Marcus Zibrowius Jan Hennig

Topologie I Test 1

Es gibt insgesamt 5 Aufgaben, allesamt Ankreuzaufgaben. Kreuzen Sie bei jeder Aussage an, ob Sie wahr (w) oder falsch (f) ist. Je Aufgabe erhalten Sie als Punktzahl die Differenz aus der Anzahl aller richtig gesetzten Kreuze und aller falsch gesetzten Kreuze, mindestens aber 0 Punkte.

In den Aufgaben 1, 2 und 3 können Sie wahlweise in der Kategorie aller topologischen Räume oder in der Kategorie der lokal-kompakt-erzeugten Schwach-Hausdorff-Räume arbeiten.

Aufgabe 1

- (w) (f)
- © Jeder Unterraum eines Hausdorff-Raums ist ein Hausdorff-Raum.
- © Jeder Unterraum eines kompakten Raums ist ein kompakter Raum.
- \odot \odot Jeder kompakte Unterraum eines Hausdorff-Raums X ist in X abgeschlossen.
- \odot Jeder kompakte Unterraum eines kompakten Raums X ist in X abgeschlossen.
- © Seder kompakte Hausdorff-Raum ist lokal kompakt.

Aufgabe 2

Wir schreiben $\underline{\mathsf{Top}}(X,Y)$ für die Menge $\mathsf{Top}(X,Y)$ aller stetigen Abbildungen von X nach Y, ausgestattet mit der KO-Topologie. Für eine beliebige Menge S sei δS die Menge S ausgestattet mit der diskreten Topologie.

- (w) (f)
- \odot Die KO-Topologie auf $\mathsf{Top}(X,Y)$ ist nur definiert, wenn Y lokal kompakt ist.
- \odot \odot Es ist $\underline{\mathsf{Top}}(\delta\{0,1\},\mathbb{R}) \cong \mathbb{R}^2$.
- \odot \odot Es ist $\mathsf{Top}(S^1, S^1) \cong \delta \mathbb{Z}$.
- \odot \odot Ist X endlich und Y diskret, so ist $\mathsf{Top}(X,Y)$ diskret.
- \odot So Ist X diskret und Y endlich, so ist Top(X,Y) diskret.

Aufgabe 3

Wir nennen einen Unterraum $A \subset X$ einen Retrakt von X, wenn die Inklusion $A \hookrightarrow X$ ein (stetiger) Retrakt im Sinne der Vorlesung ist.

- (w) (f)
- \odot Das offene Intervall (0,1) ist ein Retrakt in \mathbb{R} .
- \odot Das abgeschlossene Intervall [0, 1] ist ein Retrakt in \mathbb{R} .
- \odot \odot Der Nullpunkt $\{0\}$ ist ein Rektrakt in \mathbb{R} .
- \odot \odot Der Kreis S^1 ist ein Rektrakt in der gelochten Ebene $\mathbb{R}^2 \setminus \{0\}$.
- \odot \odot Die 2-Sphäre S^2 ist ein Retrakt im Raum \mathbb{R}^3 .

In den Aufgaben 4 und 5 arbeiten wir in der Kategorie der lokal-kompakt-erzeugten Schwach-Hausdorff-Räume.

Aufgabe 4

(w) (f)

- \odot Für jeden abgeschlossene Unterraum $A\subset X$ ist die Einbettung $A\hookrightarrow X$ eine Kofaserung.
- © Ø Jede Homotopieäquivalenz ist eine Kofaserung.
- \odot Die Projektion auf die zweite Koordinate $\mathbb{R}^2 \to \mathbb{R}$ ist eine Kofaserung.
- \odot Die Einbettung eines beliebigen Punktes in die 3-Sphäre S^3 ist eine Kofaserung.
- © 9 Jede Kofaserung ist eine Einbettung eines Unterraums.

