
A VARIETY WITH TRIVIAL CANONICAL BUNDLE, DEGENERATE HODGE-TO-DE
RHAM SPECTRAL SEQUENCE, AND OBSTRUCTED DEFORMATIONS

HUGO ZOCK

ABSTRACT. We exhibit a variety as in the title, resolving a question of Brantner and
Taelman [BT24, Remark 1.1].

1. INTRODUCTION

A smooth and proper variety X over an algebraically closed field k is said to be Calabi-
Yau if its canonical bundle ωX is trivial. In [BT24] it is demonstrated that such an X has
unobstructed mixed characteristic formal deformations, provided that the Hodge-to-de
Rham spectral sequence E pq

1 “ H qpX ,Ωp
X q ñ H p`q

dR pX {kq of X degenerates and that the
crystalline cohomology H˚

crispX {W pkqq is torsion-free.
In [BT24, Remark 1.1] Brantner and Taelman raise the following question.

Question 1.1. Is there a Calabi-Yau variety X such that the Hodge-to-de Rham spectral
sequence degenerates, and such that X has obstructed deformations?

By the results of Brantner and Taelman, if such an X exists, it must necessarily have
torsion in the crystalline cohomology H˚

crispX {W pkqq.
In this short note we answer Question 1.1 affirmatively. The variety X will be a certain

bielliptic surface in characteristic 2.
Presumably, one can also construct a bielliptic surface in characteristic 3 to answer

Question 1.1; but beyond characteristic 3 all bielliptic surfaces will have torsion-free
crystalline cohomology groups. This raises the following question.

Question 1.2. Is there a Calabi-Yau variety X as in Question 1.1 in any characteristic
p ą 0?

An affirmative answer to this question would necessarily involve varieties of dimension
ą 2.

It should also be mentioned that the definition of a Calabi-Yau variety used here is not
the generally accepted definition; usually the additional condition

(1.1) H i
pOX q “ 0 for 0 ă i ă dim X

is also imposed. The variety X we introduce will not satisfy this additional condition. It
is then natural to ponder the question below.
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Question 1.3. Is there an X as in Question 1.1 that satisifies the condition of (1.1)?

Such an X would necessarily be of dimension ą 2. Indeed, Calabi-Yau surfaces satis-
fying (1.1) are K 3 surfaces, for which the deformations are known to be unobstructed.

2. THE VARIETY X IN QUESTION

Throughout we assume that k is of characterstic 2.
Let E be an ordinary elliptic curve over k; i.e., the for the k-points of the 2-torsion

subgroup Er2s Ă E we have
Er2spkq »Z{2Z.

Let P P Er2spkq be the unique non-trivial 2-torsion point of E . Consider the product
E ˆ E and let Z{2Z act on E ˆ E by

px, yq ÞÑ px ` P,´yq.

Here the “`” and “´” are those of the group law of E . The action of Z{2Z on E ˆ E is
free, and so the quotient X “ pE ˆ Eq{pZ{2Zq will be a smooth proper surface over k. It
is an example of a bielliptic surface, which is a family of algebraic surfaces of Kodaira
dimension 0.

We recall some standard properties of bielliptic surfaces (see e.g. [BM77]). The euler
characteristic of the structure sheaf of X is

(2.1) χpOX q “ 0.

The Betti numbers of X are given by

(2.2) b0 “ b4 “ 1, b1 “ b2 “ b3 “ 2.

Proposition 2.1. The cotangent bundleΩ1
X is trivial: Ω1

X » O‘2
X .

Proof. It suffices to prove thatZ{2Z acts trivially onΩ1
EˆE » p˚

1Ω
1
E ‘p˚

2Ω
1
E . Givenα PΩ1

E ,
pulling back along the map x ÞÑ x ` P sends α to α regardless of the characteristic of k,
and pulling back along x ÞÑ ´x sends α to ´α“α (recall that 2 = 0). ■

The above proposition in particular implies ωX “Ω2
X » OX , and so by Serre-duality

h02
“ h2

pOX q “ h0
pωX q “ 1.

From (2.1), we deduce
h01

“ h1
pOX q “ 2.

