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1. INTRODUCTION

1.1. Background: the complex Kashiwara conjecture. In 1998, Masaki Kashiwara for-
mulated several conjectures about semisimple algebraic holonomic D-modules on smooth
complex varieties in [Kas+98]. They were proved for regular holonomic D-modules under
the assumption of De Jong’s conjecture (see [Jon01]) by Vladimir Drinfeld in [Dri01]. De
Jong’s conjecture was soon after established in sufficient generality by Gaitsgory and
Böckle-Khare; see [Gai07] and [BK06]. The conjectures were also proved for regular
holonomic D-modules on quasi-projective varieties, using different methods, by Takurō
Mochizuki in [Moc07].

Regular holonomic D-modules correspond to perverse sheaves under the Riemann-
Hilbert correspondence; see [HTT08, Theorem 7.2.5]. Particular examples of regular
holonomic D-modules are algebraic vector bundles with regular flat connections. Un-
der the Riemann-Hilbert correspondence, these correspond to locally constant sheaves
of finite dimensional C-vector spaces in the analytic topology, also known as complex
local systems. If the underlying variety X is connected, then these in turn correspond
to finite-dimensional C-linear representations of the fundamental group π1(X (C)). Un-
der this correspondence, the notion of semisimplicity translates into the usual one for
representations.

A particular corollary of Kashiwara’s conjectures (specifically, (C2) in [Kas+98]) is the
following theorem. For simplicity, we will refer to it as the “complex Kashiwara conjecture”
in this thesis.

Theorem 1.1 (Complex Kashiwara conjecture). Let X and Y be smooth quasi-projective
C-varieties, and let f : X → Y be a morphism. If L on Y is a semisimple local system, then
the local system f −1L on X obtained by pulling back L along f is also semisimple.

Hélène Esnault and Johan de Jong also provide an arithmetic proof of the Theorem in
[JE23, Theorem 7.3]. They also explain that it suffices to assume that X and Y are normal
and quasi-projective. The assumption of smoothness can, however, not be omitted
altogether. Indeed, let Y be a proper rational curve with a single nodal point, and denote
by Y ◦ the curve Y punctured in two smooth points. Denote by f : P1 − {0,∞} =Gm → Y ◦
the normalization of Y ◦. Appendix A suggests an irreducible representation ρ : π1(Y ◦) →
GL2(C) whose pullback to π1(Gm) is not semisimple.

1.2. The arithmetic local Kashiwara conjecture. Inspired by Kashiwara’s conjectures
for semisimple holonomic D-modules, Hélène Esnault and Moritz Kerz formulated
arithmetic versions of the conjectures for arithmetic semisimple perverse sheaves in
[EK23, Conjecture 9.7]. Their conjectures are highly relevant: they imply the monodromy
weight conjecture in mixed characteristic. We will restrict our attention to particular
examples of arithmetic perverse sheaves, namely arithmetic lisse Qℓ-sheaves, which
we refer to simply as arithmetic ℓ-adic local systems. Here ℓ always denotes a prime
number invertible on the underlying scheme. Analogously to the situation for complex
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local systems, ℓ-adic local systems on a connected noetherian scheme X correspond
to continuous finite-dimensional Qℓ-linear representations of the étale fundamental
group πét

1 (X ). We will simply speak of ℓ-adic representations of πét
1 (X ), leaving the other

adjectives implicit. The theory of ℓ-adic local systems is recalled in detail in Section 2.
Arithmetic ℓ-adic local systems are discussed in Section 6.1.

Let O be a strictly henselian discrete valuation ring, and let ℓ be a prime number
such that ℓ ∈ O×. Denote by k the residue field of O , by K the fraction field of O , and
let K be a separable closure of K . Write S = SpecO . Let X → S be a surjective smooth
separated quasi-compact morphism of schemes. Denote by XK the base change of X

along SpecK → S, and define Xk similarly. The conjectures of Esnault and Kerz imply the
following conjecture, which will be referred to simply as the “arithmetic local Kashiwara
conjecture”.

Conjecture 1.2 (Arithmetic local Kashiwara conjecture). Let L be an ℓ-adic local system
on X such that the pullback LK = L|XK

of L to XK is arithmetic1. Then Lk is semisimple.

It does not suffice to assume that LK is only semisimple in the above conjecture. More
precisely, the answer to the following question is “No”.

Question 1.3 (Naive local Kashiwara conjecture, Question 4.1). Let L be a semisimple
ℓ-adic local system on X . Is it true that Lk is semisimple?

The assertion that the answer to Question 1.3 is “Yes”, is referred to as the “naive local
Kashiwara conjecture” in this thesis. Takurō Mochizuki answered a complex-geometric
version of Question 1.3; see Question A.1. The counterexample he constructs is given in
Appendix A.

As already indicated previously, Conjecture 1.2 is most interesting in the case that O

has mixed characteristic. This case is presently out of reach. The following specific case
of Conjecture 1.2 – where O is of equal positive characteristic – is proved in this thesis.

Theorem 1.4 (Theorem 6.13). Conjecture 1.2 is true if O =Ohs
C ,c

is the strict henselization

of a normal connected Fq -curve C at a geometric point c ∈C (Fq ), and if XK is furthermore
a connected curve.

1.3. Simpson’s spreading argument. Let G and H be profinite groups, and let G act
continuously on H . Let R denote the set of semisimple ℓ-adic representations H →
GL(V ) up to isomorphism. Then R is naturally equipped with a right G-action.

Theorem 1.5 (Theorem 5.6). Let ρ : H → GL(V ) be an irreducible ℓ-adic representation,
and assume that the orbit [ρ] ·G ⊂ R of the isomorphism class of ρ is finite. Then there
exists an open subgroup U ⊂G such that ρ extends to an ℓ-adic representation

ρ̃ : H ⋊U → GL(V ).

1In this thesis arithmetic local systems are always assumed to be semisimple, but this is an unusual
convention in the literature.
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If, furthermore, ρ has finite determinant, then also ρ̃ can be chosen such that it has finite
determinant.

The purpose of Theorem 1.5 in this thesis is twofold: it is the main ingredient in the
proof of Theorem 1.4, and the simplified version – without the finiteness condition on
determinants – is crucial for establishing the basic theory of arithmetic local systems.

Variants of Theorem 1.5 are well known and appear for instance in [Sim92] and [Lit21].
However, it does not seem to appear in such generality in the literature elsewhere.

