Spezielle Themen der Algebra/Geometrie Blatt 9

Auf diesem Aufgabenblatt können Sie mit der Beschreibung von reellen Rang-r-Vektorbündeln durch 1-Kozykel mit Werten in $\mathrm{GL}_r(\mathbb{R})$ arbeiten. Ferner können Sie verwenden, dass sich die üblichen Konstruktionen mit Vektorbündeln in der Sprache der 1-Kozykel leicht beschreiben lassen.

Seien beispielsweise E und F Vektorbündel, die durch die Kozykel ($\{U_i\}, \{\varphi_{ij}\}_{ij}$) und ($\{U'_i\}, \{\psi_{ij}\}_{ij}$) beschrieben werden. Nach Übergang zu einer gemeinsamen Verfeinerung können wir ohne Beschränkung der Allgemeinheit von $U_i = U'_i$ ausgehen. Dann gilt:

• Die direkte Summe $E \oplus F$ wird beschrieben durch den 1-Kozykel $(\{U_i\}, \{\varphi_{ij} \oplus \psi_{ij}\}_{ij})$, wobei mit $\varphi \oplus \psi$ jeweils die Blockmatrix

$$\varphi \oplus \psi := \begin{pmatrix} \varphi & 0 \\ 0 & \psi \end{pmatrix}$$

gemeint ist.

- Das duale Vektorbündel E^{\vee} wird beschrieben durch den 1-Kozykel $(\{U_i\}, \{^t\varphi_{ji}\}_{ij})$, wobei mit $^t\varphi$ jeweils die transponierte Matrix gemeint ist.
- Das Tensorprodukt $E \otimes F$ wird beschrieben durch den 1-Kozykel $(\{U_i\}, \{\varphi_{ij} \otimes \psi_{ij}\}_{ij})$, wobei mit $\varphi \otimes \psi$ jeweils das übliche Tensorprodukt von Matrizen gemeint ist.

Für komplexe Vektorbündel funktioniert das alles analog. Sie können obige Aussagen über die Konstruktionen wahlweise als Satz oder als Definition auffassen.

17 | Picardgruppe

Für jedes reelle oder komplexe Geradenbündel L ist $L \otimes L^{\vee}$ isomorph zum trivialen Geradenbündel. Für jedes reelle Geradenbündel über einem parakompakten Hausdorff-Raum ist ferner $L^{\vee} \cong L$.

18 | Eulersequenz

Für das universelle komplexe Geradenbündel $U_1 \to \mathbb{CP}^1 = S^2$ gilt:

$$U_1 \oplus U_1 \cong U_1^{\otimes 2} \oplus \underline{\mathbb{C}}$$