Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Dr. Tariq Syed

24.10.2025

Lineare Algebra I Blatt 2

1 | Dienst nach Vorschrift

Welche der folgenden Abbildungsvorschriften beschreiben wohldefinierte Abbildungen? Welche der wohldefinierten Abbildungen sind injektiv, welche surjektiv?

(a)
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2$

(b)
$$\mathbb{R} \to \mathbb{R}$$

(c)
$$\mathbb{R} \to \mathbb{R}$$

(d)
$$\{x \in \mathbb{R} \mid x \geqslant 0\} \to \mathbb{R}$$

 $x \mapsto \sqrt{x}$

(e)
$$\mathbb{Q} \setminus \{0\} \to \mathbb{Q} \setminus \{0\}$$
 (f) $\mathbb{N} \to \mathbb{N}$

(f)
$$\mathbb{N} \to \mathbb{N}$$

(g)
$$\mathbb{N} \to \mathbb{N}_0$$

$$\frac{a}{b} \mapsto \frac{b}{a}$$

$$\mathbb{R} \qquad \text{(b)} \ \mathbb{R} \to \mathbb{R} \qquad \text{(c)} \ \mathbb{R} \to \mathbb{R} \qquad \text{(d)} \ \{x \in \mathbb{R} \mid x \geqslant 0\} \to \mathbb{R}$$

$$x^{2} \qquad x \mapsto x^{3} \qquad x^{2} \mapsto x \qquad \qquad x \mapsto \sqrt{x}$$

$$\{0\} \to \mathbb{Q} \setminus \{0\} \qquad \text{(f)} \ \mathbb{N} \to \mathbb{N} \qquad \qquad \text{(g)} \ \mathbb{N} \to \mathbb{N}_{0}$$

$$\frac{a}{b} \mapsto \frac{b}{a} \qquad n \mapsto \begin{cases} n-1 & \text{falls } n \text{ gerade} \\ n+1 & \text{falls } n \text{ ungerade} \end{cases} \qquad n \mapsto \text{verschiedenen}$$

$$\text{Primfaktoren von } n$$

Anzahl der
$$n \mapsto \text{verschiedenen}$$
 Primfaktoren von n

Geben Sie zu den bijektiven Abbildungen jeweils die Umkehrabbildung an!

(Für eine nicht-negative reelle Zahl x bezeichnet das Symbol \sqrt{x} die nicht-negative Wurzel von x.)

2 | Schnittbild

Das Bilden von Urbildern vertauscht mit Vereinigungen und Schnitten: für beliebige Abbildungen $f: M \to N$ und beliebige Familien von Teilmengen $N_i \subseteq N$ gilt

$$f^{-1}(\bigcup_{i\in I} N_i) = \bigcup_{i\in I} f^{-1}(N_i)$$
 und $f^{-1}(\bigcap_{i\in I} N_i) = \bigcap_{i\in I} f^{-1}(N_i)$.

Wie sieht es mit Bildern aus? Gilt auch $f(\bigcup_{i\in I} M_i) = \bigcup_{i\in I} f(M_i)$ für beliebige Teilmengen $M_i\subseteq M$? Gilt $f(\bigcap_{i\in I} M_i) = \bigcap_{i\in I} f(M_i)$?

3 | Binomis Baukasten ★

Sei M eine endliche Menge mit n Elementen.

- (a) Die Potenzmenge $\mathfrak{P}(M)$ ist wieder endlich. Aus wie vielen Elementen besteht sie?
- (b) Ist M nicht leer, so sind die Menge $\mathfrak{P}^0(M) \subset \mathfrak{P}(M)$ der Teilmengen, die aus einer geraden Anzahl von Elementen bestehen, und die Menge $\mathfrak{P}^1(M)$ der Teilmengen, die aus einer ungeraden Anzahl von Elementen bestehen, gleich mächtig (d.h., es gibt eine Bijektion $\mathfrak{P}^0(M) \cong \mathfrak{P}^1(M)$).
- (c) Der Binomialkoeffizient $\binom{n}{k}$ ist definiert als die Anzahl der k-elementigen Teilmengen einer nelementigen Menge. Aus dem vorherigen Aufgabenteil folgt für jedes $n \in \mathbb{N}$: $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

4 | Machtdemonstration ★

Die Potenzmenge einer Menge ist stets mächtiger als die Menge selbst: für jede Menge M existiert eine injektive Abbildung $M \to \mathfrak{P}(M)$, aber für keine Menge M existiert eine solche Abbildung, die bijektiv ist.

Tipp: Varieren Sie den Beweis zu Warnung 1.6 ("Es gibt kein Universum")!

Abgabefrist: 03.11.2025, 10:15 Uhr.