1.4. Goals and outline. The first main goal of this thesis is to answer Question 1.3.
Inspired by Mochizuki’s example, we construct a similar counterexample in Section 4.
It involves an elliptic fibration with singular fibre of type I1 in Kodaira’s classification of
singular fibers. We explicitly compute the fundamental group of its special fibre, and
then we use the specialization isomorphism from Section 3 to compute the fundamental
group of the total space. This will allow us to construct explicit representations.

The second main goal of this thesis is to prove Theorem 1.4. In order to achieve this,
we first devote a Section, Section 5, to the main ingredient used in the proof: Theorem
1.5. Our proof of Theorem 1.5 employs Galois cohomology with non-discrete and non-
abelian coefficients, which we summarize in Appendix B, to strategically lift projective
representations to proper representations.

The proof of Theorem 1.4 then proceeds by using the arithmeticity condition and
Theorem 1.5 to reduce the problem to Theorem 6.15. The latter has a more global flavour
and is subsequently proved using the work of Deligne [Del80] and Lafforgue [Laf02].
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2. ℓ-ADIC LOCAL SYSTEMS AND THEIR MONODROMY REPRESENTATIONS

Throughout, ℓ denotes a prime and X denotes a separated noetherian scheme on
which ℓ is invertible. Most of the material in this section is based on [FK13, Section 1.12],
[Fu11, Section 10.1] and [Wei01, Appendix A]. ℓ-adic local systems are the étale analogue
of locally constant sheaves of finite dimensional C-vector spaces on complex manifolds,
also known as complex local systems.

If L denotes a local system on a complex manifold M and z ∈ M is a point, then there is
an induced C-linear action of the fundamental group π1(M , z) on the stalk Lz , called the
monodromy action. For a connected complex manifold M this induces an equivalence of
categories:

(2.1) LocC(M) ≃ RepC(π1(M , z)),

where LocC(M) denotes the category of complex local systems on M , and RepC(π1(M , x))
denotes the category of finite-dimensional C-linear representations of the topological
fundamental group π1(M , z) of M based at z.

Example 2.1. Let ∆ ⊂ C denote the unit disc, and let ∆∗ denote the punctured unit
disc ∆ \ {0}. We let f : M → ∆ be an elliptic fibration with singular fiber of type I1 in
Kodaira’s classification of singular fibers (see Appendix A). By Ehresmann’s lemma, the
map M∗ = M \ f −1(0) → ∆∗ is a fiber bundle. It follows that R1 f∗CM∗ is a complex
local system on ∆∗, where CM∗ denotes the constant sheaf with value C on M∗. Let
z ∈∆∗ be a point. By the proper base change theorem, the stalk (R1 f∗CM∗)z is the first
singular cohomology group H 1( f −1(z),C) of the fiber f −1(z). The generator γ ∈π1(∆∗, z)
corresponding to a loop going around 0 counterclockwise once acts on H 1( f −1(z),C) via
the matrix (

1 1
0 1

)
after picking an appropriate basis of H 1( f −1(z),C) ≃C⊕C. See [Ach22].

Motivated by the topological situation, we desire an equivalence between ℓ-adic local
systems and finite dimensional continuousQℓ-linear representations of the étale fun-
damental group πét

1 (X , x) based at a geometric point x → X when X is connected. This
equivalence is established in Section 2.4.

2.1. The category of π-adic sheaves. Let E/Qℓ be an ℓ-adic field with ring of integers
OE , and let π be a uniformizer for OE .

Definition 2.2. Aπ-adic, or OE -, sheaf on X is a projective system F = (Fn)n≥1 of sheaves
on Xét, where Fn is a constructible sheaf of OE /πnOE -modules, and the transition map
Fn+1 →Fn induces an isomorphism

Fn+1 ⊗OE /πn+1OE
OE /πnOE

≃−→Fn

for all n ≥ 1.
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For the notion of constructibility of sheaves on the étale site of a scheme, see [Sta24,
Tag 05BE].

Example 2.3. (i) The projective system OE ,X = ((OE /πnOE )X ) is a π-adic sheaf, where
(OE /πnOE )X denotes the constant sheaf with value OE /πnOE on Xét. By abuse of
notation, we will often just denote it by OE .

(ii) For n ≥ 1, let

µℓn ,X = kerO∗
X

·ℓn

−−→O∗
X .

Then µℓn ,X is naturally a sheaf of finite Z/ℓnZ-modules. It is represented by the
finite étale cover SpecOX [t ]/(tℓ

n − 1) → X , and hence it is locally constant and
constructible. We define the Zℓ-sheaf Zℓ(1) to be the projective system Zℓ(1) =
(µℓn ,X ). For m ≥ 1 we define Zℓ(m) = (µ⊗m

ℓn ,X ).

We say that a π-adic sheaf F = (Fn) is lisse if each of the Fn is locally constant. In
particular, the sheaves OE and Zℓ(m) from the examples above are lisse.

If F = (Fn) and G = (Gn) areπ-adic sheaves, then a morphism ofπ-adic sheaves F →G

is a morphism ϕ= (ϕn : Fn →Gn) of projective systems, where each ϕn is a morphism of
sheaves of OE /πnOE -modules.

Example 2.4. Multiplication by πn defines a morphism πn : F →F of π-adic sheaves.

Proposition 2.5. The category of π-adic sheaves is abelian.

Proof. See [Sta24, Tag 03UO]. ■
Given a π-adic sheaf F = (Fn) on X , and a geometric point x → X of X , we define the

stalk of F at x to be
Fx = lim←−−

n≥1

Fn,x .

It is a module over OE . Additionally, it is finitely generated over OE ; see [Sta24, Tag
03UQ]. Clearly a morphism of π-adic sheaves F → G induces a morphism between
stalks Fx →Gx . As for ordinary sheaves on the étale site, a sequence

0 →F →G →H → 0

of sheaves of OE -modules is exact if and only if the sequence of stalks

0 →Fx →Gx →Hx → 0

is exact for all geometric points x → X ; see [Fu11, Proposition 10.1.17].
A π-adic sheaf is said to be torsion if all its stalks Fx are torsion. Equivalently, πn : F →

F is zero for some n ≥ 1, because X is noetherian.

Example 2.6. Fix an integer m ≥ 0 and let Fm be a constructible OE /πmOE -sheaf.
Viewing Fm as a constructible sheaf of modules over OE , we can define F = (Fm ⊗OE

OE /πnOE )n≥1. Then F is a π-adic sheaf by [Sta24, Tag 0GKB]. It is in addition torsion,
because it is killed by πm .
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2.1.1. Functoriality of π-adic sheaves. Let f : Y → X be a morphism of schemes with
Y noetherian. By [Sta24, Tag 095G], the pullback of a constructible sheaf of mod-
ules over a ring F on Xét to Yét along f is again constructible. This allows us to pull
back a π-adic sheaf F = (Fn) on X to a π-adic sheaf f −1F = ( f −1Fn) on Y . Here
f −1Fn ∈OE /πnOE (Yét) denotes the usual inverse image sheaf (see [Sta24, Tag 00WX]). It
is constructible by [Sta24, Tag 095G]. Notice also that the inverse image of a lisse sheaf is
again lisse.

