)

δ ⊗ [eγγγ ] ∼= [eγγγ ] (P2)

[eγγγ ]⊗ [eκκκ] ∼= [eγγγ+κκκ]⊕ [eγγγ−κκκ] (P3)

Here, γγγ and κκκ are arbitrary characters of T (possibly zero).
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Proof. The first isomorphism is obvious. For the other two isomorphisms,
we describe [eγγγ ] as the two-dimensional representation with basis v1, v−1 and
action

(aaa, x).vµ := v|x|µ ⊗ a
|x|µγ1
1 · · · a|x|µγrr .

In this notation, an explicit isomorphism [eγγγ ] ∼= [e−γγγ ] is given by(
0 1
1 0

)
:

[eγγγ ]
∼=−→ [e−γγγ ]

vµ 7→ v−µ
(R)

The second two isomorphisms of the lemma can be described as follows:(
1 0
0 −1

)
:
δ ⊗ [eγγγ ]

∼=−→ [eγγγ ]

vµ 7→ µvµ
(P2)

[eγγγ ]⊗ [eκκκ]
∼=−→ [eγγγ+κκκ]⊕ [eγγγ−κκκ]

vµ ⊗ vµ 7→ (vµ, 0 )

vµ ⊗ v−µ 7→ ( 0 , vµ)

(P3)

3.10 Lemma. With respect to the symmetric forms chosen in Proposi-
tion 3.8, the isomorphisms (P1)–(P3) and (R) are isometries:

(δ+)⊗2 ∼= 1+ (P1+)

δ+ ⊗ [eγγγ ]+ ∼= [eγγγ ]+ (P2+)

[eγγγ ]+ ⊗ [eκκκ]+ ∼= [eγγγ+κκκ]+ ⊥ [eγγγ−κκκ]+ (P3+)

[eγγγ ]+ ∼= [e−γγγ ]+ (R+)

Moreover, for each character γγγ of T , we have an isometry

Λ2([eγγγ ]+) ∼= δ+. (L+)

Proof. These are claims are about symmetries on vector spaces, which can
be checked in a basis. (P1+) is clear. (R+) and (P2+) and boil down to the
following two identities:

( 0 1
1 0 ) = t( 0 1

1 0 ) ( 0 1
1 0 ) ( 0 1

1 0 )(
0 −1
−1 0

)︸ ︷︷ ︸
symmetry
on LHS

= t
(

1 0
0 −1

)
( 0 1

1 0 )︸ ︷︷ ︸
symmetry
on RHS

(
1 0
0 −1

)

For (P3+), we choose the following bases:

v1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v1, v−1 ⊗ v−1 ∈ [eγγγ ]⊗ [eκκκ]

(v1, 0), (v−1, 0), (0, v1), (0, v−1) ∈[eγγγ+κκκ]⊕ [eγγγ−κκκ]

Then the symmetry on [eγγγ ]+ ⊗ [eκκκ]+, the symmetry on [eγγγ+κκκ] ⊥ [eγγγ−κκκ] and
the isomorphism (P3) are represented by the following three matrices QL,
QR and I, which do indeed satisfy the required identity QL = tIQRI:

QL =

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
, QR =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
, I =

(
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

)
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Finally, Λ2([eγγγ ]+) has basis v1 ∧ v−1, on which 1 ∈ Z/2 acts as as −1, and
symmetry det ( 0 1

1 0 ) = −1. So Λ2([eγγγ ] is isometric to δ+ = (δ,−1), as claimed.

3.11 Proposition. GW(T o Z/2) is a λ-ring.

Proof. By the Line Generation Lemma 3.3, it suffices to check the λ-identities
for the symmetric representations listed in Proposition 3.8. As all of these
are of rank one or two, these identities boil down to the equations given in
part (ii) of Lemma 3.4. By part (iii) of the same lemma and the fact that
GW(T o Z/2) is line-special (Lemma 2.5), we can concentrate on the case
x = [eγγγ ]+, y = [eκκκ]+. So it suffices to check the following three identities in
GW(T o Z/2):

(1) λ2([eγγγ ]+ · [eκκκ]+) =
(
([eγγγ ]+)2 − 2λ2[eγγγ ]+

)
· λ2[eκκκ]+

+
(
([eκκκ]+)2 − 2λ2[eκκκ]+

)
· λ2[eγγγ ]+

+ 2λ2[eγγγ ]+ · λ2[eκκκ]+

(2) λ3([eγγγ ]+ · [eκκκ]+) = [eγγγ ]+ · [eκκκ]+ · λ2[eγγγ ]+ · λ2[eκκκ]+

(3) λ4([eγγγ ]+ · [eκκκ]+) = (λ2[eγγγ ]+)2 · (λ2[eκκκ]+)2

Using the lemmas above, we see that both sides of (3) equate to 1+ and that
both sides of (2) equate to [eκκκ+γγγ ]+ + [eκκκ−γγγ ]+. Equation (1) simplifies to

[e2γγγ ]+ + [e2κκκ]+ + 2δ+ = [e2γγγ ]+ + [e2κκκ]+ + 2[e000]+ − 2 · 1+.