We find the Hodge diamond of X to be

(2.3)

1
2 2

1 4 1
2 2

1.
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2.1. The Hodge-to-de Rham spectral sequence. LetΩ‚
X denote the algebraic de Rham

complex of X and recall that the de Rham cohomology of X is defined by

H i
dRpX {kq “ H i RΓpX ,Ω‚

X q.

We also write hi
dR “ dimk H i

dRpX {kq. The naive filtration onΩ‚
X gives rise to the Hodge-

to-de Rham spectral sequence

(2.4) E i j
1 “ H j

pX ,Ωi
X q ñ H i` j

dR pX {kq.

In order to show that the spectral sequence of (2.4) degenerates we need only show that
for all n we have

(2.5) hn
dR “

ÿ

i` j “n

hi j .

The inequality ď in 2.5 is already clear from the spectral sequence 2.4. The following
proposition therefore reduces to proving the inequality ě.

Proposition 2.2. The Hodge-to-de Rham spectral sequence (2.4) degenerates at the E1-
page.

Proof. Write Y “ X ˆ X so that we have an étale Z{2Z-torsor Y Ñ X . We obtain the
Hochschild-Serre spectral sequence

E i j
2 “ H i

pZ{2Z, H j
pY ,Ω‚

Y qq ñ H i` j
pX ,Ω‚

X q.

The action ofZ{2Z on H j pY ,Ω‚
Y q is trivial, and so, since we know the de Rham cohomol-

ogy of the abelian variety Y , we can compute all the terms on the E2-page. In particular
we deduce that

E 01
2 » k‘4, E 10

2 » E 20
2 » k.

It follows that h1
dRpX {kq “ dimk E 01

8 `dimk E 10
8 ě 3`1 “ 4. Since h1

dRpX {kq ď h10`h01 “

2 ` 2 “ 4 we conclude that h1
dRpX {kq “ 4. Poincaré duality also gives h3

dR “ 4.
To see that h2

dR “ h20 ` h11 ` h02 “ 1 ` 4 ` 1 “ 6, one inspects the Hodge-to-de Rham
spectral sequence of X directly, using the already computed Hodge and de Rham num-
bers. ■
Remark 2.3. We provide an alternative proof for the above proposition using [Suw83].
One can show that there is an exact sequence

0 Ñ Pic0,red
X {k

Ñ PicτX {k Ñ Er2s Ñ 0.

Since E is an ordinary elliptic curve we have Er2s »Z{2Zˆµ2. We have

(2.6) rk2 Er2s “ rk2 F Er2s` rk2 V Er2s.

Here F Er2s, respectively V Er2s, denotes the kernel of the Frobenius, respectively the
Verschiebung, morphism on Er2s, and for a given finite group scheme G over k we
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write rk2 G “ log2 h0pOGq. We conclude from (2.6) and [Suw83, Corollary 3] that the
Hodge-to-de Rham spectral sequence of X degenerates at E1.

2.2. Torsion in the crystalline cohomology. Write W “ W pkq for the ring of Witt vec-
tors. For the crystalline cohomology H˚pX {W q of X there is the following “universal
coefficient exact sequence”:

(2.7) 0 Ñ H 1
pX {W qbW k Ñ H 1

dRpX {kq Ñ TorW
1 pH 2

pX {W q,W q Ñ 0.

Since dimk H 1pX {W qbW k “ b1, as H 1pX {W q is torsion-free, the term
TorW

1 pH 2pX {W q,W q is non-trivial if and only if

h1
dR ą b1.

The betti numbers of X are recorded in (2.2), and the de Rham numbers are computed
from the Hodge numbers (2.3) and the fact that the Hodge-to-de Rham spectral sequence
degenerates by Proposition 2.2. We observe that

h1
dR “ 4 ą 2 “ b1,

and hence conclude that H 2pX {W q has non-trivial p “ 2-torsion. This in combination
with the remarks of the introduction makes the variety X a potential candidate to answer
Question1.1.

Remark 2.4. One can in fact show much more: H˚pX {W qtors is always killed by 2 and
from this we can deduce the precise structure of the integral crystaline cohomology
groups.