The assignment F 7→ f −1F is of course functorial. We will often write F |Y for the
pullback f −1F if no confusion can arise.

We now concern ourselves with pushforwards of lisse sheaves.

Proposition 2.7. If f : Y → X is smooth and proper, then the higher derived image R i f∗F

of a locally constant constructible sheaf F on Yét with torsion orders invertible on S is
locally constant and constructible.

In the proposition above, R i f∗F ∈ Ab(Xét) denotes the i -th higher direct image of F

under f . See [Sta24, Tag 03PV].

Proof. This is [FK13, Theorem 8.9]. ■
In particular, since we assume ℓ to be invertible on X , the above proposition allows

us to push forward a lisse π-adic sheaf F = (Fn) from Y to a lisse π-adic sheaf R i f∗F =
(R i f∗Fn) on Y in a natural way, provided that f is smooth and proper.

2.2. The category of E-sheaves. By taking the quotient of the category of π-adic sheaves
by the Serre subcategory (see [Wei13, Exercise 10.3.2]) of torsion π-adic sheaves, we
obtain the category M(X ,E ) of E-sheaves on X . It comes equipped with an exact functor
from the category of π-adic sheaves. If F is a π-adic sheaf, then we denote its image in
M(X ,E) by F ⊗OE E , or simply F ⊗E .

We describe the category M(X ,E) more concretely. The objects of M(X ,E) are just
π-adic sheaves. Morphisms in M(X ,E) are defined by

Hom(F ⊗E ,G ⊗E) = Hom(F ,G )⊗OE E .

If F ,G and H are π-adic sheaves, then the composition map

Hom(F ,G )⊗OE Hom(G ,H ) → Hom(F ,H )

in the category of π-adic sheaves naturally induces the composition map

Hom(F ⊗E ,G ⊗E)⊗E Hom(G ⊗E ,H ⊗E) → Hom(F ⊗E ,H ⊗E)

in M(X ,E).
If F is a π-adic sheaf, and x → X is a geometric point of X , then the stalk of the E-sheaf

F ⊗E at x is defined to be

(F ⊗E)x =Fx ⊗E .
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A morphism F⊗E →G⊗E of E-sheaves gives rise to an E-linear map of stalks (F⊗E )x →
(G ⊗E)x via

Hom(F ⊗E ,G ⊗E) = Hom(F ,G )⊗E

→ Hom(Fx ,Gx)⊗E

→ Hom(Fx ⊗E ,Gx ⊗E).

Example 2.8. We define the constant E-sheaf EX = OE ,X ⊗E , where OE ,X denotes the
π-adic sheaf from Example 2.3. By abuse of notation we also denote EX simply by E .

Example 2.9. Recall the definition of Zℓ(m) from Example 2.3 (ii). We define

Qℓ(m) =Zℓ(m)⊗Qℓ.

2.2.1. Functoriality of E-sheaves. If F is a torsion π-adic sheaf on X and f : Y → X is a
morphism with Y noetherian, then the pullback f −1F – which we constructed in 2.1.1 –
is again a torsion sheaf. As a result, the functor f −1 from π-adic sheaves on X to π-adic
sheaves on Y induces a functor

(2.2) f −1 : M(X ,E) → M(Y ,E).

An E-sheaf is said to be lisse if it is represented by a lisse π-adic sheaf. Lisse E-sheaves
on X are also referred to as local systems on X with coefficients in E . We denote the
full subcategory of M(X ,E) consisting of local systems on X with coefficients in E by
LocE (X ). If f : Y → X is smooth and proper, then we also obtain a functor

(2.3) R i f∗ : LocE (Y ) → LocE (X ).

Notice that if F is a local system on X , and X is connected, then the dimension of Fx as
an E-vector space is independent of the chosen geometric point x. It is referred to as the
rank of the local system F .

2.3. The category ofQℓ-sheaves. Let E ⊂ E ′ be an extension of ℓ-adic sheaves. If F =
(Fn) denotes an OE -sheaf, then F ⊗OE ′ = (Fn ⊗OE /mn

E
OE ′/mn

E ′) is an OE ′-sheaf. This gives
an exact functor from OE -sheaves to OE ′-sheaves that sends torsion sheaves to torsion
sheaves. Hence, we obtain an induced functor

M(X ,E) → M(X ,E ′)

on Serre quotients. Let Qℓ be an algebraic closure of Qℓ. We define the category of
Qℓ-sheaves as the direct limit2

M(X ,Qℓ) = lim−−→M(X ,E)

taken over all ℓ-adic fields E ⊂ Qℓ. An object in M(X ,Qℓ) is an E-sheaf F over some
ℓ-adic field E ⊂Qℓ. We write F ⊗Qℓ for its image in M(X ,Qℓ). If F , respectively G , is an

2Strictly speaking, this is a 2-colimit of categories.
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E-sheaf, respectively an E ′-sheaf, then we can find F ⊂Qℓ an ℓ-adic field containing E
and E ′, and we have

Hom
Qℓ

(F ⊗Qℓ,G ⊗Qℓ) = HomF (F ⊗E F,G ⊗E ′ F )⊗F Qℓ.

Given aQℓ-sheaf on X , represented by an E-sheaf F , its stalk at a geometric point x → X
is defined to be

(F ⊗Qℓ)x =Fx ⊗E Qℓ.

Assigning aQℓ sheaf to its stalk at x is of course again functorial.

2.3.1. Functoriality ofQℓ-sheaves. By taking a direct limit, the functor from (2.2) yields a
functor

(2.4) f −1 : M(X ,Qℓ) → M(Y ,Qℓ).

AQℓ-sheaf is said to be lisse if it is represented by a lisse E-sheaf. LisseQℓ-sheaves are also
referred to as local systems on X with coefficients inQℓ, or simply (ℓ-adic) local systems.
The full subcategory of M(X ,Qℓ) consisting of local systems is denoted by Loc

Qℓ
(X ), or

simply Loc(X ). If f : Y → X is smooth and proper with Y noetherian, then from (2.3) we
obtain a functor

(2.5) R i f∗ : Loc(Y ) → Loc(X ).

On a connected scheme, as for local systems with coefficients in E , the rank of an ℓ-adic
local system is well-defined.

