Lineare Algebra I, Test 1

Überblick: Alle Fragen, alle Antworten

Aufgabe 1 Sei M eine Menge, und seien A, B und C Teilmengen von M.

(w) (f)

- \odot $A \setminus B = B \setminus A$
- \odot $A \cap B = B \cap A$
- \odot $A \cup B = B \cup A$
- \odot $(A \cap B) \cap C = A \cap (B \cap C)$
 - \odot $M \setminus (A \cap B) = (M \setminus A) \cap (M \setminus B)$

Aufgabe 2 Welche der folgenden Aussagen über Relationen sind richtig?

(w) (f)

- \odot Die durch $x \sim y : \Leftrightarrow x > y$ auf \mathbb{Z} definierte Relation ist reflexiv.
- \odot Die durch $x \sim y :\Leftrightarrow x^2 = y^2$ auf $\mathbb R$ definierte Relation ist symmetrisch.
- \odot Die durch $x \sim y :\Leftrightarrow x y \geq 0$ auf $\mathbb R$ definierte Relation ist reflexiv.
 - \odot Eine Relation \sim auf einer Menge M ist genau dann symmetrisch, wenn für jedes $x \in M$ gilt: $x \sim x$.
 - © Die durch $x \sim y : \Leftrightarrow x = y^2$ auf \mathbb{R} definierte Relation ist transitiv.
 - © Eine Relation ist genau dann eine Äquivalenzrelation, wenn sie symmetrisch und reflexiv ist.
- © Jede Äquivalenzrelation ist transitiv.

Aufgabe 3 Sei * eine Verknüpfung auf einer Menge M.

(w) (f)

- \odot Ist $e \in M$ ein neutrales Element für *, so gilt e * e = e.
 - \odot Hat $e \in M$ die Eigenschaft e * e = e, so bezeichnen wir e als neutrales Element für *.
- \odot Die Verknüpfung ist eine Abbildung $M \times M \to M$.
 - \odot Sei e ein neutrales Element für *. Ein inverses Element zu $x \in M$ bezüglich * ist ein Element x', für das gilt: x * e = x' = e * x.
- © Sei e ein neutrales Element für *. Ein inverses Element zu $x \in M$ bezüglich * ist ein Element x', für das gilt: x * x' = e = x' * x.
 - \odot Für beliebige $x, y, z \in M$ gilt: (x * y) * z = x * (y * z)

Aufgabe 4 Sei $f \colon A \to B$ eine Abbildung zwischen zwei Mengen.

(w) (f)

- \odot Ein Element $a \in A$ ist genau dann ein Urbild von $b \in B$, wenn gilt f(a) = b.
- \odot Jedes Element aus A besitzt genau ein Bild in B.
- \odot Ein Element a liegt genau dann in der Faser eines Elements $b \in B$, wenn gilt f(a) = b.
- \odot Die Faser eines Elements $b \in B$ ist das Urbild der Teilmenge $\{b\} \subseteq B$.
- © Ein Element $b \in B$ liegt genau dann im Bild von f, wenn es ein $a \in A$ gibt mit f(a) = b.
 - \odot Ein Element $b \in B$ liegt genau dann im Bild von f, wenn für alle $a \in A$ gilt: f(a) = b.

Aufgabe 5 Sei $f: M \to N$ eine Abbildung zwischen zwei Mengen.

(w) (f)

- \odot f ist genau dann surjektiv, wenn gilt f(M) = N.
 - \odot f ist genau dann surjektiv, wenn alle Fasern von f leer sind.
- \odot Ist f injektiv, so besteht jede Faser von f aus höchstens einem Element.
- \odot f ist genau dann injektiv, wenn für alle $m, m' \in M$ gilt: $f(m) = f(m') \Rightarrow m = m'$.
 - \odot f ist genau dann injektiv, wenn für alle $m, m' \in N$ gilt: $m = m' \Rightarrow f(m) = f(m')$.
 - \odot Ist M unendlich und N endlich, so ist f surjektiv.

Aufgabe 6 Sei $f:(G,\cdot)\to (K,*)$ ein Gruppenhomomorphismus.

(w) (f)

- \odot Der Kern von f besteht aus allen Elementen von G, die auf das neutrale Element von K abgebildet werden.
 - \odot Das Bild von f besteht aus allen Elementen von K, auf die das neutrale Element von G abgebildet wird.
- \odot Das Bild von f ist eine Untergruppe von (K, *).
- \odot Für beliebige $x, y \in G$ gilt $f(x \cdot y) = f(x) * f(y)$.
- $\ \$ Für beliebige $x,y,z\in G$ gilt $(x\cdot y)\cdot z=x\cdot (y\cdot z).$
- \odot Das neutrale Element von G wird von f abgebildet auf das neutrale Element von K.
- \odot Für beliebige Elemente $x, y \in G$ gilt: $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$
 - \odot Für beliebige Elemente $x, y \in G$ gilt: $(x \cdot y)^{-1} = x^{-1} \cdot y^{-1}$