Lineare Algebra I Blatt 6

1 | Polynomdivision

Für welche der folgenden Paare von Polynomen A, B existiert in $\mathbb{Z}[X]$ eine Darstellung A = QB + Rmit deg(R) < deg(B)? Bestimmen Sie in diesen Fällen Q und R!

(a)
$$A = X^7 + 3X^5 + 7X^4 + X^3 + X + 1$$
, $B = X^3 + X + 1$

(b)
$$A = X^3 + X + 1$$
, $B = X^7 + 3X^5 + 6$

(b)
$$A = X^3 + X + 1$$
, $B = X^7 + 3X^5 + 6$
(c) $A = X^8 + 4X^7 + 7X^4 - X^3 - X^2 - 1$, $B = 2X^2 - 2X + 2$

Alle diese Polynome lassen sich auch als Elemente von $\mathbb{Q}[X]$ auffassen. Für welche der Polynome A und B existiert in $\mathbb{Q}[X]$ eine Darstellung A = QB + R mit $\deg(R) < \deg(B)$? Bestimmen Sie auch in diesen Fällen Q und R!

2 | Ecce homo II

Wir werden in Def. 4.12 der Vorlesung sehen: Eine Abbildung $f: V \to W$ zwischen zwei K-Vektorräumen $(V, +, \odot)$ und $(W, +, \odot)$ ist K-linear, falls für alle $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2 \in V$ und alle $r \in K$ gilt $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2) \text{ und } f(r \odot \mathbf{v}) = r \odot f(\mathbf{v}).$

Welche der folgenden Abbildungen sind \mathbb{R} -linear?

(a)
$$\mathbb{R} \to \mathbb{R}$$
 (b) $\mathbb{R} \to \mathbb{R}$ (c) $\mathbb{R}^2 \to \mathbb{R}^2$ (d) $\mathbb{R}^2 \to \mathbb{R}$ $x \mapsto 2 - 3x$ $x \mapsto x^3 - x^2$ $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} x^2/y & \text{falls } y \neq 0 \\ 0 & \text{falls } y = 0 \end{cases}$

(e)
$$\mathbb{R}[X] \to \mathbb{R}[X]$$
 (f) $\mathbb{R}[X] \to \mathbb{R}$ (g) $\mathbb{R}[X] \to \mathrm{Abb}(\mathbb{R}, \mathbb{R})$ $A \mapsto X^2 \cdot A$ $A \mapsto A(7)$ $A \mapsto \mathrm{ev}(A)$

3 | Strukturwandel ★

Wie viele Abbildungen $\mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ gibt es? Wie viele Gruppenhomomorphismen? Wie viele Ringhomomorphismen?

4 | Flachwurzler ★

Welche Nullstellen hat das Polynom $X^3 - 3X^2 + 2X$ über $\mathbb{Z}/12\mathbb{Z}$?

Welche Nullstellen hat es über $\mathbb{Z}/101\mathbb{Z}$?