Example 2.10 (Local systems coming from geometry). Let f : Y → X be a smooth and
proper morphism with Y noetherian. By abuse of notation, we denote byQℓ =Qℓ,X the

ℓ-adic local systemQℓ,X ⊗Qℓ on X . Then R i f∗Qℓ is a local system on X by the discussion
above with, by proper base change, stalks

(R i f∗Qℓ)x = H i
ét(Y ×X Specκ(x)sep;Qℓ),

where κ(x)sep denotes the separable closure of κ(x) in κ(x). Here, we define the i -th étale
cohomology group of a Qℓ-sheaf F , represented by an OE -sheaf FOE = (FOE ,n), on a
scheme S to be

H i
ét(S;F ) = lim←−−

n
H i

ét(S;FOE ,n)⊗OE Qℓ.

The local system R i f∗Qℓ is an example of a local system coming from geometry.
More generally, we say that a local system F on X comes from geometry if there exists a

dense open subscheme U ⊂ X and a smooth proper morphism f : Y →U such that F |U
is a subquotient of R i f∗Qℓ, for some i ≥ 0.
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2.4. Monodromy representations. Recall that a locally constant constructible (i.e., with
finite stalks) sheaf of sets F on Xét is represented by a finite étale cover Y → X by fpqc
descent. In addition, this étale cover is unique by Yoneda’s lemma. For a given geometric
point x → X , the fiber Y ×X x → x is precisely the stalk Fx , and so by the general theory
of the étale fundamental group we obtain a continuous action of π1(X , x) on Fx . In
case X is connected, this gives us an equivalence of categories between locally constant
constructible sheaves of sets on Xét and finite sets with a continuous π1(X , x)-action.
Suppose now that F additionally caries the structure of a sheaf of R-modules over some
ring R; then we even obtain a continuous action

π1(X , x) → AutR (Fx)

of π1(X , x) on Fx compatible with the structure of Fx as an R-module.
Now let F = (Fn) be a lisse OE -sheaf, and let x → X denote a geometric point of X . For

every n ≥ 1, we obtain a continous homomorphism

π1(X , x) → AutOE /πnOE (Fn,x)

by the paragraph above. These are compatible since Fn =Fn+1/πnFn+1. So we obtain a
continuous homomorphism

π1(X , x) → lim←−−
n

AutOE /πnOE (Fn,x) ≃ AutOE (Fx),

where AutOE (Fx ) is equipped with the inverse limit topology. The proof of [Fu11, Theorem
10.23] shows that then also the induced map

π1(X , x) → GL(Fx ⊗E)

is continuous. We refer to it as the monodromy representation associated to F ⊗E . We
obtain a functor

LocE (X ) → RepE (π1(X , x))

F 7→Fx ,
(2.6)

from LocE (X ) to RepE (π1(X , x)), the category of continuous finite-dimensional E-linear
representations of π1(X , x).

Proposition 2.11. If X is in addition connected, then the functor (2.6) is an equivalence of
categories.

Proof. This is [Fu11, Theorem 10.23]. ■
Suppose that G denotes a profinite group and ρ : G → GL(V ) is a representation of

G , where V is a finite dimensional Qℓ-vector space. Then ρ is said to be continuous if
there exists an E-linear subspace W ⊂V for some ℓ-adic field E ⊂Qℓ, with a continuous
E-linear action of G on W , such that V ≃W ⊗E Qℓ as G-representations.
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Remark 2.12. One can show, using the Baire category theorem, that ρ : G → GL(V ) is
a continuous Qℓ-linear representation if and only if ρ is continous with respect to the
ℓ-adic topology on GL(V ). See [Chu18, Proposition 4.3].

Taking the limit over the functors of (2.6), we obtain a functor

(2.7) Loc(X ) → Rep
Qℓ

(π1(X , x)),

where Rep
Qℓ

(π1(X , x)) denotes the category of ℓ-adic representations of π1(X , x).

Terminology 2.13. In this thesis, an ℓ-adic representation of a profinite group G is always
supposed to be aQℓ-linear continuous finite-dimensional representation of G .

Corollary 2.14. If X is in addition connected, then the functor of (2.7) is an equivalence of
categories. ■
Example 2.15. We consider again the setting of Example 2.10. We obtain a monodromy
representation

π1(X , x) → GL(H i
ét(Y ×X Specκ(x)sep;Qℓ)).

Let ϕ : Y → X be a morphism of schemes with Y noetherian. If F denotes a local sys-
tem on X , then we obtain a local system ϕ−1F on Y from (2.4). If ρ : π1(Y , y) → GL(Fx)
denotes the monodromy representation of F , where y → Y is a geometric point lying
over x → X , then the monodromy representation of ϕ−1F is given by the composition

π1(Y , y)
ϕ∗−−→π1(X , x)

ρ−→ GL(Fx),

where we identify the fibers (ϕ−1F )y =Fx .

Terminology 2.16. In this thesis, unless otherwise specified, a local system is only con-
sidered up to isomorphism. We will then usually denote them by L. When L is a local
system on a connected scheme, we will often say that L “has property P” if its monodromy
representation ρ : π1(X , x) → GL(Lx) “has property P”. Of course, we only do this when
this does not depend on the choice of geometric point x. For instance, we will say that L
has finite determinant if its monodromy representation has finite determinant, i.e., when
the determinant character detρ = det◦ρ : π1(X , x) →Q

×
ℓ has finite image.

2.4.1. (Semi-)simplicity. If F is a local system on X , then F is said to be simple, or
irreducible, if F has no non-trivial and non-zero lisse subobjects in the category ofQℓ-
sheaves. If F is a finite direct sum of simple lisse sheaves, then F is said to be semisimple.
Crucially, these notions makes sense even when X is not connected. If X does happen to
be connected, then by identifying lisse sheaves with their monodromy representations
via the equivalence of Corollary 2.14, these notions coincide with the usual notions from
representation theory. Hence, this terminology is also compatible with our conventions
from Terminology 2.16.

Example 2.17. (i) The constant local systemQℓ on X is semisimple. It is irreducible if
X is additionally connected.
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(ii) Assume that X is in addition normal, connected and defined over an algebraically
closed field k. Let f : Y → X be smooth and proper. We then know F = R i f∗Qℓ to
be a local system by Example 2.10. By [Del80, Corollaire 3.4.13], F is semisimple.
We also see that local systems coming from geometry are exactly those local systems
F such that F |U is a direct summand of R i f∗Qℓ, for some i ≥ 0, some dense open
subscheme U and some smooth and proper morphism f : Y →U .