Thus, it suffices to show that

2 · 1+ + 2δ+ = 2[e000]+

in GW(ToZ/2). As indicated below Proposition 3.8, [e000]+ = (2)·1++(2)·δ+,
so we can rewrite this equation as

( 1 0
0 1 ) · 1+ + ( 1 0

0 1 ) · δ+ = ( 2 0
0 2 ) · 1+ + ( 2 0

0 2 ) · δ+.

This equation does indeed hold in GW(T o Z/2) since the non-degenerate
symmetric forms ( 1 0

0 1 ) and ( 2 0
0 2 ) are isometric over any field of characteristic

not two via the isometry
(

1 1
1 −1

)
.

Remark. When the ground field k contains a square root of 2, the repres-
entation [e000]+ is isometric to 1+ ⊥ δ+. In this case, Proposition 3.11 can
alternatively be proved without explicitly checking the λ-identities. Namely,
it then follows from Lemma 3.10 that the subgroup

GW(T o Z/2)+ := Z
〈
1+, δ+, [eγγγ ]+

〉
{γγγ,−γγγ}
γγγ 6=0

is closed under products and exterior powers and is thus a sub-pre-λ-ring of
GW(ToZ/2). This subring maps isomorphically to the λ-ring K(ToZ/2) via
the forgetful map and is thus itself a λ-ring. On the other hand, GW(ToZ/2)
is generated over GW(T o Z/2)+ by line elements, so we can conclude via
the Line Generation Lemma 3.3.
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3.5 Representations of split special orthogonal groups

Let SO2n and SO2n+1 be the split orthogonal groups defined by the standard
symmetric forms (1) (Section 1). The aim of this section is to show that
the symmetric representation rings of these groups are λ-rings. We begin by
explaining our notation and conventions.

First, note that the two groups share a maximal torus T ⊂ SO2n ⊂ SO2n+1

which we can write as

T (A) =
{

diag
((

a1 0

0 a−1
1

)
, . . . ,

(
an 0

0 a−1
n

)) ∣∣∣ ai ∈ A×}
respectively T (A) =

{
diag

((
a1 0

0 a−1
1

)
, . . . ,

(
an 0

0 a−1
n

)
, 1
) ∣∣∣ ai ∈ A×} .

Let
γγγ = (γ1, . . . , γn) ∈ T ∗

denote the character T → Gm that sends an element of T (A) of the form
indicated to the product aγ11 · · · · ·a

γn
n . Then with respect to the usual choices,

the dominant characters for SOm are described by the conditions{
γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ γn ≥ 0 (m = 2n+ 1)

γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ |γn| (m = 2n)

We refer to these as 2n- and (2n + 1)-dominant, respectively. Given any
γγγ ∈ T ∗, we define

γγγ− := (γ1, . . . , γn−1,−γn).

3.12 Lemma.
If γn ≥ 0, then γγγ is 2n-dominant if and only if it is (2n+ 1)-dominant.
If γn ≤ 0, then γγγ is 2n-dominant if and only if γγγ− is (2n+1)-dominant.

The usual partial order on T ∗ is given by

γγγ′ � γγγ ⇔

{
(γγγ′, γγγ) satisfy conditions (C1)–(Cn) (m = 2n+ 1)

(γγγ′, γγγ) satisfy conditions (C1)–(Cn) and (C−n ) (m = 2n)

where the conditions are:

(Ci) γ′1 + · · ·+ γ′i ≤ γ1 + · · ·+ γi

(C−n ) γ′1 + · · ·+ γ′n−1 − γ′n ≤ γ1 + · · ·+ γn−1 − γn

We say that a weight γγγ′ is smaller than γγγ and write γγγ′ ≺ γγγ when γγγ′ � γγγ and
γγγ′ 6= γγγ. When it is not clear from the context, we say 2n- or (2n+ 1)-smaller
to clarify which of the two orderings we are using. Note that any character γγγ′

which is 2n-smaller than γγγ is a fortiori (2n + 1)-smaller. We will eventually
need the following observation.

3.13 Lemma. Let γγγ and γγγ′ be (2n+ 1)-dominant. If γγγ′ is (2n+ 1)-smaller
than γγγ−, then it is 2n-smaller than γγγ.

Given an m-dominant weight γγγ, we write Vγγγ for the simple SOm-module of
highest weight γγγ.
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3.14 Lemma.
When m is odd or a multiple of four, all simple representations of SOm are
symmetric.
When m = 2n with n odd, all simple representations Vγγγ with γn = 0 are
symmetric, while for γn 6= 0 we have V ∨γγγ

∼= Vγγγ−.

One way to prove this lemma is to consider the restriction from SOm to an
appropriate extended torus T o Z/2. We can define such tori by specifying
generators τ of Z/2:

• For m = 2n+ 1, let

τ :=


0 1
1 0

...
...

0 1
1 0

(−1)n

 .

The conjugation action of τ on T is multiplicative inversion, so the
subgroup generated by τ and T is indeed an extended torus T o Z/2.

