Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Dr. Tariq Syed

Lineare Algebra I Blatt 5

1 | Zykelzerlegung

Zerlegen Sie folgende Permutationen in Zykel und berechnen Sie jeweils das Signum! Geben Sie außerdem die inversen Permutationen α^{-1} , β^{-1} und γ^{-1} an!

$$\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 3 & 4 & 5 & 6 & 9 & 8 & 7 & 1 & 2 \end{pmatrix} \qquad \beta := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 11 & 3 & 1 & 2 & 10 & 9 & 5 & 7 & 8 & 6 & 4 \end{pmatrix}$$

$$\gamma := \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ n & n-1 & n-2 & \dots & 1 \end{pmatrix}$$

2 | Kleingruppen

Die Verknüpfungstabelle einer Gruppe (G, *) hat eine Zeile für jedes Element $x \in G$ und eine Spalte für jedes Element $y \in G$. Sei weist in Zeile x und Spalte y den Wert von x * y aus (vgl. Blatt 3, Aufgabe 3).

- (a) Geben Sie die Verknüpfungstabellen zu $(\mathbb{Z}/2\mathbb{Z},+)$, $(\mathbb{Z}/3\mathbb{Z},+)$, $(\mathbb{Z}/4\mathbb{Z},+)$ und zur Gruppen $(\mathbb{Z}/2\mathbb{Z},+)\times(\mathbb{Z}/2\mathbb{Z},+)$ (siehe Blatt 4, Aufgabe 2) an!
- (b) Zeigen Sie, dass jede Gruppe mit zwei Elementen isomorph zu $(\mathbb{Z}/2\mathbb{Z}, +)$ ist!
- (c) Zeigen Sie, dass jede Gruppe mit drei Elementen isomorph zu $(\mathbb{Z}/3\mathbb{Z}, +)$ ist!
- (d) Ist die Gruppe $(\mathbb{Z}/4\mathbb{Z}, +)$ isomorph zu $(\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$? Begründen Sie Ihre Antwort!

Tipp für (b-d): Zeigen Sie zunächst, dass für jedes Element y einer Gruppe (G,*) die durch $x \mapsto x*y$ und $x \mapsto y*x$ definierten Abbildungen $G \to G$ Bijektionen sind. Folgern Sie hieraus, dass in der Verknüpfungstabelle in jeder Zeile jedes Element von G genau einmal auftritt, und dass auch in jeder Spalte jedes Element von G genau einmal auftritt.

3 | Gaußsche Zahlen ★

(a) Zeigen Sie, dass die Teilmenge $\mathbb{Z}[\mathbf{i}] = \{a + \mathbf{i}b \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ einen Unterring der komplexen Zahlen \mathbb{C} definiert. Das heißt im Einzelnen: $\mathbb{Z}[\mathbf{i}]$ definiert eine Untergruppe von $(\mathbb{C}, +)$, die Multiplikation von \mathbb{C} lässt sich auf $\mathbb{Z}[\mathbf{i}]$ einschränken, und $\mathbb{Z}[\mathbf{i}]$ enthält das neutrale Element 1 der Multiplikation.

(Es lässt sich leicht prüfen, dass ein Unterring insbesondere selbst wieder ein Ring ist.)

- (b) Zeigen Sie, dass eine Zahl $z \in \mathbb{Z}[\mathbf{i}]$ genau dann in $\mathbb{Z}[\mathbf{i}]$ eine Einheit, also invertierbar bezüglich der Multiplikation, ist, wenn ||z|| = 1 ist.
- (c) Wie viele Einheiten gibt es in $\mathbb{Z}[\mathbf{i}]$? Zu welcher aus der Vorlesung bekannten Gruppe ist die Einheitengruppe ($\mathbb{Z}[\mathbf{i}]$) $^{\times}$ isomorph?

4 | Millimeterarbeit ★

Zu je zwei teilerfremden Zahlen $n, m \in \mathbb{Z} \setminus \{0\}$ existieren Koeffizienten $x, y \in \mathbb{Z}$, für die gilt:

$$xm + yn = 1$$

Bitte merken Sie sich diese Aussage, selbst wenn Sie die Aufgabe nicht bearbeiten. Sie wird Ihnen noch nützlich sein.

Beweisen Sie die Aussage wie folgt:

Schritt 1: Es gibt eine Abbildung $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/(nm)\mathbb{Z}$, die ([x], [y]) auf [xm + yn] abbildet.

Schritt 2: Diese Abbildung ist ein Gruppenhomomorphismus.

Schritt 3: Sie ist für teilerfremde m, n injektiv.

Schritt 4: Sie definiert für teilerfremde m, n sogar einen Gruppen iso morphismus.

Wieso folgt nun die Behauptung? Wie können die Koeffizienten x und y zum Beispiel für n=13 und m=17 gewählt werden?

Abgabefrist: 24.11.2025, 10:15 Uhr.