Heinrich-Heine-Universität

Prof. Dr. Marcus Zibrowius Dr. Tariq Syed

28.11.2025

Lineare Algebra I Blatt 7

1 | Verpackungswahn

Seien V und W K-Vektorräume, seien $M, N \subseteq V$ und $O \subseteq W$ Teilmengen, und sei $f: V \to W$ eine K-lineare Abbildung. Welche der folgenden Aussagen sind im Allgemeinen richtig?

 $\langle\langle M\rangle\rangle = \langle M\rangle$ (a)

- $\langle f(M) \rangle = f(\langle M \rangle)$
- $\langle M \cap N \rangle = \langle M \rangle \cap \langle N \rangle$ (b)

(d) $\langle f^{-1}(O) \rangle = f^{-1}(\langle O \rangle)$

2 | Päckchen

Welche der folgenden Tupel in \mathbb{R}^3 sind linear unabhängig? Welche sind Erzeugendensysteme? Welche sind Basen? Argumentieren Sie jeweils direkt mit den Definitionen (Def. 5.1), nicht mit den nachfolgenden Sätzen!

- $\begin{array}{lll} \text{(a)} & \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \end{pmatrix} \right) & \text{(c)} & \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} \right) & \text{(e)} & \left(\begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} \right)_{y \in \mathbb{R}} \\ \text{(b)} & \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right) & \\ \end{array}$

3 | Auf und Ab ★

Die formale Ableitung eines Polynoms $A = \sum_{i \ge 0} a_i X^i \in \mathbb{R}[X]$ ist gegeben durch $A' := \sum_{i \ge 1} i a_i X^{i-1}$.

- (a) Zeigen Sie, dass die Zuordnung $A \mapsto A'$ einen Endomorphismus auf dem \mathbb{R} -Vektorraum $\mathbb{R}[X]$ definiert.
- (b) Bestimmen Sie den Kern und das Bild dieses Endomorphismus.

4 | Kreuzschlitz ★

Sei V ein Vektorraum mit Untervektorräumen W, V_1 , V_2 . Ist $W \subseteq V_1 \cup V_2$, so folgt bereits $W \subseteq V_1$ oder $W \subseteq V_2$.

Abgabefrist: 08.12.2025, 10:15 Uhr.