• For m = 2n with n even, let

τ :=

 0 1
1 0

...
...

0 1
1 0

 .

Then, as in the previous case, the subgroup generated by τ and T is
an extended torus T o Z/2.
• For m = 2n with n odd, let

τ :=


0 1
1 0

...
...

0 1
1 0

1
1

 .

Write T as T ′×Gm. The element τ acts by multiplicative inversion on
T ′ and trivially on Gm, so the subgroup generated by τ and T has the
form (T ′ o Z/2)×Gm.

We thus have closed subgroups

ST2n+1 := T o Z/2 ↪→ SO2n+1

ST2n := T o Z/2 ↪→ SO2n for even n

ST2n := (T ′ o Z/2)×Gm ↪→ SO2n for odd n

Proof of Lemma 3.14. By [Jan03, Cor. II.2.5], V ∨γγγ
∼= V−w0γγγ .

When m is odd or divisible by four, −w0 is the identity, so all simple SOm-
modules are self-dual. The restriction of Vγγγ to STm contains the symmetric
simple STm-module [eγγγ ] = eγγγ ⊕ eγγγ− as a direct summand with multiplicity
one, so the duality on Vγγγ must be symmetric.

When m = 2n with n odd, −w0 acts as γγγ 7→ γγγ−. Thus, for a dominant
character γγγ the SOm-module Vγγγ is dual to Vγγγ− . In the case γn = 0 we can
argue as before.
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The restriction K(SOm)→ K(STm) is a monomorphism since its composition
with the further restriction to T is. We claim that the same is true for
Grothendieck-Witt groups.

3.15 Proposition. The morphism induced by restriction

GW(SOm)
i∗−→ GW(STm)

is injective. In particular, GW(SOm) is a λ-ring.

At this point, we only give a proof of this proposition in the case when m is
odd. The cases when m is even can be dealt with similarly, but we will not
need them for our further analysis.

We will, however, need a generalization to products of special orthogonal
groups of odd ranks. If τ1 ∈ SO2n1+1 and τ2 ∈ SO2n2+1 are the elements of
order two defined above, then (τ1, τ2) is an element of order two in SO2n1+1×
SO2n2+1 generating an extended torus (T × T ) o Z/2.

3.16 Proposition. The morphism induced by restriction

GW(SO2n1+1 × SO2n2+1)→ GW((T × T ) o Z/2)

is injective. In particular, GW(SO2n1+1 × SO2n2+1) is a λ-ring.

Proof of Proposition 3.15 for odd m. The main point is to show that the
restriction is a monomorphism. Once we know this, the claim that GW(SOm)
is a λ-ring follows from Proposition 3.11.

As a preliminary exercise, consider the restriction i∗ : K(SOm)→ K(T ). One
way to argue that this morphism is injective is as follows:

The isomorphism classes of the simple SOm-modules Vγγγ for
the different dominant weights γγγ form a Z-basis of K(SOm).
Moreover, for dominant weights γγγ and µµµ,

- the coefficient of eγγγ in i∗Vµµµ is non-zero only if µµµ � γγγ,
- the coefficient of eγγγ in i∗Vγγγ is 1.

Suppose e :=
∑

γγγ nγγγVγγγ is an element of K(SOm) that restricts to
zero. Let γγγ be maximal among all dominant weights for which
nγγγ 6= 0. Then the coefficient of eγγγ in i∗e is precisely nγγγ . So we
find that nγγγ must be zero, a contradiction.

Essentially the same argument can be applied to the restriction GW(SOm)→
GW(STm). As we have seen, all simple SOm-modules are symmetric. Choose
a symmetry θγγγ on Vγγγ for each dominant γγγ, so that

GW(SOm) = GW(F ) 〈(Vγγγ , θγγγ)〉γγγ dominant

GW(STm) = GW(F )
〈
1+, δ+, [eγγγ ]+

〉
{γγγ,−γγγ} with γγγ 6=0

.

For dominant weights γγγ, µµµ,

- the coefficient of [eγγγ ]+ in i∗(Vµµµ, θµµµ) is non-zero only if µµµ � γγγ,
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- the coefficient of [eγγγ ]+ in i∗(Vγγγ , θγγγ) is a non-degenerate rank-one symmetric
form (αγγγ).

Indeed, this can be checked by restricting to K(Tm).

Now suppose e :=
∑

γγγ φγγγ(Vγγγ , θγγγ) with φγγγ ∈ GW(F ) is an element of
GW(SOm) that restricts to zero in GW(STm). Let γγγ be maximal among all
dominant weights for which φγγγ 6= 0 in GW(F ). Then the coefficient of eγγγ in
i∗e is φγγγ ·(αγγγ). As (αγγγ) is invertible, we find that φγγγ = 0, a contradiction.

Proof of Proposition 3.16. A character γγγ = (γγγ1, γγγ2) ∈ (T × T )∗ is dominant
for SO2n1+1 × SO2n2+1 if and only if each γγγi is dominant for SO2ni+1. The
corresponding simple SO2n1+1×SO2n2+1-modules are of the form Vγγγ = Vγγγ1⊗
Vγγγ2 . In particular, all simple modules are again symmetric. Using the ordering

(µµµ1,µµµ2) � (γγγ1, γγγ2) :⇔ µµµ1 � γγγ1 and µµµ2 � γγγ2,

we can argue exactly as before.