Lemma 2.18. Let G be a profinite group and let U ⊂G be an open subgroup of G. For a
given ℓ-adic representation ρ : G → GLr (Qℓ), ρ is semisimple if and only if ρ |U is semisim-
ple.

Proof. The “only if” statement follows from an averaging argument akin to the one in
the proof of Maschke’s Theorem. For the “if” statement, let V ⊂U be an open normal
subgroup of G . Then ρ |V is semisimple by Clifford’s Theorem; see [Cli37]. The fact that
ρ |U is semisimple then follows from the “only if” part of the lemma. ■
Proposition 2.19. Let Y → X be a surjective finite étale cover of X , and let L be a local
system on X . Then L is semisimple if and only if the pullback L|Y of L to Y is semisimple.

Proof. If X and Y are connected, this follows from the previous lemma.
It is clear that a local system is semisimple if and only if its restriction to every con-

nected component is semisimple, and so the general case reduces to the case where both
X and Y are connected. ■

11



3. SOME FACTS ABOUT FUNDAMENTAL GROUPS

The material in this section is based entirely on [GR06, Exposé XIII].

3.1. The tame fundamental group. Let X → S be a proper scheme of finite presentation
over a scheme S with geometrically connected fibers. Let D↣ X be an effective Cartier
divisor such that D↣ X → S is smooth, and such that the suport of D lies in the smooth
locus of X → S. Denote by U the complement of SuppD in X , and let x → U be a
geometric point of U . Raynaud defines a notion of étale coverings of U , tamely ramified
along D, relative to S in [GR06, Exposé XIII]. These tamely ramified coverings form a
Galois category Fibt

x : Fétt
U → sets with fiber functor the usual fiber functor associated

with x restricted to the full subcategory of tame coverings. The automorphism group of
the fiber functor Fibt

x is defined to be the tame fundamental group πt
1(U , x).

3.1.1. Functoriality of the tame fundamental group. The construction of the tame fun-
damental group is also functorial in the following sense. If S′ → S denotes a morphism
of schemes, write U ′, respectively D ′, for the pullback of U , respectively D , along S′ → S.
Now, if Y →U denotes an étale cover, tamely ramified along D , then its pullback Y ′ →U ′
along U ′ →U is an étale cover, tamely ramified along D ′. It follows that if x ′ →U ′ denotes
a geometric point of U ′, then we obtain a homomorphism of tame fundamental groups

πt
1(U ′, x ′) →πt

1(U , x ′).

3.1.2. The maximal pro-L quotient. We will not get into the details of these construc-
tions, but what is important to remark is that if L denotes the set of primes that do not
occur as a residue characteristic of S, and if Y →U denotes an étale Galois cover whose
degree is a product of primes in L , then Y →U is tamely ramified. As a result, there is a
surjective map of profinite groups

πt
1(U , x)↠πL

1 (U , x),

where πL
1 (U , x) denotes the maximal pro-L quotient of π1(U , x), which is also the

maximal pro-L quotient of πt
1(U , x). If G is a profinite group, and L is any set of primes,

then the maximal pro-L quotient of G is defined to be

(3.1) GL = lim←−−
U

G/U ,

where the projective limit runs over the open normal subgroups U ⊂ G such that the
index [G : U ] is a product of primes in L . If only one prime p is not contained in L , then
GL is usually denoted G (p ′) and called the maximal prime-to-p quotient of G .

3.2. The specialization homomorphism. Notation is as before. Let η ∈ S and s ∈ S be
points of S such that there is a specialization of points η⇝ s. Let η→ S, respectively s → S,
be a geometric point of S lying over η, respectively s. Let x →Uη, respectively y →Us , be

a geometric point of Us , respectively Uη. Denote by A =Ohs
S,s

the strict henselization of S
at s.

12



Proposition 3.1. The homomorphism of tame fundamental groups

πt
1(Us , y) →πt

1(UA, y)

is an isomorphism. Here tameness is with respect to Ds and D A.

Proof. This is [GR06, Exposé XIII, 2.10]. ■
By the fact that we have a specialization η⇝ s, η defines a point of SpecOS,s . Since

Spec A → SpecOS,s is surjective, by the fact that OS,s → A is faithfully flat, we can lift η to a
point of Spec A with residue field a separable extension of κ(η). Because κ(η) is separably
closed, we can choose a morphism η→ Spec A that gives rise to a commutative diagram

η Spec A s

S.

We obtain the specialization map

(3.2) sp: πt
1(Uη, x) →πt

1(UA, x) ≃πt
1(UA, y)

≃−→πt
1(Us , y).

Here the final isomorphism is the inverse of the one from Proposition 3.1. The specializa-
tion map is only defined up to an inner automorphism of πt

1(Us , y) because of the choice
of an isomorphism πt

1(UA, x) ≃ πt
1(UA, y). It also depends on the choice of morphism

η→ Spec A.

Theorem 3.2. If X → S is furthermore smooth, then the specialization map of (3.2) induces
an isomorphism on maximal prime-to-p quotients

π
(p ′)
1 (Uη, x)

≃−→π
(p ′)
1 (Us , y),

where p denotes the residue characteristic of S at s.

Proof. This is by [GR06, Exposé XIII, Corollaire 2.12]. ■
3.3. A homotopy exact sequence. Let S be a connected scheme. Let X → S be a smooth
proper S-scheme with geometrically connected fibers. Suppose f : U ,→ Z → S is the
complement of an effective cartier divisor D↣ X that is smooth over S and has support
in the smooth locus of X → S. Assume that f : U → S admits a section. Let L be the set
of primes different from the residue characteristics of S.

Let x →U be a geometric point of U . Write also x for the induced geometric point of S.
Denote by K the kernel

K = kerπ1(U , x) →π1(S, x),

and let N be the smallest normal subgroup of K such that K /N is a pro-L group. Then
N is also normal in π1(U , x) and we define

π′
1(U , x) =π1(U , x)/N .

13



Let s → S be a geometric point of S. Denote by x the geometric point of the geometric
fiber Us induced by s → S →U . We obtain a sequence of homomorphisms

(3.3) 1 πL
1 (Us , x) π′

1(U , x) π1(S, s) 1.

It is not hard to check that the composition πL
1 (Us , x) →π′

1(U , x) →π1(S, s) is the trivial
homomorphism.

Proposition 3.3. Under the hypotheses above, the sequence in (3.3) constructed above is a
split exact sequence.