Aufgabe 5

(w) (f)

- © Ø Jede Komposition von zwei Umgebungsdeformationsretrakten ist ein Umgebungsdeformationsretrakt.
- © Jeder Umgebungsdeformationsretrakt ist eine Homotopieäquivalenz.
- © Gede Abbildung $f: X \to Y$ lässt sich schreiben als eine Komposition $f = h \circ i$, wobei i eine Kofaserung und h ein Homöomorphismus ist.
- \odot Ist $i: A \to X$ ein Umgebungsdeformationsretrakt, so ist auch die Inklusion des Punktes A/A in den Raum X/A ("Zusammenschlagen von A zu einem Punkt") ein Umgebungsdeformationsretrakt.
- \odot \odot Die Inklusion des Randes S^1 in die abgeschlossene Einheitsscheibe D^2 ist ein Umgebungsdeformationsretrakt.

Marcus Zibrowius Jan Hennig

Topologie I Test 2

Es gibt insgesamt 5 Aufgaben, allesamt Ankreuzaufgaben. Kreuzen Sie bei jeder Aussage an, ob Sie wahr (w) oder falsch (f) ist. Je Aufgabe erhalten Sie als Punktzahl die Differenz aus der Anzahl aller richtig gesetzten Kreuze und aller falsch gesetzten Kreuze, mindestens aber 0 Punkte.

Wie immer sind alle Abbildungen stetig.

Aufgabe 1

(w) (f)

- © Seien $X \subset \mathbb{R}^2$ und $Y \subset \mathbb{R}^2$ die x-Achse und die y-Achse. Die Einbettung $X \subset X \cup Y$ ist eine Kofaserung.
- \odot \odot Jede Abbildung $\mathbb{R} \to \mathbb{R}^2$ ist eine Kofaserung.
- © Seder Homöomorphismus ist eine Kofaserung.
- \odot Für jede Kofaserung $i: A \to X$ ist die Einschränkung $i: A \to i(A)$ ein Homöomorphismus.
- © Gede stetige Abbildung $f: X \to Y$ lässt sich schreiben als eine Komposition $f = h \circ i$, wobei i eine Kofaserung und h eine Homotopieäquivalenz ist.

Aufgabe 2

(w) (f)

- © Seien (X_0, x_0) und (X_1, x_1) punktierte Räume derart, dass die Abbildung $\{x_0\} \hookrightarrow X_0$ und $\{x_1\} \hookrightarrow X_1$ Kofaserungen sind. Existiert eine Homotopieäuqivalenz $X_0 \to X_1$, so existiert auch eine Homomotopieäquivalenz $X_0 \to X_1$, die x_0 auf x_1 abbildet.
- \odot Seien (X_0, x_0) und (X_1, x_1) wie im vorherigen Aufgabenteil. Ist $f: X_0 \to X_1$ eine Homotopieäquivalenz, die x_0 auf x_1 abbildet, so bildet jedes Homotopieinverse von f den Punkt x_1 auf x_0 ab.
- © Sei $D^2 \subset \mathbb{R}^2$ die Einheitskreisschreibe. Sei (D^2, j) die Kreisscheibe aufgefasst als Raum unter S^1 , wobei $j \colon S^1 \to D^2$ die Inklusion des Randes ist. Die Abbildung $D^2 \to D^2, \mathbf{x} \mapsto -\mathbf{x}$ ist eine Abbildung unter S^1 .
- © Sei $f: D^2 \to D^2$ eine Selbstabbildung der Kreisscheibe, die eine Homotopieäquivalenz ist. Falls f jeden Punkt des Randes S^1 fixiert, so existiert auch ein Homotopieinverses g von f, das jeden Punkt des Randes fixiert, und es existieren Homotopien $g \circ f \leadsto$ id und $f \circ g \leadsto$ id, die zu jedem Zeitpunkt jeden Punkt des Randes fixieren.