3.6 Representations of split orthogonal groups

In this section, we finally deduce that the symmetric representation ring of
the split orthogonal group Om is a λ-ring.

We take Om to be defined by one of the standard symmetric forms (1)
(Section 1) and write T for the maximal torus of SOm defined in the previous
section. When m is odd, the orthogonal group decomposes as a direct
product, while for even m, we only have a semi-direct product decomposition:

O2n+1
∼= SO2n+1 × Z/2 with Z/2 generated by −1

O2n
∼= SO2n o Z/2 with Z/2 generated by diag (1, . . . 1, ( 0 1

1 0 ))

We thus obtain the following well-known description of the simple Om-
modules.

3.17 Proposition.

(a) Each simple SO2n+1-module Vγγγ lifts to two distinct simple O2n+1-
modules V̂γγγ and V̂γγγ ⊗ δ, where δ denotes the non-trivial character of
Z/2. All simple O2n+1-modules arise in this way.

V̂γγγ

V̂γγγ ⊗ δ

}
res7−−→ Vγγγ

(b) Likewise, each simple SO2n-module Vγγγ with γn = 0 lifts to two distinct
simple O2n-modules V̂γγγ and V̂γγγ ⊗ δ. For each dominant γγγ with γn > 0
there is a simple O2n-module V̂γγγ lifting Vγγγ ⊕ Vγγγ−; in this case, Vγγγ and
Vγγγ ⊗ δ are isomorphic. Every simple O2n-module arises in one of these
two ways.

γn = 0:
V̂γγγ

V̂γγγ ⊗ δ

}
res7−−→ Vγγγ

γn > 0: V̂γγγ 7−−→ Vγγγ ⊕ Vγγγ−

26



(c) Every simple Om-module is symmetric, for any m, and its endomorphism
ring is equal to the base field F .

Proof.
(a) is immediate from Proposition 4.1, and (b) follows from Corollary 4.9:
the automorphism α defined by conjugation with τ already stabilizes our
chosen split maximal torus T in this case and the induced action on T ∗ is
given by α∗(γγγ) = γγγ−.

(c) The claim concerning the endomorphism ring follows from the corres-
ponding fact for simple SOm-modules and Lemma 4.10. It remains to show
that the simple Om-modules are symmetric. For odd m, this is clear. So we
concentrate on the case m = 2n.

When γn 6= 0, the module V̂γγγ is necessarily self-dual because it is the only
simple O2n-module restricting to the self-dual SO2n-module Vγγγ⊕Vγγγ− . To see
that it is symmetric, we consider instead the restriction to T o Z/2, where
Z/2 acts non-trivially only on the last coordinate of T (see the beginning of
the proof): this restriction contains the simple symmetric T o Z/2-module

e(γ1,...,γn−1) ⊗ [eγn ] = eγγγ ⊕ eγγγ−

as a direct summand with multiplicity one.

When γn = 0, we know that V̂γγγ is either self-dual or dual to V̂γγγ ⊗ δ. In order
to exclude the second possibility, recall that by our construction Z/2 acts
trivially on eγγγ ⊂ V̂γγγ . It follows that Z/2 acts trivially on the two-dimensional
subspace eγγγ ⊕ e−γγγ :

Lemma. When γn = 0, Z/2 acts trivially on eγγγ ⊕ e−γγγ ⊂ V̂ γγγ .

Proof of the lemma. Consider the element

τ :=

{
diag (( 0 1

1 0 ) , . . . . . . . . . , ( 0 1
1 0 )) ∈ SO2n(F ) if n is even

diag (( 0 1
1 0 ) , . . . , ( 0 1

1 0 ) , 1, 1) ∈ SO2n(F ) if n is odd

This element commutes with the generator 1 = diag (1, . . . 1, ( 0 1
1 0 )) of Z/2

and maps eγγγ to e(−γ1,...,−γn−1,γn) = e−γγγ (c. f. Lemma 4.3). 4
The lemma implies that Z/2 also acts trivially on the subspace eγγγ⊕e−γγγ ⊂ V̂ ∨γγγ .

So we must have V̂ ∨γγγ
∼= V̂γγγ . Finally, as V̂γγγ restricts to a simple symmetric

SO2n-module, the duality on V̂γγγ must be symmetric.

3.18 Corollary. GW(Om) and GW(Om1×Om2) are λ-rings for all m, m1,
m2.

Proof.

(1) For the orthogonal group O2n+1 of odd rank, the inclusion SO2n+1 ↪→
O2n+1 is split by the projection q2n+1 : O2n+1 � SO2n+1. Consider the
induced inclusion of pre-λ-rings

GW(SO2n+1)
q∗2n+1
↪−−−→ GW(O2n+1).
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By Proposition 3.15, GW(SO2n+1) is a λ-ring. The description of the simple
O2n+1-modules in Proposition 3.17 implies that GW(O2n+1) is generated as
a GW(SO2n+1)-module by 1+ and δ+. We may therefore conclude via the
Line Generation Lemma 3.3.