Proof. This is [GR06, Proposition 4.3] and [GR06, Exemple 4.4]. ■
Remark 3.4. Throughout, we have restricted ourselves to the case where D is smooth over
the base S. We can generalize the results in this section by weakening this assumption
to the assumption that D is a normal crossing divisor, relative to S, as defined in [GR06,
Exposé XIII, 2.1].
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4. A COUNTEREXAMPLE TO THE NAIVE LOCAL KASHIWARA CONJECTURE

Let R be a complete discrete valuation ring with algebraically closed residue field and
write S = SpecR . Denote the closed point of S by s and the generic point of S by η. Denote
the residue field of R by k and let p ≥ 0 be its characteristic. Throughout, ℓ denotes a
prime different from p. The goal of this section is to give a counterexample to the naive
local Kashiwara conjecture discussed in the introduction that works without any further
restrictions on R. Specifically, we will answer the following question in the negative.

Question 4.1. Let X → S be a surjective smooth separated quasi-compact morphism of
schemes. Let L be a semi-simple ℓ-adic local system on X . Is it true that the pullback of
L to a local system on Xs is semi-simple?

Our construction in Section 4.2 to answer this question mimics the construction in Sec-
tion A in many respects. In particular, it involves an elliptic fibration whose special fiber
is a nodal curve. We proceed by first working out some facts regarding the fundamental
group of this particular nodal curve.

4.1. The fundamental group of a nodal curve. Throughout this section, k is any alge-
braically closed field of characteristic p ≥ 0. We let C be a proper rational curve over k that
is normal at every point with the exception of a simple node n ∈C (k). By this we mean
that C looks étale locally around n like the origin of Speck[x, y]/(x y). In other words,
there is an isomorphism of local k-algebras Oh

C ,n ≃ (k[x, y]/(x y))h
(x,y), where h denotes

the henselization. Let π : P1
k →C be the normalization of C . There are exactly two points

lying over n. This can be seen by first pulling back π along SpecOh
C ,n → C and the fact

that this pullback is the normalization of SpecOh
C ,n by [Sta24, Tag 0CBM]; then notice

that the normalization of SpecOh
C ,n ≃ Spec(k[x, y]/(x y))h

(x,y) is

(4.1) Speck[x]h
(x) ⊔Speck[y]h

(y) → Spec(k[x, y]/(x y))h
(x,y)

and that the fiber of this morphism over (x, y) contains exactly two points. Denote by
a and b the points of P1 lying over the node n. There is the following “normalization
sequence”

(4.2) 0 →OC →π∗OP1 → kn → 0,

where kn is the skyscraper sheaf supported only at n with stalk k. Here the map π∗OP1 →
kn is defined by f 7→ f (a)− f (b). It is a sequence of OC -modules.

Proposition 4.2. The sequence (4.2) is exact.

Proof. It is clear that for every point c ∈ C , the sequence of stalks at c is exact, except
possibly at the node n. Consider the sequence of stalks at n

0 →OC ,n → (π∗OP1 )n → k =OC ,n/mn → 0.
15
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Recall that the henselization OC ,n →Oh
C ,n is faithfully flat, and so we need only prove that

the sequence we obtain after tensoring with Oh
C ,n ,

0 →Oh
C ,n → (π∗OP1 )n ⊗OC ,n Oh

C ,n →Oh
C ,n/mnOh

C ,n = k → 0,

is exact. This sequence identifies with the sequence

(4.3) 0 → (k[x, y]/(x y))h
(x,y) → k[x]h

(x) ×k[y]h
(y) → k → 0

by (4.1) and the argument preceeding it. The sequence (4.3) is clearly exact. ■
We can assume that neither a nor b is the point 0 or ∞. Denote by C ◦ the curve C with

the points π(0) and π(∞) removed. We still denote the normalization P1 \ {0,∞} =Gm →
C ◦ by π.

4.1.1. Finite étale covers of the punctured nodal curve. Denote the category of finite étale
covers of C ◦ by FétC◦ . Denote by C the category whose objects are finite étale covers

X
f−→ Gm equipped with an isomorphism ϕ : f −1(a)

≃−→ f −1(b) and whose morphisms
( f ,ϕ) → ( f ′,ϕ′) are morphisms of finite étale covers such that the square

f −1(a) f ′−1(b)

f −1(a) f ′−1(b)

ϕ ϕ′

commutes. The isomorphism ϕ is referred to as a descent datum for f , relative to C ◦.
Given a finite étale cover g : Y →C ◦, we obtain a finite étale cover

π∗g : π∗Y := Y ×C◦ Gm →Gm

by pulling the morphism g back along π. We have a canonical isomorphism

(π∗g )−1(a) ≃ (π∗g )−1(b)

and hence a canonical descent datum for π∗g . This gives us a functor

(4.4) π∗ : FétC◦ →C .

The rest of this section is devoted to constructing a pseudo-inverse to this functor.

4.1.2. A glueing construction. Given an object (X
f−→Gm ,ϕ) of C , we intend to construct

a finite étale cover of C ◦ by “glueing the fibers f −1(a) and f −1(b) together along the
isomorphism ϕ”. Define the ring O (X ) by

O (X ) = { f ∈O (X ) : f (x) = f (ϕ(x)) for all x ∈ f −1(a)}.

It defines the coordinate ring of an affine scheme X . Let ρ : X → X denote the obvious
map.
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Proposition 4.3. The square

f −1(a)⊔ f −1(b) X

f −1(b) X

ϕ⊔id ρ

defines a pushout square in the category of affine k-schemes.

Proof. The corresponding map on rings defines a pullback square in the category of
k-algebras. ■

By construction of the scheme X , we also have an exact sequence of OX -modules on X

(4.5) 0 →OX → ρ∗OX → ⊕
x∈ f −1(a)

kρ(x) → 0,

where
⊕

x∈ f −1(a) kρ(x) is the skyscraper sheaf on X supported at the points ρ(x) = ρ(ϕ(x))
with stalk k for x ∈ f −1(a). Letting y = ϕ(x) and z = ρ(x) = ρ(y), we obtain the exact
sequence of stalks

0 →OX ,z → (ρ∗OX )z → k → 0.

Set OX ,x∪y = (ρ∗OX )z . This is a semilocal ring with maximal ideals mx and my , corre-
sponding to the points x and y . The ideal mzOX ,x∪y is precisely the Jacobson radical of
OX ,x∪y . As a result, the OX ,z -completion of OX ,x∪y is isomorphic to ÔX ,x × ÔY ,y by [MR86,
Theorem 8.15]. Taking completions of OX ,z-modules now yields the exact sequence

(4.6) 0 → ÔX ,z → ÔX ,x × ÔX ,y → k → 0.