Aufgabe 3

- (w) (f)
- \odot Sei * der Einpunktraum. Für jeden Raum X ist die Abbildung $X \to *$ eine Faserung.
- © Für jeden Umgebungsdeformationsretrakt $A \subset X$ ist die kanonische Abbildung $X \to X/A$ ("Zusammenschlagen von A zu einem Punkt") eine Faserung.
- © Für je zwei topologische Räume X und Y ist die kanonische Projektionsabbildung $X \times Y \to X$ eine Faserung.
- \odot Sei X wegzusammenhängend. Jede Abbildung $A \to X$, die eine Faserung und eine Kofaserung ist, ist ein Homöomorphismus.
- © © Die Fasern einer Faserung sind notwendig wegzusammenhängend.

Aufgabe 4

Der Wegeraum Ep einer Abbildung $p: E \to B$ ist bekanntlich das folgende Faserprodukt.

- (w) (f)
- \odot \odot Die Abbildung ev₀: $B^I \to B$ ist eine Homotopieäquivalenz.
- \odot Die Abbildung $Ep \to E$ im Diagramm ist eine Homotopieäquivalenz.
- \odot State Berneum ist die Abbildung $Ep \to E$ im Diagramm ein Homöomorphismus.
- \odot Die Abbildung $Ep \to B^I$ links im Diagramm ist eine Homotopieäquivalenz.
- \odot \odot Ist p eine Faserung, so ist auch die Abbildung $Ep \to B^I$ links im Diagramm ist eine Faserung.

Aufgabe 5

- (w) (f)
- © Jede Überlagerung ist ein Faserbündel.
- © Ø Jede Faserung ist ein Faserbündel.
- $\ \odot \ \ \odot$ Jede Inklusion eines offenen Unterraums ist ein Faserbündel.
- \odot Seien $X \subset \mathbb{R}^2$ und $Y \subset \mathbb{R}^2$ die x-Achse und die y-Achse. Die Projektion auf die x-Koordinate $X \cup Y \to X$ ist ein Faserbündel.
- © Seien $X \subset \mathbb{R}^2$ und $Y \subset \mathbb{R}^2$ die x-Achse und die y-Achse. Die Projektion auf die x-Koordinate $X \cup Y \to X$ ist eine Faserung.

11.12.2024

Topologie I Test 3

Es gibt insgesamt 5 Aufgaben, allesamt Ankreuzaufgaben. Kreuzen Sie bei jeder Aussage an, ob Sie wahr (w) oder falsch (f) ist. Je Aufgabe erhalten Sie als Punktzahl die Differenz aus der Anzahl aller richtig gesetzten Kreuze und aller falsch gesetzten Kreuze, mindestens aber 0 Punkte.

Wie immer sind alle Abbildungen stetig.

Aufgabe 1

Sei $p: \mathbb{R} \to S^1$ die universelle Überlagerung, mit Faser $p^{-1}(1) = \mathbb{Z}$.

(w) (f)

- \odot \odot Jede Schleife in S^1 lässt sich hochheben zu einer Schleife in \mathbb{R} .
- \odot Fasertransport entlang der Identität $S^1 \to S^1$ ist die Identität $\mathbb{Z} \to \mathbb{Z}$.
- © Die Abbildung $\mathbb{Z} \to \mathbb{Z}, n \mapsto n+1$ lässt sich als Fasertransport entlang einer geeigneten Schleife in S^1 realisieren.
- © Die Abbildung $\mathbb{Z} \to \mathbb{Z}, n \mapsto -n$ lässt sich als Fasertransport entlang einer geeigneten Schleife in S^1 realisieren.
- \odot Sind α und β zwei Schleifen an $1 \in S^1$, mit zugehörigem Fasertransport τ_{α} und $\tau_{\beta} : \mathbb{Z} \to \mathbb{Z}$, so ist der Fasertransport entlang der Hintereinanderausführung $\beta \star \alpha$ (erst α , dann β) gegeben durch die Komposition $\tau_{\beta} \circ \tau_{\alpha}$.