(2) For the orthogonal group O2n of even rank we consider its embedding
into SO2n+1:

SO2n
� � //

_�
��

SO2n+1

O2n
�( q2n

55
(10)

The image of the induced ring morphisms

GW(SO2n+1)
q∗2n−−→ GW(O2n)

is a GW(F )-submodule of GW(O2n) which is a sub-pre-λ-ring and, by
Proposition 3.15, in fact a λ-ring. We claim that, as above, GW(O2n) is
generated over this submodule by the line elements 1+ and δ+:

im(q∗2n)
〈
1+, δ+

〉
= GW(O2n) (11)

Then the claim that GW(O2n) is a λ-ring follows as for O2n+1.

To prove (11), we analyse how the simple SO2n+1-modules restrict to O2n. As
our chosen maximal torus T is contained in all three groups in diagram (10),
we can do so by comparing weights. So let γ be a (2n + 1)-dominant
character in T ∗. In the simple SO2n+1-module Vγγγ , the weight γ appears with
multiplicity one, while all other weights that occur are (2n+1)-smaller than γ.

Lemma (Weights of O2n-modules). Let γγγ be (2n + 1) dominant, and let V̂γγγ
be the corresponding O2n-module as in Proposition 3.17. Then eγγγ appears
with multiplicity one in the restrictions of V̂γγγ and V̂γγγ ⊗ δ to T . All other
(2n + 1)-dominant weights µµµ for which eµµµ occurs in these restrictions are
(2n+ 1)-smaller than γγγ.

In fact, as the following proof shows, these weights µµµ are even 2n-smaller
than γγγ.

Proof of the Lemma. If γn = 0, we see from the restriction to SO2n that
γγγ occurs with multiplicity one, and that all other weights that occur are
2n-smaller than γγγ.

If γn > 0, the restriction to SO2n shows that γγγ and γγγ− both occur with
multiplicity one, and that all other weights that occur are either 2n-smaller
than one or 2n-smaller than the other. Of these, the (2n + 1)-dominant
weights will necessarily be 2n-smaller than γγγ, by Lemma 3.13. 4
Now consider the SO2n+1-representation Vγγγ and its restriction to O2n. Write
its decomposition into simple factors in K(O2n) as q∗2n(Vγγγ) =

∑
µµµ nµµµV̂µµµ +

n′µµµV̂µµµ ⊗ δ for certain non-negative integers nµµµ, n
′
µµµ. As the restrictions of Vγγγ
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and q∗2n(Vγγγ) to T agree, the above lemma implies the following equality in
K(T ):

eγγγ +

(
a lin. comb. of eµµµ

with µµµ ≺2n+1 γγγ

)
=
∑
µµµ

(nµµµ + n′µµµ)eµµµ +

 a lin. comb. of eννν with
ννν (2n+ 1)-dominant and

ννν ≺2n+1 µµµ


+

(
a lin. comb. of eννν with ννν
non-(2n+ 1)-dominant

)
It follows that all µµµ that appear with non-zero coefficient nµµµ + n′µµµ on the
right-hand side satisfy µµµ �2n+1 γγγ, that γγγ occurs among these µµµ, and that
nγγγ + n′γγγ = 1. Thus:

q∗2n(Vγγγ) =

{
V̂γγγ or

V̂γγγ ⊗ δ

}
+

∑
µµµ≺2n+1γγγ

(nµµµV̂µµµ + n′µµµV̂µµµ ⊗ δ) in K(O2n) (12)

This implies that 1 and δ generate K(O2n) as an im(q∗2n)-module:

Suppose the set of (2n + 1)-dominant weights for which V̂γγγ is
not contained in im(q∗2n) 〈1, δ〉 is non-empty. Let γγγ be a minimal
element with respect to the (2n + 1)-ordering. Then neither V̂γγγ
nor V̂γγγ ⊗ δ will be contained in im(q∗2n) 〈1, δ〉. But one of these will
appear in the decomposition of q∗2n(Vγγγ) as the only summand not
contained in im(q∗2n) 〈1, δ〉, which is impossible.

The same argument applies to GW. Indeed, let νγγγ be an arbitrary symmetry
on the simple SO2n+1-module Vγγγ . Consider the restriction of (Vγγγ , νγγγ) to
O2n. This restriction decomposes into a sum of simple symmetric objects
in GW(O2n) whose underlying objects are determined by the decomposition
(12) in K(O2n) (see Remark 1.5):

q∗2n(Vγγγ , νγγγ) =

{
(V̂γγγ , θγγγ) or

(V̂γγγ , θγγγ)⊗ δ+

}
+

∑
µµµ≺2n+1γγγ

(φµµµ(V̂µµµ, θµµµ)+φ′µµµ(V̂µµµ, θ
′
µµµ)⊗δ+) in GW(O2n)

for certain symmetries νγγγ , θµµµ and θ′µµµ and certain coefficients φµµµ, φ
′
µµµ ∈