4.1.3. An equivalence of categories. By Proposition 4.3, we obtain for each object (X
f−→

Gm ,ϕ) of C a commutative diagram

(4.7)
X X

Gm C ◦.

f

ρ

f

π

Proposition 4.4. The morpism f : X →C ◦ constructed in (4.7) is finite étale.

Proof. It is affine by construction, and finite by finiteness of f and π and the fact that C ◦
is noetherian (see [Sta24, Tag 00FP]). The fact that it is étale at all points outside the fiber
over n is clear. To prove that it is étale at the point z = ρ(x) = ρ(y) in the fiber over n, for
some x ∈ f −1(a) and y =ϕ(x), we show that the induced map on completed local rings
ÔC◦,n → ÔX ,z is an isomorphism. Then we can apply [Har10, Chapter 2, Exercise 10.4]

and conclude that f is étale at z. Recall The exact sequence from (4.6). We can derive
17
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a similar such sequence for the completed local ring of C ◦ at n from (4.2). We obtain a
commutative diagram with exact rows

0 ÔX ,z ÔX ,x × ÔX ,y k 0

0 ÔC◦,n ÔGm ,a × ÔGm ,b k 0,

≃ =

where the middle vertical map is an isomorphism by the fact that f is étale. It follows that
ÔC◦,n → ÔX ,z is an isomorphism. ■

This construction is clearly functorial, and so we obtain the functor

G : C → FétC◦

(X
f−→Gm ,ϕ) 7→ (X

f−→C ◦).
(4.8)

Theorem 4.5. The functors from (4.4) and (4.8) are pseudo-inverse to each other. As a
result, we obtain an equivalence of categories

FétC◦ ≃C .

Proof. Let Y →C ◦ be a finite étale morphism. We naturally obtain a commutative triangle

π∗Y Y

C ◦.

Since π∗Y and Y are finite étale of the same degree over C ◦, the dashed arrow above
is finite étale of degree 1 because it is surjective. It follows that the dashed arrow is an
isomorphism. So we have an isomorphism of functors G ◦π∗ ≃ id.

Conversely, if (X ,ϕ) is a finite étale cover ofGm with a descent datum, then we naturally
obtain a commutative triangle

X π∗X

Gm .

By the same argument as before, the dashed arrow is an isomorphism. Hence, we obtain
an isomorphism of functors π∗ ◦G ≃ id. ■
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4.1.4. Computing the fundamental group. We first recall a few elementary facts about
free products of profinite groups. Denote by Grp the category of groups, by PrGrp the
category of profinite groups, and by PrGrp(p ′) the category of profinite groups G such that
(the supernatural number) #G = [G : 1] is prime to p. We will call such groups pro-prime-
to-p. Let (̂−) : Grp → PrGrp be the functor sending a group G to its profinite completion
Ĝ . Let (−)(p ′) : PrGrp → PrGrp(p ′) denote the functor sending a profinite group G to its
maximal prime-to-p quotient G (p ′). Recall that it is defined as

G (p ′) = lim←−−
([G :U ],p)=1

G/U ,

where the projective limit ranges over the open normal subgroups U of G of index prime-
to-p. It is often much easier to get a grip on the prime-to-p quotient of the fundamental
group of a scheme over a field of characteristic p. This is because the prime-to-p quotient
filters out wildly ramified covers, of which there are usually many. The following lemma
illustrates this.

Lemma 4.6. There is an isomorphism π
(p ′)
1 (Gm) ≃ Ẑ(p ′).

Proof. Let ϕ : Y → Gm be a degree d connected étale cover of Gm , where d is prime-
to-p. Denote by Y the unique smooth compactifcation of Y . Then ϕ extends to a
degree-d morphism ϕ : Y →P1 of curves. Denote by e1, . . . ,er , respectively f1, . . . , fs , the
ramification indices of ϕ over 0, respectively ∞. Since ϕ is of degree prime-to-p, we can
apply the Riemann Hurwitz formula ([Har10, Chapter IV, Corollary 2.4]). We obtain

2gY −2 =−2d +
r∑

i=1
(ei −1)+

s∑
j=1

( f j −1),

where gY denotes the genus of Y . After some consideration, this shows that gY = 0 and
e1 = f1 = d . This leaves exactly one option for Y and ϕ up to isomorphism, namely
Y ≃Gm and ϕ : y 7→ yd . It has automorphism group cyclic of order d . We find

π
(p ′)
1 (Gm) ≃ lim←−−

(d ,p)=1

Z/dZ≃ Ẑ(p ′).

■
We have the adjunctions of functors

(4.9) Grp PrGrp PrGrp(p ′),

(̂−)

⊥

(−)(p′)

⊥

where the unnamed arrows are the evident forgetful functors.
Given groups G and G ′, we denote by G ∗G ′ the free product of G and G ′. If G and

G ′ are profinite groups, then we also denote by G ∗G ′ the free profinite product of G
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and G ′. If G and G ′ are pro-prime-to-p groups, then we denote by G ∗(p ′) G ′ the free
pro-prime-to-p product of G and G ′. In all three cases, this defines the coproduct of G
and G ′ in their respective category. For a construction of the free profinite product and
the free pro-prime-to-p product, see [NSW, Chapter IV, Section 1].

Lemma 4.7. (i) For groups G and G ′ we have a canonical isomorphism�G ∗G ′ ≃ Ĝ ∗Ĝ ′.

(ii) For profinite groups G and G ′ we have a canonical isomorphism

(G ∗G ′)(p ′) ≃G (p ′) ∗(p ′) G ′(p ′).

Proof. This is immediate by (4.9) and the fact that left adjoints preserve colimits. ■
We fix, once and for all, an étale path Fiba ≃ Fibb , where Fiba ,Fibb : FétGm â sets are

the fiber functor over a and b. Via this étale path, we obtain the equivalences of categories

FétC◦ ≃C

≃ {pairs ( f : X →Gm ,ϕ ∈ Aut( f −1(a))) with f finite étale}

≃ {finite sets F with a continuous action of π1(Gm , a) and of Ẑ}

≃π1(Gm , a)∗ Ẑ-sets,

(4.10)

where the last category consists of finite sets with a continuous action of π1(Gm , a)∗ Ẑ.
Here the third equivalence is induced by the functor Fiba . We have a commutative
triangle

(4.11)
FétC◦ π1(Gm , a)∗ Ẑ-sets

sets,

Fibn

≃

where the arrow π1(Gm , a)∗ Ẑ-sets → sets is the evident forgetful functor.

Theorem 4.8. (i) The diagram (4.11) induces a canonical isomorphism

π1(C ◦,n) ≃π1(Gm , a)∗ Ẑ.

