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ABSTRACT. We determine the Bloch-Kato ordinary (quasi-)bielliptic surfaces in every
characteristic. We relate the notion of Bloch-Kato ordinarity to the notions of ordinary,
classical and supersingular introduced for (quasi-)bielliptic surfaces in [Kro25].

1. INTRODUCTION

Throughout, we fix an algebraically closed field k of characteristic p ą 0. All schemes
considered are over k. By a variety X we mean a connected smooth proper scheme over
the base. By a surface X we mean a variety of dimension 2.

In [Kro25] a trichotomy is suggested for certain bielliptic surfaces in wild characteristic
(which exist in characteristic 2 and 3; see Definition 2.3), subdividing them into three
classes: ordinary, classical and supersingular. This is in analogy with Enriques surfaces in
characteristic 2, for which the same terminology exists; see [CDL24]. We roughly sketch
the terminology for bielliptic surfaces. A bielliptic surface X can always be written as a
quotient X » pE ˆCq{G , where E is an elliptic curve, C is a smooth genus one curve or
the rational cuspidal curve Speckrt 2, t 3sYSpeckrt´1s, and G is a finite subgroup scheme
of E acting faithfully on C . If the order |G|“ h0pOGq is divisible by the characteristic of k,
then X lives in wild characteristic. In this case, we say

‚ X is Kroon ordinary if E (or equivalently, the Albanese variety of X by Remark
2.7) is;

‚ X is Kroon classical if C is the cuspidal curve and E is ordinary;
‚ X is Kroon supersingular if C is the cuspidal curve and E is supersingular.

For general varieties, a notion of ordinarity exists which is due to Illusie-Raynaud
and Bloch-Kato; see [IR83], [BK86] and Definition 3.1 below. We refer to it as Bloch-
Kato ordinarity. A notable feature is that this defintion generalizes many defintions of
"ordinary" for various families of varieties, for instance abelian varieties and K3 surfaces.

For Enriques surfaces it turns out that all of them are Bloch-Kato ordinary, apart from
the supersingular ones in characteristic 2; see [CDL24, Theorem 1.4.19].

Inspired by this result and the trichotomy introduced in [Kro25], we seek to determine
the Bloch-Kato ordinary bielliptic surfaces.
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Theorem 1.1 (Theorem 4.5). Let X be a bielliptic surface. Then X is Bloch-Kato ordinary
precisely when

(i) X lives in tame characteristic and AlbpX q is ordinary as an elliptic curve;
(ii) X is Kroon classical in wild characteristic;

(iii) X is Kroon ordinary in wild characteristic of type (a2) or (d);
(iv) X is Kroon ordinary in wild characteristic of type (a1) and the factor C arising in an

isomorphism X » pE ˆCq{G as in Theorem 2.5 is an ordinary elliptic curve.

See Theorem 2.5 for the definitions of the different types of Kroon ordinary bielliptic
surfaces.

2. PRELIMINARIES ON BIELLIPTIC SURFACES

Definition 2.1. A minimal surface X of Kodaira dimension KodpX q “ 0 is said to be
bielliptic if b2 “ 2.

We collect a few other relevant numerical invariants of X (see [Kro25, Theorem 3.1.23]):

(2.1) b1 “ 2, pa “χpOX q´ 1 “ ´1, q “ h1
pOX q “ 1 or 2.

Theorem 2.2. Let X be a bielliptic surface. Then X » pE ˆCq{G, where E is an elliptic
curve, C is a smooth genus-one curve or the rational cuspidal curve, and G is a finite
subgroup scheme of E that acts faithfully on the curve C .

Proof. See [BM77] and [BM76]. ■
Given a bielliptic surface X “ pE ˆCq{G as in the theorem above, there are projection

maps
f : X Ñ E{G “: A and g : X Ñ C{G .

Since G acts on E by translations, E{G is an elliptic curve and f turns out to be the
Albanese map ([Kro25, Theorem 3.4.1]). The Albanese map is always a fibration: f˚OX “

OA, which can be seen, for instance, from the argument in the proof of [Bea96, Proposi-
tion V.15]. In case C is the rational cuspidal curve, the Albanese map f is non-smooth
and X is also called a quasi-bielliptic surface.

It also turns out that C{G »P1 and that the map g is a fibration; see [Kro25, Theorem
3.4.1].

For a given bielliptic surface X » pE ˆCq{G , the maps constructed above are intrinsic
to X by [Kro25, Theorem 3.3.9], and we define the intersection invariant of X (see [Kro25,
Notation 3.3.17]) to be

(2.2) γ“ F1 ¨ F2,

where F1 denotes a fiber of f and F2 a fiber of g . By [Kro25, Proposition 3.4.16], we have
γ“ |G| :“ h0pOGq.
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Definition 2.3. ([Kro25, Definition 3.4.7]) A bielliptic surface X is said to live in tame
characteristic if the number γ constructed in 2.2 is coprime to p. It is said to live in wild
characteristic otherwise.

