Heinrich-Heine-Universität

Marcus Zibrowius Peter Arndt 12.12.2017

Topologie I Blatt 10

37 | Nullerlei

Für eine punktierte Abbildung $g:(S^n,*)\to (X,x)$ sind die folgenden Aussagen äquivalent $(n\geq 1)$:

- (a) Die Abbildung g repräsentiert in $\pi_n(X, x)$ das neutrale Element.
- (b) Die Abbildung g ist in $\mathcal{T}op_{\bullet}$ homotop zur konstanten Abbildung.
- (c) Die Abbildung g ist in $\mathcal{T}op$ homotop zu einer konstanten Abbildung.

38 | Monohomotopel

Ein **Eilenberg-MacLane-Raum** ist ein zusammenhängender Raum mit genau einer nicht-trivialen Homotopiegruppe. Genauer schreiben wir $K(\pi, n)$ für einen zusammenhängenden Raum mit

$$\pi_n(K(\pi, n)) = \pi,$$

$$\pi_i(K(\pi, n)) = 0 \text{ für } i \neq n.$$

Hierbei ist n eine beliebige vorgegebene natürliche Zahl und π eine Gruppe, abelsch falls $n \geq 2$. Welche Eilenberg-MacLane-Räume tauchten bereits in der Vorlesung und/oder in vorherigen Aufgaben auf?

(Eine vollständige Antwort sollte für mindestens drei Räume nachweisen, dass es sich um Eilenberg-MacLane-Räume handelt.)

39 | Komplexer Mehrzeller

Der komplexe projektive Raum $\mathbb{C}P^n$ ist ein Zellkomplex mit einer d-Zelle für jedes $d \in \{0, 2, \dots, 2n\}$.

40 | Wanderhügel

Beim Anheften einer Zelle kommt es nur auf die Homotopieklasse der Anheftabbildung an: sind $f,g\colon S^n\to X$ homotop, so sind $X\sqcup_f D^{n+1}$ und $X\sqcup_g D^{n+1}$ homotopieäquivalent.

Abgabefrist: 19.12.2017, 10:30 Uhr. Bitte werfen Sie Ihre Lösungen in Briefkasten 163 ein.