
1. KUMMER THEORY AND GALOIS COHOMOLOGY

Let K be a field and let K be a separable closure of K . Let G = Gal(K /K ) be
the absolute Galois group of K .

Definition 1.1. A discrete G-module M is an abelian group M with a con-
tinuous action of G, where we equip M with the discrete topology. A mor-
phism of G-modules is a homomorpism of abelian groups compatible with
the action of G.

Let M be a discrete G-module. To M we associate two abelian groups:

• H 0(G ; M) = MG the subgroup of M of elements invariant under
the action of G .

• H 1(G ; M) = Z 1(G ; M)/B 1(G ; M) the group of one-cocycles modulo
one-coboundaries. A one-cocycle is a continuous function c : G →
M satisfying

c(στ) = c(σ)+σc(τ).

A one-coboundary is a one-cocycle of the form

c(σ) =σ(m)−m,

where m ∈ M is some element. It is not hard to see that the set of
one-cocycles Z 1(G ; M) forms an abelian group, and that the set of
one-coboundaries B 1(G ; M) defines a subgroup of Z 1(G ; M).

The assignments M 7→ H 0(G , M) and M 7→ H 1(G ; M) are of course also
functorial.

Example 1.2. Consider the G-module K
×

. By Galois theory, we have

H 0(G ;K
×

) = (K
×

)G = K ×.

It turns out that
H 1(G ;K

×
) = 0.

This is known as Hilbert’s Theorem 90. You can find the proof in [Har,
Theorem 5.2 and Corollary 5.3]. An alternative proof is suggested by the
project “conics and quoternions” ;). ▲



The usefulness of the groups H 0(G ; M) and H 1(G ; M) stems from the fol-
lowing theorem.

Theorem 1.3. Let
0 → M ′′ → M → M ′ → 0

be a short exact sequence of G-modules. Then we obtain an exact sequence

0 → H 0(G ; M ′′) → H 0(G ; M) → H 0(G ; M ′)
δ−→ H 1(G ; M ′′) → H 1(G ; M) → H 1(G ; M ′).

The connecting homomorphism δ : H 0(G ; M) → H 1(G ; M ′) is defined by
sending x ∈ H 0(G ; M) = MG to the class of the one-cocycle

σ 7→σ(y)− y,

where y denotes a lift of x to M.

Proof. Exercise! ■

1.1. Kummer Theory. Fix an intger n ≥ 1. We now specialize to the case
where K contains µn , the group of n-th roots of unity in K . Kummer
theory explicitly gives us all finite cyclic extensions of K of order dividing
n. Firstly, there is the following proposition.

Proposition 1.4. There is a bijective correspondence between on the one
hand cyclic extension K ⊂ L ⊂ K of K of order dividing n, and on the other
hand cyclic subgroups of Hom(G ,µn) of order d dividing n.

Proof. This is an exercise in Galois theory. ■

To connect the observation above with Galois cohomology, notice that µn

is a G-module with trivial action of G , because µn ⊂ K . It follows that

H 1(G ,µn) = Hom(G ,µn).

We can understand the group H 1(G ,µn) more concretely using Theorem
1.3 and Example 1.2. To this end, consider the exact sequence of G-
modules

1 →µn → K
× ×n−−→ K

× → 1.

From it, we obtain the exact sequence

K × ×n−−→ K × δ−→ H 1(G ,µn) → H 1(G ,K
×

) = 0.

This in turn gives us an isomorphism

δ : K ×/(K ×)n ≃−→ H 1(G ,µn).



Using the explicit description of the connecting map δ from the proof of
1.3, in combination with Proposition 1.4, we obtain

Theorem 1.5 ([Har, Theorem 5.6]). There is a bijective correspondence
between on the one hand cyclic extensions K ⊂ L ⊂ K of order dividing
n, and on the other hand cyclic subgroups of K ×/(K ×)n of order dividing
n. Explicitly, a subgroup 〈α〉 ⊂ K ×/(K ×)n corresponds to the extension
K ⊂ K ( n

p
α).

2. GOALS FOR A REPORT

Firstly, prove all the necessary theory on Galois cohomology, such as
the long exact sequence and Hilbert’s Theorem 90. If you want, you can
define the cohomology groups very abstractly using the theory of derived
functors as in [Har]. This is not necessary, however. Next, you should of
course fully prove Kummer theory. Our Theorem 1.5 can be generalized,
which you can also touch on in your report. See [Har, Corollary 5.7]. If you
have time, you can discuss more applications of Galois cohomology.

2.1. Prerequisites. As the description of this project makes clear, you
should be familiar with Galois theory. Preferably, you also know infinite
Galois theory, but this can be avoided entirely by “taking a limit over the
finite Galois extensions”. See [Har].
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