Aufgabe 2

(w) (f)

- \odot Der punktierte Schleifenraum $\Omega_{\bullet}(*)$ des Einpunktraums ist zusammenziehbar.
- \odot \odot Der punktierte Schleifenraum $\Omega_{ullet}(S^1)$ hat unendlich viele Wegekomponenten.
- \odot \odot Der punktierte Schleifenraum $\Omega_{\bullet}(S^1)$ ist zusammenziehbar.
- \odot \odot Der punktierte Schleifenraum $\Omega_{\bullet}(\mathbb{R})$ hat unendlich viele Wegekomponenten.
- \odot Der punktierte Schleifenraum $\Omega_{\bullet}(\mathbb{R})$ ist zusammenziehbar.

Aufgabe 3

Sei [n] der folgende punktierte Raum: die zugrundeliegende Menge ist $\{1, \ldots, n\}$, punktiert ist sie in 1, und die Topologie ist diskret.

(w) (f)

- \odot \odot Der Abbildungsraum $\underline{\mathsf{Top}}_{\bullet}([n],[m])$ ist homöomorph zu $[m^{n-1}]$.
- \odot \odot Der Abbildungsraum $\underline{\mathsf{Top}}_{\bullet}([n],[m])$ ist homöomorph zu $[(m-1)^{n-1}]$.
- \odot Das Smash-Produkt $[n] \wedge [m]$ ist homoömorph zu [nm-n-m].
- \odot \odot Das Smash-Produkt $[n] \wedge [m]$ ist homoömorph zu [nm-1].
- \odot Das Wedge-Produkt $[n] \vee [m]$ ist homöomorph zu [m+n-1].

Aufgabe 4

(w) (f)

- \odot Die Einhängung ΣX lässt sich konstruieren als Verklebung von zwei Kegeln CX.
- \odot Sei ä: $X \to \Sigma X$ die kanonische Inklusion in die Einhängung, sozusagen als Äquator. Ist $f: X \to Y$ homotop zur konstanten Abbildung, so existiert eine Abbildung $\Sigma X \to Y$, deren Einschränkung auf ä(X) genau f ist.
- © Sei ä: $X \to \Sigma X$ wie im vorherigen Aufgabenteil. Die kanonische Abbildung $\Sigma X \to \Sigma X/\ddot{a}(X)$ ist eine Homotopieäquivalenz.
- \odot \odot Jeder Kegel CX ist zusammenziehbar.
- \odot Seien $A \to X$ und $A \to Y$ Kofaserungen derart, dass X und Y zusammenziehbar sind. Dann ist auch die Verklebung $X \sqcup_A Y$ zusammenziehbar.

Aufgabe 5

(w) (f)

- © Sei $F \cong [0,1]$ eine Faser des Möbiusbandes M, aufgefasst als Faserbündel $M \to S^1$. Die kanonische Abbildung $M \to M/F$ ist eine Homotopieäquivalenz.
- © Sei $p: E \to S^2$ ein Faserbündel mit Faser F. Sei $F_x \cong F$ die Faser über einem gewissen Punkt $x \in S^2$. Das Komplement $E \setminus F_x$ ist homotopieäquivalent zu F.
- \odot Sei $p: E \to S^2$ ein Faserbündel mit Faser F. Die Faser F hat genauso viele Zusammenhangskomponenten wie E.
- \odot Sei $p: X \times Y \to Y$ die kanonische Projektion auf die zweite Koordinate, aufgefasst als Faserbündel mit Faser X. In der von p induzierten lange exakten Sequenz von Homotopiegruppen sind alle Randabbildungen konstant.
- \odot \odot Es gibt ein Faserbündel $\mathbb{R}^2 \to \mathbb{R}$ mit Faser S^1 .

Hinweis: Jede der hier auftretenden Faserungen $p: E \to B$ definiert auch eine punktierte Faserung $(E, e) \to (B, p(e))$, für jeden Punkt $e \in E$.

Marcus Zibrowius Jan Hennig

Topologie I Test 4

Es gibt insgesamt 5 Aufgaben, allesamt Ankreuzaufgaben. Kreuzen Sie bei jeder Aussage an, ob Sie wahr (w) oder falsch (f) ist. Je Aufgabe erhalten Sie als Punktzahl die Differenz aus der Anzahl aller richtig gesetzten Kreuze und aller falsch gesetzten Kreuze, mindestens aber 0 Punkte.

