31.10.2025

Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Dr. Tariq Syed

Lineare Algebra I Blatt 3

Beweisen Sie die folgenden Aussagen:

- (a) Eine Abbildung $f: A \to B$ mit nicht-leerem Definitionsbereich A ist genau dann injektiv, wenn sie ein Linksinverses besitzt, wenn es also eine Abbildung $A \leftarrow B: g$ gibt, für die gilt $g \circ f = \mathrm{id}_A$.
- (b) Eine Abbildung $f: A \to B$ ist genau dann surjektiv, wenn sie ein Rechtsinverses besitzt, wenn es also eine Abbildung $A \leftarrow B: g$ gibt, für die gilt $f \circ g = \mathrm{id}_B$.

2 | Gleichmacherei

1 | Linkskringelnd

Untenstehend sind einige Relationen auf \mathbb{Z} angegeben. Welche sind symmetrisch? Welche reflexiv? Welche transitiv? Welche sind Äquivalenzrelationen, und was sind in diesen Fällen die Äquivalenzklassen?

- (a) $x \sim y :\Leftrightarrow xy \geqslant 0$
- (b) $x \sim y :\Leftrightarrow xy > 0$
- (c) $x \sim y :\Leftrightarrow x + y \geqslant 0$
- (d) $x \sim y :\Leftrightarrow x^3 = y^3$
- (e) $x \sim y :\Leftrightarrow (x-2)^2 = (y-2)^2$
- (f) $x \sim y :\Leftrightarrow 5 \text{ teilt } x y$
- (g) $x \sim y :\Leftrightarrow x \text{ teilt } y$

3 | Quadratgruppe ★

Die Symmetriegruppe S_{\square} eines Quadrats besteht aus vier Drehungen d_i um einen der Winkel $i \cdot \frac{\pi}{2}$ $(i \in \{0, \dots, 3\})$ und vier Spiegelungen: s_x (Spiegelung an der x-Achse), s_y (Spiegelung an der y-Achse), s_d (Spiegelung an der Diagonalen) und s_n (Spiegelung an der Nebendiagonalen). Was ist jeweils die Verknüpfung zweier dieser Elemente in S_{\square} ?

4 | Eintopf ★

Zeigen Sie, dass Isomorphie von Mengen eine Äquivalenzrelation auf der Menge \mathcal{E} aller endlichen Mengen definiert. Können Sie den Quotienten \mathcal{E}/\cong mit einer Ihnen bekannten Menge identifizieren?

Abgabefrist: 10.11.2025, 10:15 Uhr.