A familiar short exact sequence

We take the following two facts for granted.

- If κ is a finite field, then cd(κ) ≤ 1; meaning that Hⁱ(Γ_κ, M) = 0 for any torsion module M over Γ_κ = Gal(κ/κ) and any integer i ≥ 2. From this it follows that scd(κ) ≤ 2: we have Hⁱ(Γ_κ, M) = 0 for *any* module M over Γ_κ and any integer i ≥ 3. You can find a proof of this in any book on Galois cohomology.
- Let *X* be a a nice curve over a finite field κ . Let $\overline{X} = X \times_{\kappa} \overline{\kappa}$ denote its base extension to a curve over $\overline{\kappa}$. Then the group $\operatorname{Pic}_0 \overline{X}$ is divisible, and $H^1(\kappa, \operatorname{Pic}_0 \overline{X}) = 0$. Indeed, $\operatorname{Pic}_0 \overline{X}$ is the group $J(\overline{\kappa})$, where *J* denotes the jacobian of *X*; since multiplication by *n* defines an isogeny, the map $n: J(\overline{\kappa}) \to J(\overline{\kappa})$ is surjective. The assertion about $H^1(\kappa, \operatorname{Pic}_0 \overline{X})$ is a theorem of Lang; in fact, we have $H^1(\kappa, A(\overline{\kappa})) = 0$ for any abelian variety *A* over κ (see [Ste10, Theorem 2.1]).

Throughout this exercise, κ will denote a finite field, X a nice curve over κ , and $k = \kappa(X)$ the field of functions of X. We denote the set of its closed points (or prime divisors) by $X^{(1)}$. The field k is a so called "global field of positive characteristic".

- (a) Establish an isomorphism Br $k \simeq H^2(\kappa, \overline{\kappa}(X)^{\times})$, where $\overline{\kappa}(X)$ denotes the field of functions of \overline{X} . *Hint: notice that* Gal($\overline{\kappa}(X)/\kappa(X)$) = Gal($\overline{\kappa}/\kappa$).
- (b) Establish an isomorphism Br $k \simeq H^2(\kappa, \operatorname{Princ} \overline{X})$, where $\operatorname{Princ} \overline{X} \subset \operatorname{Div} \overline{X}$ denotes the group of principal divisors of \overline{X} .
- (c) Derive an exact sequence

$$0 \to \operatorname{Br} k \to H^2(\kappa, \operatorname{Div} \overline{X}) \to H^2(\kappa, \operatorname{Pic} \overline{X}) \to 0$$

from the exact sequence

$$0 \to \operatorname{Princ} \overline{X} \to \operatorname{Div} \overline{X} \to \operatorname{Pic} \overline{X} \to 0.$$

(d) Use the fact that ([BLT, Exercise 14.7.8]) $\operatorname{Div} \overline{X} = \bigoplus_{v \in X^{(1)}} \operatorname{Ind}_{\Gamma_{\kappa(v)}}^{\Gamma_{\kappa}}(\mathbb{Z})$ to construct an isomorphism

$$H^2(\kappa, \operatorname{Div} \overline{X}) \simeq \bigoplus_{v \in X^{(1)}} \operatorname{Br} k_v.$$

Here $\kappa(v)$ denotes the residue field of *X* at *v*, and k_v is the "completion of *k* at the place *v*". You can use that we have an isomorphism $\operatorname{inv}_v : \operatorname{Br} k_v \xrightarrow{\simeq} \mathbb{Q}/\mathbb{Z}$ as for *p*-adic fields.

- (e) Show that $H^2(\kappa, \operatorname{Pic} \overline{X}) \simeq \mathbb{Q}/\mathbb{Z}$. *Hint: use divisibility of* $\operatorname{Pic}^0 \overline{X}$ *to prove that, not just the first, but all of its higher cohomology groups vanish as a module over* Γ_{κ} .
- (f) Deduce that we have a short exact sequence

$$0 \to \operatorname{Br} k \to \bigoplus_{v \in X^{(1)}} \operatorname{Br} k_v \to \mathbb{Q}/\mathbb{Z} \to 0.$$

Compare this with the Brauer-Hasse-Noether sequence for the Brauer group of a number field from [BLT, Theorem 10.4.5].

Solutions

(a) Fix a separable closure \overline{k} of k, so that we have inclusions

$$k = \kappa(X) \subset \overline{\kappa}(X) \subset k.$$

By Hilbert 90 we have $H^1(\overline{\kappa}(X), \overline{k}^*) = 0$, and hence we obtain an inflation-restriction sequence

$$0 \to H^2(\kappa, \overline{\kappa}(X)^{\times}) \to H^2(k, \overline{k}^{\times}) = \operatorname{Br} k \to H^2(\overline{\kappa}(X), \overline{k}^{\times}) = \operatorname{Br} \overline{\kappa}(X).$$

Here the groups $H^2(\kappa, \overline{\kappa}(X)^{\times})$ and $H^2(\overline{\kappa}(X)/k, \overline{\kappa}(X)^{\times})$ have been identified: the Galois groups $\operatorname{Gal}(\overline{\kappa}/\kappa)$ and $\operatorname{Gal}(\overline{\kappa}(X)/k)$ are identified via the natural restriction map and this identification is compatible with the action of these groups on $\overline{\kappa}(X)^{\times}$.

