Heinrich-Heine-Universität

Marcus Zibrowius Tobias Hemmert

Einführung in die Topologie Blatt 4

13 | Platzmangel

Sei a_1, a_2, a_3, \ldots eine Folge von Punkten in einem topologischen Raum X. Ein Punkt $x \in X$ heißt **Häufungspunkt** der Folge, falls jede Umgebung von x unendliche viele Folgenglieder enthält.

In kompakten Räumen besitzt jede Folge mindestens einen Häufungspunkt.

14 | Vollbremsung

Seien $N := \{1/n \mid n = 1, 2, 3, ...\}$ und $N_0 := N \cup \{0\}$ Teilräume von \mathbb{R} . Dann ist N diskret und N_0 kompakt. Eine stetige Abbildung $a : N \to X$ in einen Hausdorff-Raum X besitzt höchstens eine Fortsetzung zu einer stetigen Abbildung $a_0 : N_0 \to X$.

Man nennt $a_0(0)$ dann den **Grenzwert** von a.

15 | i-Tüpfel

Sei $f\colon X\to Y$ ein Abbildung zwischen kompakten Hausdorff-Räumen, die über einem Punkt $q\in Y$ eine einpunktige Faser $f^{-1}(\{q\})=\{p\}$ besitzt. Eine solche Abbildung ist genau dann stetig, wenn ihre Einschränkung $X-\{p\}\to Y-\{q\}$ stetig und eigentlich ist.

16 | Relativ hausdorffsch

Eine stetige Abbildung $f: X \to Y$ heißt **separiert**, falls das Bild der Diagonalen

$$\Delta \colon X \to X \times_V X$$

in $X \times_Y X$ abgeschlossen ist. Dies ist genau dann der Fall, wenn je zwei Punkte $x \neq x'$ mit f(x) = f(x') disjunkte Umgebungen in X besitzen.

Die Fasern separierter Abbildungen sind hausdorffsch. Insbesondere ist $X \to *$ genau dann separiert, wenn X ein Hausdorff-Raum ist.

★ Speck

Das **Primspektrum** Spec(R) eines kommutativen Rings R mit Eins ist die Menge der Primideale von R, ausgestattet mit folgender Topologie:

Wir nennen ein Primideal $\mathfrak p$ Nullstelle eines Elementes $f \in R$, falls im Restklassenring $R/\mathfrak p$ gilt $f/\mathfrak p=0$, falls also f in $\mathfrak p$ enthalten ist. Für $f\in R$ sei $N(f)\subset \operatorname{Spec}(R)$ die Menge aller Nullstellen von f. Für eine Teilmenge $S\subset R$ sei allgemeiner $N(S):=\bigcap_{f\in S}N(f)$. Als offene Mengen unserer Topologie nehmen wir alle Komplemente von Mengen der Form N(S).

Abgabefrist: 18.11.2016, 10:30 Uhr