
1. 27 LINES ON A CUBIC SURFACE

Let k be an algebraically closed field. By a cubic surface over k we mean the
zero locus X ⊂P3

k of a degree 3 homogeneous polynomial over k, which
we always assume to be nonsingular. By a line on X we mean a subset
L ⊂ X which is the zero locus of a homogenous polynomial of degree 1.

Theorem 1.1. Let X ⊂P3 be a cubic surface. There are exactly 27 lines on
X .

There are a few strategies to prove this Theorem. We suggest only one
here. The key idea is to realize that any cubic surface is isomorphic to the
blow-up of the projective plane P2 in 6 points in general position. Then
the general theory of blow-ups can be used to “count all the lines”. If you
google for blowups on the internet, you will find many nice pictures. They
are the most important tool in the field of birational geometry. For a more
elementary introduction to blowups, you can have a look at [BTL, Chapter
7], but beware that that text is still very incomplete.

Definition 1.2. A sequence of points P1, . . . ,P6 ∈P2 is said to be in general
position if

(i) no 3 of them lie on a line, and

(ii) they do not all lie on a single conic (the zero locus of a degree 2
homogeneous equation).

Theorem 1.3. Let X ⊂P3 be a cubic surface. There exist points P1, . . . ,P6 ∈
P2 in general position such that X is isomorphic to the blow-up of P2 in the
points P1, . . . ,P6.

Proof. This is [Poo17, Theorem 9.4.4]. Indeed, the anticanonical divisor
of X is just a hyperplane section of the emedding X ,→P3, which is very
ample by definition. So X is a del Pezzo surface of degree 3 as in [Poo17,
Section 9.4]. ■

Proof of Theorem 1.1. This is done in [Har77, Chapter 5, Theorem 4.9].
The 27 lines correspond to

• the 6 exceptional divisors, one for each point;

• the
(6

2

)= 15 lines going through 2 of the 6 points;

• the
(6

5

)= 6 conics going through 5 of the 6 points.



Summing these all up we get

6+15+6 = 27.

■

A detailed proof of Theorem 1.3 is a little out of reach for a report. However,
it is feasible to prove in a report that the blow-up of P2 in P1, . . . ,P6 ∈P2 in
general position, is a cubic surface. This is done in [Har77, Section 5.4].

Denote this blowup by X̃ →P2. We will sketch a little more context here
to motivate Hartshorne’s construction. It was mentioned in the proof
above already that for a cubic surface X ,→P3, an anticanonical divisor is
precisely minus a hyperplane section. So to realize X̃ as a cubic surface,
we should use its anticanonical divisor to embed it in projective space.
The anticanonical divisor on P2 is well known to be 3L, where L is a line.
Now, [Har77, Chapter 5, Proposition 3.3] tells us that the anticanonical
divisor of X̃ is

−K X̃ = 3π∗L−E1 − . . .−E6,

where E1, . . . ,E6 denote the special fibers of X̃ → P2: Ei is the fiber of
X̃ →P2 over Pi . The same proposition also tells us that

(1.1) (−K X̃ )2 = K 2
X̃
= (3L)2 −6 = 9−6 = 3.

Here the symbol (−K X̃ )2 is an integer that denotes the intersection pairing
of −K X̃ with itself on X̃ (see [Har77, Chapter 5, Section 1]). This is precisely
what we want to see, because once we embed X̃ into projective space using
|−K X̃ |, we will want its degree to be that of a cubic surface: 3. The tricky
part in proving that we will get the embedding we are after is now summed
up by the following two facts.

(i) the divisor −K X̃ is very ample, i.e., we obtain an embedding

ϕ|−K X̃ | : X̃ ,→PN

such that −K X̃ is precisely a hyperplane section under this embed-
ding.

(ii) The dimension of |−K X̃ | is 3, i.e., the integer N in the embedding
above is exactly 3.

The two facts above are proved in [Har77, Chapter 5, Corollary 4.7].

The converse direction of Theorem 1.3 is much harder, but Harshorne
argues that, at least, there cannot be many more cubic surfaces. See
[Har77, Chapter 5, Remark 4.7.2].



2. POSSIBLE GOALS FOR A REPORT

A report on this topic could dive into the proof of Theorem 1.1. As already
indicated above, a few facts should be taken for granted. The existence
of an intersection pairing on surfaces, as shown in [Har77, Chapter 5,
Section 1] should be made intuitive, but it would be excessive to prove this
in detail. The theory in [Har77, Chapter 5, Section 3] about blow-ups of
surfaces and how this plays with divisors can also be taken for granted. A
description of how a linear system gives a rational map to projective space
and what it means to be very ample should be included in the report. The
conditions Hartshorne uses to prove that the linear system he constructs
is very ample should probably be taken for granted, or should only very
briefly be motivated.

If the student ends up finding the approach described here too technical,
she can also have a look at the final chapter in [Edi]. The approach there
is more elementary. The advantage of the method we describe here is that
it can easily be generalized to count curves on Del Pezzo surfaces, which
could also be done in a report.

2.1. Prerequisites. You should be comfortable with a few things from
algebraic geometry, in particular the notion of very ample divisors and the
intersection pairing on algebraic surfaces. This material can all be found
in [Har77]. This is a hard (but also very beautiful) project and should not
be underestimated!
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