GW(F ). A simple symmetric O2n-module (V̂γγγ , θγγγ) is contained in the
GW(F )-submodule im(q∗2n) 〈1+, δ+〉 for some symmetric form θγγγ on V̂γγγ if and
only if it is contained therein for every such form, as the possible symmetries
on V̂γγγ differ only by invertible scalars. We can therefore conclude as above,
by considering a weight γγγ minimal among all those (2n+1)-dominant weights
for which (V̂γγγ , θγγγ) is not contained in im(q∗2n) 〈1+, δ+〉.
Finally, for the product Om1 ×Om2 we consider the morphism of pre-λ-rings

GW(SO2n1+1 × SO2n2+1)
(qm1×qm2 )∗

−−−−−−−−→ GW(Om1 ×Om2)

where ni = bmi/2c. The simple O2m1 ×O2m2-modules are of the form W1 ⊗
W2, where W1 and W2 are irreducible representations of Om1 and Om2 . Let
δ+

1 and δ+
2 be the one-dimensional modules on which Om1 and Om2 act via
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the determinant, each equipped with some symmetry. Let ω1 and ω2 be
symmetries on W1 and W2. As we have seen in the two previous parts of the
proof, we can write

(W1, ω1) = q∗m1
(x1) + δ+

1 q
∗
m1

(x2)

(W2, ω2) = q∗m2
(y1) + δ+

2 q
∗
m2

(y2)

for certain elements xi, yi ∈ GW(SO2ni+1). In GW(Om1×Om2) we therefore
have

(W1 ⊗W2, ω1 ⊗ ω2) =
∑

i,j∈{0,1}

(δ+
1 )i(δ+

2 )j(qm1 × qm2)∗(xi ⊗ yj).

Thus, GW(Om1 × Om2) is generated over im ((qm1 × qm2)∗) by the line
elements 1+, δ+

1 and δ+
2 , and we may once more conclude via the Generation

Lemma 3.1.

4 Appendix: Representations of product group
schemes

In this appendix, we collect some basic facts from the representation theory
of affine algebraic group schemes. Though we assume that all of these are
well-known, we have been unable to locate precise references. Recall that all
our representations are finite-dimensional. The ground field is denoted F , as
elsewhere in this article, but no assumption on the characteristic is necessary
in this appendix.

4.1 Representations of direct products

Let G1 and G2 be affine algebraic group schemes over a field F .

4.1 Proposition. If E1 and E2 are simple G1- and G2-modules, respect-
ively, and if EndG2(E2) = F , then

E1 ⊗ E2

is a simple G1 ×G2-module. Conversely, if EndG2(E) = F for every simple
G2-module E, then every simple G1 ×G2-module is of the above form.

Over algebraically closed fields, the conditions on endomorphisms become
vacuous. In this case, a proof may be found in [Ste68, § 12]. The
corresponding statement for Lie algebras, over any field, is included in
[BZ64, § 3].

Proof. For the first statement, let W be any non-zero G1×G2-submodule of
E1⊗E2. Then, as G2-modules, E1⊗E2 and W are both finite direct sums of
copies of E2. Moreover, by our assumption on endomorphisms, the inclusion
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W ↪→ E1 ⊗ E2 may be described by a matrix with coefficients in F . This
implies that, as a G2-module, W = V ⊗E2 for some non-zero vector subspace
V of E1. In fact, V is necessarily a G1-submodule of E1: any non-zero linear
form φ on E2 induces a morphism of G1-modules id⊗φ : E1 ⊗E2 → E1, and
the composition

V ⊗ E2 → E1 ⊗ E2 → E1

is then a morphism of G1-modules with image V . As E1 is simple, V must
be equal to E1 and, thus, W must be equal to E1 ⊗ E2.

For the second statement, let M be a simple G1 ×G2-module. Then for any
simple G2-module E we have an isomorphism of G1 ×G2-modules

HomG2(E,M)⊗ E ∼= (socG2M)E

[Jan03, 6.15 (2)]. On the left-hand side, the action of G1 × G2 on
HomG2(E,M) is induced by its usual action on Hom(E,M); it follows that
G2 acts trivially on HomG2(E,M) and that we may view HomG2(E,M) as
a G1-representation. The action of G1 × G2 on E is obtained by trivially
extending the given action of G2 on E. On the right-hand side, socG2M
denotes the G2-socle of M and (−)E denotes its E-isotypical part. The
claim is, in particular, that (socG2M)E is a G1 ×G2-submodule of M .

There must be some simple G2-module E for which (socG2M)E is non-zero
[Jan03, 2.14 (2)]. As M itself is simple, we find

HomG2(E,M)⊗ E ∼= M

for this E. It remains to note that HomG2(E,M) is simple as a G1-module:
if it contained a proper G1-submodule, M would contain a proper G1 ×G2-
submodule.