3. THE DEFORMATION THEORY OF X

As before, W “ W pkq. Denote by ArtW the category of local Artin W -algebras. Let

DefX : ArtW Ñ Sets

R ÞÑ t f : X Ñ SpecR | f is flat and X bR k » X u{ »
(3.1)

denote the deformation functor of X . We argue that X has obstructed deformations;
i.e., that the functor DefX is not formally smooth. In light of Proposition 2.2 this answers
Question 1.1. Practically all of the leg work is done by Holger Partsch in [Par13].

Consider the projection onto the first coordinate

p : X Ñ E{xx ÞÑ x ` Py.

It is an elliptic fibration over the elliptic curve A :“ E{xx ÞÑ x ` Py, and it can easily be
shown that this is the Albanese fibration. Consider the problem of deforming X together
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with the elliptic fibration p : X Ñ A: for a given R P ArtW , a flat morphism of R-schemes
X Ñ A is said to be a deformation of p if there is a commutative diagram of k-schemes

X bR k X

A bR k A.

πbR k

»

p

»

We introduce a second deformation functor:

FibX {A “ FibX : ArtW Ñ Sets

R ÞÑ tπ : X Ñ A deformation of pu{ » .

There is obviously a natural map

(3.2) FibX Ñ DefX .

Proposition 3.1. The map of (3.2) is an isomorphism.

Proof. See [Par13, Proposition 6.6]. ■

3.1. Deformations of a Jacobian fibration. The elliptic fibration p : X Ñ A is Jacobian:
it admits a section A 99K X . We fix one such section e : A Ñ X . This makes p : X Ñ A
into an elliptic curve over A, and we now want to consider deformations of X Ñ A as an
elliptic curve. These are deformations π : X Ñ A of p that are Jacobian (they admit a
section ε : A Ñ X )1. Consider the deformation functor

JacX : ArtW Ñ Sets

R ÞÑ tπ : X Ñ A a Jacobian deformation of p : X Ñ Au{ » .

A given deformation X Ñ A of p might not admit a section, but Pic0
X {A

Ñ A is a

deformation of p that always does: the unit section ε : A Ñ Pic0
X {A

is one. This gives us

a natural map

FibX Ñ JacX .

pX Ñ A q ÞÑ Pic0
X {A

.
(3.3)

Since for any jacobian fibration X Ñ A we have X » Pic0
X {A

over A , the map of (3.3)

canonically admits a section JacX 99K FibX .
The goal now is to analyze the deformation functor JacX and to show that it is not

smooth.

1We do not need to consider the section as part of the datum of a Jacobian fibration, because any section
can be sent by an automorphism of X Ñ A to any other section.
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We introduce two more auxiliary deformation functors: DefE is the deformation
functor of E as an elliptic curve, and DefE ,p is defined by

R ÞÑ tpE ,P P E r2spRqq | E bR k » E and P ÞÑ P under this isomorphismu.

Now consider the map

(3.4) DefE ,P ˆDefE Ñ JacX

that “caries out the Igusa construction”; i.e., it sends a pair ppE ,P q,F q to E ˆF{xpx, yq ÞÑ

px `P ,´yqy.

Proposition 3.2. The map of (3.4) is an isomorphism.

Proof. This is the content of [Par13, Proposition 3.2]. ■
The deformation functor DefE is smooth, but DefE ,P is not:

Proposition 3.3. The deformation functor DefE ,P is not smooth.

Proof. In [Par13, Section 6.1.2] the base of a versal deformation of DefE ,P is computed,
using Serre-Tate theory, to be SpfW rrq ´ 1ssr

?
qs, which is not a smooth formal W -

scheme. ■
Corollary 3.4. The deformation functor JacX is not formally smooth.

Proof. Combine the previous two propositions. ■
We finally settle Question 1.1:

Corollary 3.5. The deformation functor DefX is not formally smooth.

Proof. By the isomorphism FibX » DefX from Proposition 3.1, we are reduced to showing
that FibX is not formally smooth. If this were the case, then we could deduce that JacX

is formally smooth using the section JacX Ñ FibX mentioned right below (3.3). This
contradicts the previous corollary. ■
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