

X	Y	之	XVY	(XVY)NZ	XnZ	Ynz	(X1Z)v(Y1Z)
W	W	W	W	` w	W	W	w
W	W	f	W	£	f	f	£
W	t	W	W	W	w	£	W
W	t	f	W	£	f	f	F
f	W	W	W	\sim	£	W	$\boldsymbol{\omega}$
£	W	F	W	4	f	£	F
f	t	W	f	Ė	F	£	F
£	f	P	f	f	F	£	`
١,	•	•			•	•	

Satz 1.9: M Menge, A,B,C = M $(A \cup B) \wedge C = (A \wedge C) \cup (B \wedge C)$

Bewer:

ti x EM ist zu zeigen: xe (AUB) nC => xe (AnC) U (BnC) Das zeigen wir wie folgt: Aussage Aussage XE (AUB) AC (XE AUB) A (XEC) (=> (xeAvxeB) ~ (xeC) $(X \vee Y) \wedge Z$ (X n Z) v (Y n Z) (=> (x ∈ A ∧ x ∈ C) v (x ∈ B ∧ x ∈ C) (=> (x ∈ A n c) v (x ∈ B n c) $(\Box) \times \in (A \land C) \cup (B \land C)$ Satz 1.8 (b): M \ (AJB) = (M\A) n (M\B) Beweisi Seweisi X E M \ (AUB) (=> X E M N 7 (X E AUB) $(\Rightarrow) \times \in M \land \neg (\times \in A \lor \times \in B)$ XEM A 7 (XEA) A 7 (XEB) XEM A X &A A X &B X M Y M Z (=> (x EMAX &A) A(+ EMAX &B) äquivalent in XYXXXX × ∈ (M \ A) ~ × ∈ (M \ B) (E) × ∈ (M\A) n (M\B)

Notation: X(i) Ansage, die von ie I abhängt

"für alle"

$$\forall i \in I : X(i)$$
 $\forall i \in I, X(i)$
 $\forall i \in I \left[X(i)\right]$

"sodass gilt"

"sodass gilt"

"mit der Eigenschaft"

$$\exists i \in I : X(i)$$
 $\exists i \in I, X(i)$
 $\exists i \in I \int X(i)$

Merke:

Iltis-Aufgaben: siehe "Links zum Selbststudium" unter https://www.math.uni-duesseldorf.de/~zibrowius/2025ws_vorkurs.html