Blatt 1, Aufgabe 4

4. Skelett. Every category is equivalent to a category, in which there is a unique object in each isomorphism class.

Proof. Recall that a functor $F : \mathcal{C} \to \mathcal{D}$ between two categories is an *equivalence of categories* if there exist a functor $G : \mathcal{D} \to \mathcal{C}$ and isomorphisms of functors:

(0.1)
$$\mathsf{G} \circ \mathsf{F} \simeq \mathrm{id}_{\mathcal{C}}, \quad \mathsf{F} \circ \mathsf{G} \simeq \mathrm{id}_{\mathcal{D}}.$$

Two categories \mathcal{C} and \mathcal{D} are said to be equivalent, if there exists an equivalence $\mathsf{F}: \mathcal{C} \to \mathcal{D}$.

Further, a functor $\mathsf{F} : \mathcal{C} \to \mathcal{D}$ is called *faithful*, if for any two objects $X, Y \in \mathcal{C}$ the induced map

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{D}}(\mathsf{F}(X),\mathsf{F}(Y))$$

is injective, and F is called *full*, if the above induced map is *surjective*. If F is both full and faithful, then such a functor is called *fully faithful*.

Let \mathcal{C} be a category. Define the category $\mathsf{sk}(\mathcal{C})$ (skeleton of \mathcal{C}). Let $[\mathbf{A}]$ be an isomorphism class of objects in \mathcal{C} ; then take one object \mathbf{a} in this isomorphism class (for this one needs the *Axiom of Choice*). Define the set of morphisms between two objects \mathbf{a} and \mathbf{b} of $\mathsf{sk}(\mathcal{C})$ to be the set of morphisms between these objects in \mathcal{C} . We obtain an inclusion functor $\mathsf{F}:\mathsf{sk}(\mathcal{C}) \to \mathcal{C}$ that is full and faithful.

Let us construct an inverse functor G to the inclusion functor F, and then check the isomorphisms (0.1). This will prove the equivalence between $sk(\mathcal{C})$ and \mathcal{C} .

Indeed, since objects of $\mathsf{sk}(\mathcal{C})$ are isomorphism classes of objects of \mathcal{C} , every object $X \in \mathcal{C}$ is isomorphic to some object $\mathsf{F}(x)$ for $x \in \mathsf{sk}(\mathcal{C})$. Therefore, given such an object X, we can choose an isomorphism i_x between $\mathsf{F}(x)$ and X:

$$i_x: \mathsf{F}(x) \to X.$$

Define the functor $\mathbf{G} : \mathcal{C} \to \mathsf{sk}(\mathcal{C})$ that sends an object $X \in \mathcal{C}$ to $x \in \mathsf{sk}(\mathcal{C})$ as above. We must define how \mathbf{G} acts on morphisms in \mathcal{C} . Let $g : X \to Y$ be an arrow in \mathcal{C} . Consider the square:

We obtain an arrow $i_y^{-1} \circ g \circ i_x \in \operatorname{Mor}_{\mathcal{C}}(\mathsf{F} \circ \mathsf{G}(X), \mathsf{F} \circ \mathsf{G}(Y))$ (recall that i_x and i_y are isomorphisms). Since the functor F is full and faithful, there exists a unique $f \in \operatorname{Mor}_{\mathsf{sk}(\mathcal{C})}(\mathsf{G}(X), \mathsf{G}(Y))$ that is sent by F to the composed arrow $i_y^{-1} \circ g \circ i_x$. Define $\mathsf{G}(g) := f$ for $g \in \operatorname{Mor}_{\mathcal{C}}(X, Y)$. We have defined G on objects and morphisms of \mathcal{C} .

Let us verify that G is a **functor**, in other words it preserves identity morphisms and repsects compositions of morphisms. If $id_X : X \to X$ is the identity morphism for an object $X \in C$, then $G(id_X)$ is a unique arrow from G(X) to G(X), such that $FG(id_X) = i_x^{-1} \circ id_X \circ i_x = id_X$. So, $G(id_X) = id_{G(X)}$.

To verify that **G** preserves composition of arrows we need to show that given two arrows $g_2 : X \to Y, g_1 : Y \to Z$ and their composition $g_1 \circ g_2 : X \to Z$ one obtains $\mathsf{G}(g_1 \circ g_2) = \mathsf{G}(g_1) \circ \mathsf{G}(g_2)$. This can be seen from the diagram below:

Indeed, from the definition of morphisms $F(f_i)$ for i = 1, 2 it follows (write FG short for the composition of functors $F \circ G$):

$$\mathsf{FG}(f_1 \circ f_2) = i_z^{-1} \circ g_1 \circ g_2 \circ i_x = i_z^{-1} \circ g_1 \circ i_y \circ i_y^{-1} \circ g_2 \circ i_x = \mathsf{FG}(f_1) \circ \mathsf{FG}(f_2) = \mathsf{F}(\mathsf{G}(f_1) \circ \mathsf{G}(f_2)),$$

the last equality follows from F being a functor (the inclusion functor of $sk(\mathcal{C})$ to \mathcal{C}). Since F is faithful, it follows that $G(f_1 \circ f_2) = G(f_1) \circ G(f_2)$.

We obtain that G is a functor, a morphism $F \circ G \to id_{\mathcal{C}}$ is a natural transformation of functors, and by the construction it is an isomorphism of functors. Since F is an inclusion functor, we also have $G \circ F \simeq id_{sk(\mathcal{C})}$. Therefore, the categories $sk(\mathcal{C})$ and \mathcal{C} are equivalent.