4.2 Representations of semi-direct products

We are mainly interested in semi-direct products with Z/2: in the orthogonal
group O2n

∼= SO2n o Z/2 and in the “extended tori” T o Z/2. In slightly
greater generality, we describe in this section how to obtain the simple
representations of a semi-direct product HoZ/p (p a prime) from the simple
representations of H. All corresponding facts for representations of compact
Lie groups may be found in [BtD95, VI.7]. The only exception is Corol-
lary 4.9, which we learnt from Skip Garibaldi; see [BGL, Proposition 2.2].

Recall that a representation of an affine algebraic group scheme G consists
of an F -vector space V together with a natural A-linear action of G(A) on
V ⊗A for every F -algebra A. Such a representation is completely determined
by its restriction to connected F -algebras, so we may assume that A is
connected whenever this is convenient. In particular, as (Z/p)(A) = Z/p
for any connected A, a representation of the constant group scheme Z/p
is the same as a representation of the corresponding abstract group. An
H o Z/p-module is an H-module which is also a Z/p-module, such that

(x.h).(x.v) = x.(h.v) ∈ V ⊗A

for all connected F -algebras A and all x ∈ Z/p, h ∈ H(A) and v ∈ V .
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4.2 Definition. Let V be a representation of some normal subgroup scheme
H ⊂ G. Given an element g ∈ G(F ), the g-twisted H-module gV has
the same underlying F -vector space V , with h ∈ H(A) acting on gV ⊗ A as
ghg−1 does on V ⊗A.

4.3 Lemma. Let V be an H o Z/p-module. If U ⊂ V is an H-submodule,
then x.U ⊂ V is also an H-submodule, for any x ∈ Z/p, and the action of
x on V induces an isomorphism of H-modules

−xU
∼=−→
x
x.U.

4.4 Proposition. Let V be a simple H o Z/p-module. Then

either V is simple as an H-module

or V ∼= ⊕x∈Z/pxU for some simple H-module U that does
not lift to an H o Z/p-module.

In the second case, the action of y ∈ Z/p on (ux)x ∈ ⊕xxU is given by
y.(ux)x = (ux+y)x.

Proof. By [Jan03, 2.14 (2)], we can find a simple H-submodule U ⊂ V . Then∑
x x.U is also an H-submodule of V , and in fact an H o Z/p-submodule.

As V is simple, it follows that ∑
x

x.U = V.

The stabilizer of U for the action of Z/p on the set of F -sub-vector spaces
{x.U} is either trivial or the whole group, so either all x.U are equal as F -
sub-vector spaces or they are all distinct. In the first case, we have V|H = U ,
so V|H is a simple H-module. In the second case, the H-submodules x.U must
intersect trivially, so the above sum is direct and we have an isomorphism of
H o Z/p-modules ⊕

x

xU
∼=−→
⊕
x

x.U = V

(ux)x 7→ (x.u−x)x,

with Z/p acting on the left-hand side as described in the proposition. Finally,
suppose that the H-module structure on U was the restriction of some H o
Z/p-module structure. Then we could define a monomorphism of H o Z/p-
modules

U ↪→
⊕
x

xU

u 7→ (x.u)x,

contradicting the simplicity of V .

It remains to determine which simple H-modules do lift to HoZ/p-modules,
and in how many ways.
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4.5 Lemma. A lift of an H-module structure on an F -vector space U to an
H o Z/p-module structure corresponds to an isomorphism of H-modules

φ : U
∼=−→ 1U

such that φp : U
∼=−→ 1U

∼=−→ 2U
∼=−→ · · ·

∼=−→ pU = U is the identity.

Proof. Given an H oZ/p-module structure on U lifting the given H-module
structure, take φ to be the action of 1 ∈ Z/p. Conversely, given an
isomorphism φ as described, define the Z/p-action on u ∈ U by x.u :=
φx.u.

4.6 Remark. Suppose U is a simple H-module over an algebraically closed
field of characteristic not p. Then U can be lifted to an H o Z/p-module
if and only if U ∼= U1 through an arbitrary isomorphism. Indeed, as F is
algebraically closed, EndF (H) = F , so φp is a scalar. Moreover, F contains
primitive pth roots, so we can normalize φ such that φp = 1.

4.7 Lemma. If an H-module U can be lifted to an HoZ/p-module Û , then

Û ⊗ eλ

is also a lift for any character eλ of Z/p. If, moreover, EndH(U) = F , all
lifts of U are of this form.

Proof. The first claim is clear since eλ|H is the trivial representation. For the

second statement, suppose φ and ψ are two different isomorphisms U ∼= 1U
such that φp = ψp = id. Then ψ−1 ◦ φ is an automorphism of the H-module
U , hence under the assumption EndH(U) = F it is given by multiplication
with some scalar λ ∈ F . Moreover, λp = 1. Writing Uφ and Uψ for the lifts
of U determined by φ and ψ, and writing eλ for the character of Z/p defined
by λ, we have an isomorphism of H o Z/p-modules

Uψ ⊗ eλ
∼=−→ Uφ

u 7→ λ−1u

4.8 Remark. For H o Z/p-modules of the form V =
⊕

x∈Z/p
xU , we have

isomorphisms of H o Z/p-modules

V ⊗ eλ
∼=−→ V

given by (ux)x 7→ (λxux)x, for any character eλ of Z/p.