Definition 2.4 ([Kro25, Definition 3.4.9]). Let X be a bielliptic surface in wild character-
istic.

(i) X is said to be Kroon ordinary if the Albanese map f : X Ñ A is smooth; i.e., if X is
not quasi-bielliptic.

(ii) X is said to be Kroon classical if X is quasi-bielliptic and A is ordinary as an elliptic
curve over k.

(iii) X is said to be Kroon supersingular if X is quasi-bielliptic and A is supersingular as
an elliptic curve.

2.1. Kroon ordinary bielliptic surfaces. Bombieri and Mumford classify bielliptic sur-
faces completely in [BM77] and [BM76]. We will state here only the classification of
Kroon-ordinary bielliptic surfaces in wild characteristic.

Theorem 2.5. Let X be a Kroon-ordinary bielliptic surface in wild characteristic. Then
X » pE ˆCq{G by Theorem 2.2, where E and C are elliptic curves, G is a subgroup scheme
of E, and G acts faithfully on C . For the action of G on C we have the following options.

‚ G »Z{2Z acting by x ÞÑ ´x (type (a1)).
‚ G »Z{2Zˆµ2 where Z{2Z acts by x ÞÑ ´x and µ2 acts by translation (type (a2)).
‚ G »Z{3Zwith action x ÞÑωx, where ω : C Ñ C is an automorphism of C of order

3 as an elliptic curve (type (b)).
‚ G » Z{4Z with action x ÞÑ i x, where i : C Ñ C is an automorphism of C as an

elliptic curve of order 4 (type (c)).
‚ G »Z{6Zwith action x ÞÑ ´ωx (type (d)).

Remark 2.6. The strange naming convention of the different types of ordinary bielliptic
surfaces in wild characteristic is chosen to be consistent with [Kro25].

Remark 2.7. Notice in the above theorem that E is always an ordinary elliptic curve,
because of the structure of the possible subgroups schemes G . Hence also AlbpX q is
ordinary, since it is isogenous to E .

For the first four types in the Theorem above, we can easily compute by hand that
the group G acts trivially on the cotangent bundle Ω1

EˆC » O‘2
EˆC , and as a result the

cotangent bundle of X is trivial. In particular, for the canonical bundle we haveωX » OX .
So for X a Kroon ordinary bielliptic surface of type not (d) we find

g “ h2
pOX q “ h0

pOX q “ 1.

From the invariants in (2.1) we deduce that in this case q “ 2.
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The strange phenomenon whereΩ1
X is a trivial bundle also occurs for some supersin-

gular quasi-bielliptic surfaces, but the following proposition tells us that it gets no worse
than that.

Proposition 2.8. Let X be a Kroon classical bielliptic surface or a bielliptic surface in tame
characteristic, then q “ 1.

Proof. By [Kro25, Proposition 3.4.18] the canonical bundle ωX is a non-trivial torsion
sheaf. As a result,

g “ h2
pOX q “ h0

pωX q “ 0.

Since χpOX q “ 1, we find q “ 1. ■
Remark 2.9. For a bielliptic surface X , the statement q “ 2 can also be interpreted as
saying that Pic0 is a non-reduced group scheme. Indeed, the tangent space of Pic0 at the
neutral element is of dimension h1pOX q “ q , whereas Pic0 itself is of dimension b1{2 “ 1.

3. BLOCH-KATO ORDINARY SURFACES

Let X be a smooth proper variety of dimension n. Let F : X Ñ X be the absolute
Frobenius morphism: it is defined by f ÞÑ f p on OX . For j ě 1, write

BΩ j
X “ F˚pdΩ j ´1

X q,

where dpΩ
j ´1
X q denotes the image of the exterior derivative d : Ω j ´1

X ÑΩ
j
X .

Definition 3.1 ([BK86, Definition 7.2]). The variety X is said to be Bloch-Kato ordinary if
for all i and j we have

H i
pX ,BΩ j

X q “ 0.

3.1. Bloch-Kato ordinary surfaces. For surfaces we can simplify the situation quite a
bit with regards to Bloch-Kato ordinarity.

We have exact sequences of locally free OX -modules

0 Ñ OX Ñ F˚OX
d
ÝÑ BΩ1

X Ñ 0,

and 0 Ñ BΩn
X Ñ F˚Ω

n
X

C
ÝÑΩn

X Ñ 0,
(3.1)

where C denotes the Cartier operator. Grothendieck duality gives rise to a perfect pairing
of OX -modules

F˚OX bOX F˚Ω
n
X ÑΩn

X

f bω ÞÑ Cp f ωq.