Wie immer sind alle Abbildungen stetig.

Aufgabe 1

Es gibt einen Zellkomplex mit ...

- (w) (f)
- © ...zwei 0-Zellen, keinen 1-Zellen, sieben 2-Zellen, und keinen weiteren Zellen.
- © ...einer 0-Zellen, abzählbar unendlich vielen 1-Zellen, und keinen weiteren Zellen.
- \odot \odot ... genau zwei d-Zellen in jeder Dimension $d \in \mathbb{N}_0 = \{0, 1, 2, 3, 4 \dots\}$.
- © © ...keiner 0-Zelle und einer 1-Zelle
- ⊙ ⊙ ...27 0-Zellen, zwei 1-Zellen, 13 20-Zellen und keinen weiteren Zellen.

Aufgabe 2

- (w) (f)
- © Ø Je zwei Zellkomplexe mit derselben Anzahl an Zellen in jeder Dimension sind homöomorph.
- © Ø Je zwei Zellkomplexe mit derselben Anzahl an Zellen in jeder Dimension sind homotopieäquivalent.
- © © Je zwei endliche Zellstrukturen auf demselben topologischen Raum haben dieselbe Anzahl an Zellen.
- \odot \odot Jede Zellstruktur auf S^1 hat mindestens eine 1-Zelle.
- © Jeder kompakte Zellkomplex ist endlich (im Sinne von: besitzt nur endlich viele Zellen).

Aufgabe 3

- (w) (f)
- © ∃ Jede Homotopieäquivalenz $f: X \to Y$ zwischen zwei Zellkomplexen induziert einen Isomorphismus $\pi_n(X, x) \to \pi_n(Y, fx)$, für jeden Basispunkt $x \in X$ und jedes $n \in \mathbb{N}_0$.
- © © Für einen Zellkomplex X sind die höheren Homotopiegruppen $\pi_n(X, x)$ bis auf Isomorphie unabhängig von der Wahl des Basispunkts $x \in X$.
- \odot S Ist X ein Zellkomplex mit nur einer 0-Zelle x_0 , so hängt die Fundamentalgruppe $\pi_1(X, x_0)$ nur von der Anzahl der 1-Zellen von X ab.
- © Ein Zellkomplex ist genau dann wegzusammenhängend, wenn er nur eine 0-Zelle besitzt.
- \odot \odot Ist $A \subset X$ ein Unterkomplex eines Zellkomplexes, so ist für jedes $a \in A$ die induzierte Abbildung $\pi_n(A, a) \to \pi_n(X, a)$ injektiv.

Aufgabe 4

- (w) (f)
- \odot \odot Es gibt ein Faserbündel $S^3 \to S^2$ mit Faser S^1 .
- $\ \odot \ \odot$ Es gibt ein Faserbündel $\mathbb{R}^2 \to \mathbb{R}$ mit Faser $S^1.$
- © © Es gibt ein Faserbündel $S^1 \vee S^1 \to S^1$ mit zusammenziehbarer Faser.
- \odot \odot Es gibt ein Faserbündel $S^1 \times S^1 \to S^1$ mit Faser S^1 .
- $\ \odot$ Es gibt ein Faserbündel $\mathbb{R} \to S^1$ mit diskreter Faser.

Hinweis: Jede der hier auftretenden Faserungen $p \colon E \to B$ definiert auch eine punktierte Faserung $(E,e) \to (B,p(e))$, für jeden Punkt $e \in E$.

Aufgabe 5

Welche der folgenden Angaben zu Homotopiegruppen sind richtig?

- (w) (f)

- $\odot \quad \odot \quad \pi_2(\mathbb{R}^2) = 0$
- $\odot \quad \odot \quad \pi_1(\mathbb{R}^2 \setminus \{0\}) = 0$