When H is a split semi-simple, the preceding lemmas can be simplified as
follows. Fix a maximal split torus and a Borel subgroup T ⊂ B ⊂ H. Let
T ∗ := Hom(T,Gm) be the character lattice, and let ∆ ⊂ T ∗ be the set of
simple roots corresponding to our choice of B. Any automorphism α of H
determines a unique automorphism α∗ of T ∗ that restricts to a permutation
of ∆. Indeed, for any such α, there exists an element h ∈ H(F ) such that
the composition α′ of α with conjugation by h stabilizes T and B [Bor91,
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19.2, 20.9(i)]. This automorphism α′ is well-defined up to conjugation by an
element of T (F ) and thus induces a well-defined automorphism α∗ of T ∗. Of
course, α∗ is completely determined by its restriction to ∆, which is, in fact,
an automorphism of the Dynkin diagram of H.

4.9 Corollary. Let U be an irreducible representation of a split semi-simple
algebraic group scheme H over F . Suppose that the generator 1 ∈ Z/p acts
on H via an automorphism α.

(i) The representation U can be lifted to a representation Û of HoZ/p if
and only if the induced automorphism α∗ of T ∗ fixes the highest weight
of U .

Moreover, if a lift Û exists, then:

(ii) All other lifts are of the form Û ⊗ eλ, where λ is a character of Z/p.
(iii) The lifts Û ⊗ eλ for different characters λ are all distinct.

Proof. (i) Let µµµ be the highest weight of U . We claim that 1U is the
irreducible H-module with highest weight α∗(µµµ). Indeed, suppose first that
α can be restricted to both B and T , i. e. that α = α′ in the notation above.
Then for any character ννν ∈ T ∗, 1e

ννν
= eα

∗ννν . Moreover, as α∗ sends simple
roots to simple roots, it preserves the induced partial order on T ∗. So the
claim follows. In general, the same argument applies to 1′U , the twist of U
by 1 ∈ Z/p acting via α′. As α and α′ differ only by an inner automorphism
of H, this representation is isomorphic to 1U .

We thus find that an isomorphism φ : U → 1U exists if and only if α∗ fixes µµµ.
It remains to show that such an isomorphism will always satisfy the condition
named in Lemma 4.5. To see this, we consider the inclusion

HomH(U, 1U) ↪→ HomT (U, 1U).

When U and 1U are isomorphic, both contain eµµµ with multiplicity one, so
the right-hand side contains EndT (eµµµ) = F as a direct factor. If we choose
our H-equivariant isomorphism φ such that φ restricts to the identity on eµµµ,
then φp will also restrict to the identity on eµµµ. On the other hand, φp will
be multiplication with a scalar in any case, so for such choice of φ it will be
the identity.

(ii) follows directly from Lemma 4.7.

(iii) The proof of (i) shows that we may choose Û such that the restriction
of the Z/p-action to eµµµ ⊂ Û is trivial. Then the restriction of the Z/p-
action on Û ⊗ eλ to eµµµ is given by λ. So the lifts Û ⊗ eλ for different λ are
non-isomorphic.

In the final lemma, we write endG(E) for the dimension of EndG(E) over F .

4.10 Lemma (Endomorphism rings). Let H be an arbitrary affine algebraic
group scheme over F , and let V be a simple H o Z/p-module. Then

endHoZ/p(V ) ≤ endH(V ) if V|H is simple

endHoZ/p(V ) = endH(U) if V|H ∼=
⊕

x
xU such that U 6∼= 1U

endHoZ/p(V ) = p · endH(U) if V|H ∼=
⊕

x
xU such that U ∼= 1U
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Note that the isomorphism U ∼= 1U in the last statement necessarily violates
the condition of Lemma 4.5.

Proof. The first statement is clear since EndHoZ/p(V ) ⊂ EndH(V ). For the

other two cases, note that V ∼= ind
HoZ/p
H (U). Indeed, for any H-module U

we have an isomorphism of H o Z/p-modules

ind
HoZ/p
H (U)

∼=−→ Mor(Z/p, Ua) ∼=
⊕
x

xU

[Jan03, 3.8 (3)], with y ∈ Z/p acting on the right-hand side by y.(ux)x =
(ux+y)x. Explicitly, this isomorphism can be described as follows: The
representation indU can be identified with a subspace of the vector space
of natural transformations from H o Z/p to Ua, with the action of g ∈
(H o Z/p)(A) on such a transformation F given by (g.F ) := F ◦ g−1

[Jan03, 3.3 (2)]. We send F to (F (1,−x))x ∈
⊕

x
xU .

Given the identification of V with indU , the lemma follows from a straight-
forward calculation:

endHoZ/p(V ) = homHoZ/p(indU, indU) = homH((indU)|H , U)

= homH(
⊕

x
xU,U) =

∑
x homH(xU,U)

If the xU are non-isomorphic, then only the summand endH(U) corresponding
to the trivial twist is non-zero. Otherwise, all p summands are equal to
endH(U).
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