This perfect pairing in combination with the exact sequences of (3.1) gives rise to a
perfect pairing

(3.2) BΩ1
X b BΩn

X ÑΩn
X .
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Lemma 3.2. Let X be a surface. Then X is Bloch-Kato ordinary if and only if for all i we
have

H i
pX ,BΩ1

X q “ 0.

Proof. This follows immediately from 3.2 and Serre duality. ■
Proposition 3.3. Let X be a surface. Then X is Bloch-Kato ordinary if and only if

H 1
pX ,BΩ1

X q “ 0.

Proof. The long exact sequence induced by the first short exact sequence of (3.1) shows
that H 0pBΩ1

X q “ H 2pBΩ1
X q “ 0 if H 1pBΩ1

X q “ 0. ■
Definition 3.4. A variety X is said to be Frobenius-split if the Frobenius morphism
OX Ñ F˚OX is split as a map of OX -modules; i.e., when the sequence

0 Ñ OX Ñ F˚OX Ñ BΩ1
X Ñ 0

is a split exact sequence.

Proposition 3.5. If X is a Frobenius-split surface, then it is Bloch-Kato ordinary. If
the canonical bundle Ω2

X is trivial, then the converse is also true, and the statement is
furthermore equivalent to the existence of a non-zero global 2-form fixed by the Cartier
operator.

Proof. Suppose X is Frobenius-split. Then for all j the map H j pOX q Ñ H j pF˚OX q is
injective, but this is a map of finite-dimensional vector spaces of the same dimension,
hence an isomorphism. The long exact sequence applied to the first sequence of (3.1)
now shows that X is Bloch-Kato ordinary.

Suppose now thatΩ2
X » OX . If X is Bloch-Kato ordinary, then

Ext1
OX

pBΩ1
X ,OX q » H 1

ppBΩ1
X q

_
q » H 1

pBΩ1
X q “ 0

by Serre-duality. Hence X is Frobenius-split. The last part of the statement follows
from the fact that the exact sequences of (3.1) are interchanged by HomOX p´,Ω2

X q by
Grothendieck-duality, and so one is split if and only if the other one is. A splitting of the
second sequence is equivalent to the existence of a non-zero global 2-form fixed by the
Cartier operator, becauseΩ2

X » OX . ■
Corollary 3.6. Let X be a Bloch-Kato ordinary surface with Ω2

X » OX . Then any finite

étale cover Y
f

ÝÑ X of X is again Bloch-Kato ordinary.

Proof. Clearly f ˚Ω2
X »Ω2

Y is trivial. Let ω PΩ2
X pX q be a non-zero global 2-form fixed by

the Cartier operator, then f ˚ω PΩ2
Y pY q is also fixed by the Cartier operator. ■
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4. BLOCH-KATO ORDINARY BIELLIPTIC SURFACES

Lemma 4.1. Let X be a bielliptic surface and let f : X Ñ A be the Albanese fibration, then
the induced map

f ˚ : H 1
pA,OAq Ñ H 1

pX ,OX q

is injective.

Proof. We have f˚OX “ OA, and so the Leray-Serre spectral sequence

E i j
2 “ H i

pA,R j f˚OX q ñ H i` j
pX ,OX q

gives rise to a five term exact sequence

0 Ñ H 1
pA,OAq Ñ H 1

pX ,OX q Ñ H 0
pA,R1 f˚OX q Ñ . . . ,

where the first map is precisely f ˚. ■
Proposition 4.2. If X is a bielliptic surface with supersingular Albanese, then X is not
Bloch-Kato ordinary. Furthermore, if q “ 1, then the converse is true.

Proof. Let f : X Ñ A be the Albanese of X . If A is supersingular, then the map

F ˚ : H 1
pA,OAq Ñ H 1

pA,OAq

is zero and the commutative diagram

H 1pX ,OX q H 1pX ,OX q

H 1pA,OAq H 1pA,OAq

F ˚

f ˚

F ˚

f ˚

combined with Lemma 4.1 shows that F ˚ : H 1pX ,OX q Ñ H 1pX ,OX q has non-trivial ker-
nel. The long exact sequence induced by

0 Ñ OX Ñ F˚OX Ñ BΩ1
X Ñ 0

shows that H 0pBΩ1
X q ‰ 0, and so X is not Bloch-Kato ordinary.

Suppose now that q “ 1 so that f ˚ is an isomorphism in the above square. Consider
the exact sequence

H 1
pOX q Ñ H 1

pF˚OX q Ñ H 1
pBΩ1

X q Ñ H 2
pOX q.

