Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Dr. Tariq Syed

07.11.2025

Lineare Algebra I Blatt 4

1 | Ecce homo I

Welche der folgenden Abbildungsvorschriften beschreiben wohldefinierte Gruppenhomomorphismen? Bestimmen Sie bei den Gruppenhomomorphismen jeweils den Kern und das Bild!

(a)
$$(\mathbb{N}, +) \to (\mathbb{Z}, +)$$
 (b) $(\mathbb{Z}, +) \to (\mathbb{Z}, +)$ (c) $\mathbb{Z}/2\mathbb{Z} \to (\{+1, -1\}, \cdot)$ (d) $\mathbb{Z}/2\mathbb{Z} \to (\mathbb{Z}, +)$ $x \mapsto -x$ $x \mapsto x - 2$ $[x] \mapsto (-1)^x$ $[x] \mapsto x$

(e)
$$(\mathbb{R} \setminus \{0\}, \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot)$$
 (f) $(\{+1, -1\}, \cdot) \to S_{\square}$ (g) $(\{+1, -1\}, \cdot) \to S_{\square}$ $x \mapsto x^2$ $1 \mapsto d_0$ $1 \mapsto d_0$ $-1 \mapsto d_1$

 Hier bezeichnet S_{\square} die Symmetriegruppe eines Quadrats; siehe Aufgabe 3 auf Blatt 3 oder Beispiel 2.5 der Vorlesung.

2 | Synchronknüpfen

Seien (G, \cdot) und (H, \circ) zwei Gruppen. Zeigen Sie:

(a) Das kartesische Produkt $G \times H$ ist mittels der "elementweisen Verknüpfung"

$$(q,h)\circ(q',h'):=(q\cdot q',h\circ h')$$

wieder eine Gruppe.

- (b) Die Projektionen $(G,\cdot) \leftarrow (G \times H, \circ) \twoheadrightarrow (H,\circ)$ sind Gruppenhomomorphismen.
- (c) Es gibt kanonische Monomorphismen $i_G: (G, \cdot) \hookrightarrow (G \times H, \circ) \hookleftarrow (H, \circ) : i_H.$
- (d) Die Untergruppen im i_G und im i_H sind normal, und die Quotientengruppen $G/\operatorname{im}(i_G)$ und $G/\operatorname{im}(i_H)$ sind isomorph zu H bzw. G.

3 | Vollversammlung ★

- (a) Zeigen Sie, dass jede Untergruppe von $(\mathbb{Z},+)$ von der Form $n\mathbb{Z} = \{nz \mid z \in \mathbb{Z}\}$ ist, für ein geeignetes $n \in \mathbb{N}_0$.
- (b) Ist der Schnitt $n\mathbb{Z} \cap m\mathbb{Z}$ für beliebige $m, n \in \mathbb{N}_0$ wieder eine Untergruppe? Wenn ja, welche?

4 | Selbsthilfegruppe ★

Sei (G,\cdot) eine Gruppe. Zeigen Sie, dass eine Teilmenge $H\subseteq G$ genau dann eine Untergruppe von Gdefiniert, wenn gilt:

- (a) Die Verknüpftung · lässt sich einschränken auf H, also $x \cdot y \in H$ für alle $x, y \in H$.
- (b) Zusammen mit dieser eingeschränkten Verknüpfung ist H selbst eine Gruppe.

Abgabefrist: 17.11.2025, 10:15 Uhr.