We have $\operatorname{Br} \overline{\kappa}(X) = 0$, since $\overline{\kappa}(X)$ is C_1 by [BLT, Theorem 10.4.8] and the Brauer group of a C_1 -field vanishes by [BLT, Theorem 10.4.9]. The result follows.

(b) Consider the exact sequence

$$0 \to \overline{\kappa}^{\times} \to \overline{\kappa}(X)^{\times} \xrightarrow{\text{Div}} \text{Princ}\,\overline{X} \to 0.$$

The long exact sequence in combination with $\text{Br}\kappa = H^2(\kappa, \overline{\kappa}^{\times}) = H^3(\kappa, \overline{\kappa}^{\times}) = 0$ (finite fields are C_1 by [BLT, p. 10.4.7] and $\text{scd}(\kappa) \leq 2$) shows that

$$H^2(\kappa, \overline{\kappa}(X)^{\times}) \simeq H^2(\kappa, \operatorname{Princ} \overline{X}).$$

By part (a): Br $k \simeq H^2(\kappa, \operatorname{Princ} \overline{X})$.

(c) The exact sequence

$$0 \to \operatorname{Pic}_0 \overline{X} \to \operatorname{Pic} \overline{X} \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$$

and the fact that $H^1(\kappa, \operatorname{Pic}_0 \overline{X}) = H^1(\kappa, \mathbb{Z}) = 0$ shows $H^1(\kappa, \operatorname{Pic} \overline{X}) = 0$. We have $H^3(\kappa, \operatorname{Princ} \overline{X}) = 0$ by $\operatorname{scd}(\kappa) \le 2$. The result now follows from the long exact sequence.

(d) We apply the fact that Galois cohomology commutes with direct sums and Shapiro's lemma to find

$$\begin{split} H^{2}(\kappa, \operatorname{Div} \overline{X}) &\simeq \bigoplus_{\nu \in X^{(1)}} H^{2}(\kappa, \operatorname{Ind}_{\Gamma_{\kappa(\nu)}}^{\Gamma_{\kappa}}(\mathbb{Z})) \\ &\simeq \bigoplus_{\nu \in X^{(1)}} H^{2}(\kappa(\nu), \mathbb{Z}) \\ &\simeq \bigoplus_{\nu \in X^{(1)}} H^{1}(\kappa(\nu), \mathbb{Q}/\mathbb{Z}). \end{split}$$

Furthermore, we have an isomorphism

$$H^1(\kappa(\nu), \mathbb{Q}/\mathbb{Z}) \xrightarrow{\simeq} \mathbb{Q}/\mathbb{Z},$$

for every place v, by evaluating at the Frobenius. Composing with inv_v^{-1} , we get what we're after.

(e) We prove that $H^i(\kappa, \operatorname{Pic}^0 \overline{X}) = 0$ for $i \ge 2$. For every n > 0, consider the short exact sequence

$$0 \to (\operatorname{Pic}_0 \overline{X})[n] \to \operatorname{Pic}_0 \overline{X} \xrightarrow{\cdot n} \operatorname{Pic}_0 \overline{X} \to 0.$$

From the associated long exact sequence, we obtain for all i a surjection

$$H^{i}(\kappa, (\operatorname{Pic}_{0} \overline{X})[n]) \to H^{i}(\kappa, \operatorname{Pic}_{0} \overline{X})[n].$$

For $i \ge 2$, the source of this surjection is trivial: $cd(\kappa) \le 1$. Since Galois cohomology groups are torsion, we conclude that $H^i(\kappa, \operatorname{Pic}_0 \overline{X}) = 0$ for $i \ge 2$. Now we use the short exact sequence

$$0 \to \operatorname{Pic}^0 \overline{X} \to \operatorname{Pic} \overline{X} \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0$$

to deduce that

$$H^2(\kappa, \operatorname{Pic} \overline{X}) \simeq H^2(\kappa, \mathbb{Z}) \simeq \mathbb{Q}/\mathbb{Z}.$$

(f) This is now obvious.

References

- [BLT] Martin Bright, Ronald van Luijk, and Damiano Testa. *Geometry and Arithmetic of Surfaces (DRAFT)*. URL: http://www.boojum.org.uk/maths/ book.html.
- [Har17] David Harari. Galois Cohomology and Class Field Theory. Universitext. Springer Cham, 2017. DOI: https://doi.org/10.1007/978-3-030-43901-9.
- [Ste10] William Stein. Lecture 14: Galois Cohomology of Abelian Varieties over Finite Fields. 2010. URL: https://wstein.org/edu/2010/582e/lectures/ 582e-2010-02-12/582e-2010-02-12.pdf.