We have q “ 1, whence g “ h2pOX q “ 0. It follows that H 1pBΩ1
X q “ 0 if and only if

H 1pOX q Ñ H 1pF ˚OX q is surjective, which by the above commutative square happens if
and only if A is ordinary. We conclude by Proposition 3.3. ■
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Corollary 4.3. Let X be a bielliptic surface.

(i) If X lives in tame characteristic, then X is Bloch-Kato ordinary if and only if AlbpX q

is ordinary as an elliptic curve.
(ii) If X is Kroon classical in wild characteristic, then X is Bloch-Kato ordinary.

(iii) If X is Kroon supsersingular in wild characteristic, then X is not Bloch-Kato ordinary.

Proof. Parts (i) and (ii) are clear by Propositions 2.8 and 4.2, and the fact that the Albanese
of a Kroon classical quasi-bielliptic surfaces is ordinary by definition. Part (iii) is by
Proposition 4.2 and the fact that the Albanese of a Kroon supersingular quasi-bielliptic
surface is supersingular. ■
4.1. Kroon ordinary bielliptic surfaces. This leaves us with the Kroon ordinary bielliptic
surfaces in wild characteristic. Unlike the name would suggest, these surfaces are usually
not Bloch-Kato ordinary. Notice, however, that if X is Kroon ordinary its Albanese is
always an ordinary elliptic curve by Remark 2.7. This is in contrast to the other bielliptic
surfaces, for which Bloch-Kato ordinarity is governed entirely by the Albanese. Indeed,
in Section 2.1 we saw that for every type of Kroon ordinary bielliptic surfaces, apart from
type (d), the irregularity is 2, so that Proposition 4.2 does not apply.

Corollary 4.4. Let X be a Kroon ordinary bielliptic suface in wild characteristic. Write
X » pE ˆCq{G as in Theorem 2.5.

(i) If X is of type (a1), X is Bloch-Kato ordinary if and only if C is an ordinary elliptic
curve.

(ii) If X is of type (a2) or (d), X is Bloch-Kato ordinary.
(iii) If X is of type (b) or (c), X is not Bloch-Kato ordinary.

Proof. We set Y “ E ˆC .

(i) Notice that we have an étale cover Y Ñ X . If C is supersingular, then Y is not a
Bloch-Kato ordinary variety. If X were Bloch-Kato ordinary, this would contradict
Corollary 3.6, since we know the canonical bundle of X to be trivial from Section
2.1.

If C is Bloch-Kato ordinary, then by Proposition 3.5 we find a non-zero global
2-form ω PΩ2

Y pY q that is fixed by the Cartier operator. Since the group G operates
trivially on the sheaf of 2-forms on Y , the form ω descends to a 2-form on X that is
again fixed by the Cartier operator. It follows from Proposition 3.5 again that X is
Bloch-Kato ordinary.

Alternatively, the fact that X is Bloch-Kato ordinary in this case follows from
ordinarity of Y , the fact that Y Ñ X is a Galois étale cover, and the Hochschild-Serre
spectral sequence for étale cohomology1; see [Mil16, Theorem III.2.20].

1Thanks to Kay Rülling for pointing this out!
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(ii) Suppose X is of type (a2). From Theorem 2.5 we see that Y is an ordinary variety,
because C is ordinary as an elliptic curve: it admits a non-trivial 2-torsion point. By
the same argument as for part (i), we see that X must be Bloch-Kato ordinary.

Alternatively, we can argue as follows. E ˆC is an ordinary abelian variety; hence
the isogenous abelian variety A “ pE ˆCq{µ2 is ordinary. Then we conclude as in
part (i) that X “ A{pZ{2Zq is Bloch-Kato ordinary, because X admits the ordinary
variety A as a Galois étale cover.

If X is of type (d), then X is Bloch-Kato ordinary by Proposition 4.2: see the
paragraph at the start of Section 4.1.

(iii) We observe from Theorem 2.5 that C is a supersingular elliptic curve in this case,
so that Y is not a Bloch-Kato ordinary variety. Since Y is an étale cover of X , we
conclude that X is not Bloch-Kato ordinary as before.

■
We summarize everything in the theorem below.

Theorem 4.5. Let X be a bielliptic surface. Then X is Bloch-Kato ordinary precisely when

(i) X lives in tame characteristic and AlbpX q is ordinary as an elliptic curve;
(ii) X is Kroon classical in wild characteristic;

(iii) X is Kroon ordinary in wild characteristic of type (a2) or (d);
(iv) X is Kroon ordinary in wild characteristic of type (a1) and the factor C arising in an

isomorphism X » pE ˆCq{pZ{2Zq as in Theorem 2.5 is an ordinary elliptic curve.

Proof. Combine Corollaries 4.3 and 4.4. ■
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