1 | Kastenwesen

Welche Matrizen stellen die folgenden linearen Abbildungen f, g, h und ihre Kompositionen g o f,
hogund hogo f dar?
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2 | Rank and File
Welche der durch die folgenden Matrizen definierten linearen Abbildungen R* — R? sind injektiv?

Welche surjektiv?
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[Anmerkung: Dieser Weg stand noch nicht zur Verfiigung, als Aufgabe gestellt wurde.]
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[Anmerkung: Dieser Weg stand bei Aufgabenstellung zur Verfiigung, auch wenn das konkrete Rechen-
verfahren und die Notation, die in dieser Musterlésung verwendet werden, erst spater eingefiihrt wurden.]
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3 | Erbsenzdhlen %

Beweisen Sie:

(a) Ein [F,-Vektorraum der Dimension n hat p" Elemente.
(b) Die reellen Zahlen R sind kein endlich-dimensionaler Q-Vektorraum.

Sie diirfen verwenden, dass ein endliches Produkt endlich vieler abzihlbarer Mengen wieder abzihlbar
ist, und dass R tberabzahlbar ist.

(a) Faur E—I/K V' der Diwmeunsion. o ?iﬂ"
nac dem  Hauptsat—:

V=)= Ex.. < E

P
g .F,. lf'&o res~
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(G Whie R esdicholiom . als @-UR, wircle anlog

getten
R = Qv’ for e we NV
(as @-VZ glso est vectt als  Meovge)
Do & abzalloar ist, cOoyrefe v esaxn —Q(a:w/ Aops

auclh (R abzollar ist é/ (Bsp. 1.25 ()



4 | Grenzen des Wachstums %

Eine Fahne der Linge d in einem Vektorraum V ist eine Kette von Untervektorrdumen von V' der
Form Uy C U; C Uy € -+ € Uy. (Die Notation A C B bedeutet A C B aber A # B). Zeigen Sie,

dass fiir einen endlich-dimensionalen Vektorraum V' die maximale Lénge einer solchen Fahne gleich
der Dimension von V ist.
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