(ii) The maximal prime-to-p quotient of π1(C ◦,n) is canonically isomorphic to

π1(C ◦,n)(p ′) ≃ �Z∗Z(p ′)
.

(iii) The map π∗ : π1(Gm , a) →π1(C ◦,n) is identified with the canonical inclusion

π1(Gm , a) →π1(Gm , a)∗ Ẑ
under the isomorphism of (i).
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Proof. Part (i) is clear. Part (ii) follows from Lemma 4.7 and Lemma 4.6:

π1(C ◦,n)(p ′) ≃ (π1(Gm , a)∗ Ẑ)(p ′)

≃π1(Gm , a)(p ′) ∗(p ′) Ẑ(p ′)

≃ Ẑ(p ′) ∗(p ′) Ẑ(p ′)

≃ (Ẑ∗ Ẑ)(p ′) ≃ �Z∗Z(p ′)
.

Part (iii) follows from the commutative square

FétC◦ FétGm

π1(Gm , a)∗ Ẑ-sets π1(Gm , a)-sets,

≃

π∗

≃

where the horizontal arrow on the bottom is given by precomposing the action on a finite
set by the canonical inclusion π1(Gm , a) →π1(Gm , a)∗ Ẑ. ■
4.2. The construction. We return to the question posed in the introduction. We use the
same notation. Let X → S be an elliptic fibration whose special fiber is reduced and of
type I1 in the Kodaira classification of singular fibers. We take this to mean that X is
regular and connected, X → S is proper, the generic fiber Xη → Specκ(η) is smooth of
genus 1, and the special fiber Xs → Speck is a rational curve with a simple node as in the
previous section. See also [Sil86, Appendix C.15].

Example 4.9. Let

X = Proj
O [x, y, z]

(y2z −x3 −x2z −πz3)
→ S.

One can check that X → S satisfies the properties mentioned above.

Denote by n ∈ Xs(k) the nodal point of the special fiber.

Lemma 4.10. The morphism X \ {n} → S is smooth.

Proof. It is flat, because X → S is by the assumptions that it is surjective and that X
is integral (see [Har10, Proposition 9.7]). The morphism X \ {n} → S is locally of finite
presentation by the fact that X → S is. All the fibers of X \ {n} → S are smooth, because
the generic fiber is Xη, which is smooth by assumption, and the special fiber is Xs \ {n},
which is regular over an algebraically closed field. The result follows. ■

Fix pairwise distinct non-singular points x0, x1, x2 ∈ Xs(k). By the above Lemma, we
can now apply Hensel’s Lemma as in [Mil16, Chapter I, Exercise 4.13] to obtain R-points

si : S → X ,

for i = 1,2, such that xi is equal to the composition

Speck → S → X .
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Since X → S is separated, the si are closed immersions by [Har10, Chapter II, Exercise
4.8]. We obtain an effective Cartier divisor D = s1(S)+s2(S) on X . Denote by U the scheme
X \ SuppD → S over S. The map D → S is finite étale, and D lies in the smooth locus of
X → S by Lemma 4.10. As a result, we obtain the following lemma.

Lemma 4.11. The canonical map of tame fundamental groups

πt
1(Us , x0)

≃−→πt
1(U , x0)

is an isomorphism. It induces an isomorphism

π
(p ′)
1 (Us , x0)

≃−→π
(p ′)
1 (U , x0)

on maximal prime-to-p quotients.

Proof. This is by Proposition 3.1. ■
4.2.1. Enter the representations. Consider the normalization π : P1

k → Xs . Without loss
of generality, we assume that the points lying over x1 and x2 are 0 and ∞, respectively.
Denote the point over x0 by x̃0. We obtain the normalization Gm →Us of Us by restricting
to Gm =P1 \ {0,∞}. In accordance with the previous section, we let a and b be the points
over the node n. We fix, once and for all, an étale path Fibx̃0 ≃ Fiba . This induces an étale
path Fibx0 ≃ Fibn . We obtain a commutative diagram

(4.12)

π1(Gm , x̃0) π1(Gm , a) π1(Gm , a)

π1(Us , x0) π1(Us ,n) π1(Gm , a)∗ Ẑ.

≃

π∗ π∗

=

≃ ≃

Here the isomorphisms of the left square come from the fixed étale paths, and the right
hand square is by Theorem 4.8. It is by the isomorphisms in (4.12) that we identify
π1(Gm , x̃0) with π1(Gm , a) and π1(Us , x0) with π1(Gm , a)∗ Ẑ. In particular, by Theorem
4.8, we obtain isomorphisms

π
(p ′)
1 (Gm , x̃0) ≃ Ẑ(p ′) and π

(p ′)
1 (Us , x0) ≃ �Z∗Z(p ′)

,

and under these identifications the map π(p ′)
1 (Gm , x̃0) →π

(p ′)
1 (Us , x0) corresponds to the

map induced by the inclusion Z ,→Z∗Z of the left hand copy of Z.
For any prime ℓ, GL2(Zℓ) is a profinite group:

GL2(Zℓ) = lim←−−
n

GL2(Z/ℓn).

Consider now the profinite group

Γℓ = ker(GL2(Zℓ) → GL2(Z/ℓ))

= lim←−−
n

ker(GL2(Z/ℓn) → GL2(Z/ℓ)).(4.13)

Lemma 4.12. The profinite group Γℓ from (4.13) is a pro-ℓ group.
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Proof. It is easily seen that each of the finite groups

ker(GL2(Z/ℓn) → GL2(Z/ℓ))

is an ℓ-group. ■
Remark 4.13. Replacing Zℓ by the ring of integers OE of an ℓ-adic field E , and 2 by an
arbitary integer r ≥ 1, we obtain by analogous reasoning a pro-ℓ group

Γℓ = ker(GLr (OE ) → GLr (OE /mE )).

In addition, it is open in GLr (E).

As in the introduction, we assume ℓ is a prime different from p. It follows in particular
that, by the above Lemma, Γℓ is a pro-prime-to-p group. Consider the homomorphism

Z∗Z→ Γℓ

defined by sending the first generator to
(

1 ℓ
0 1

)
and the second generator to

(
1 0
ℓ 1

)
. We

obtain a continuous representation

(4.14) ρ(p ′) : π(p ′)
1 (Us , x0) ≃ à(Z∗Z)

(p ′) → Γℓ ,→ GL2(Qℓ),

from the adjunctions in (4.9).

Lemma 4.14. The representation ρ(p ′) from (4.14) is irreducible.

Proof. The image of ρ(p ′) contains the subgroup of GL2(Qℓ) spanned by the matrices(
1 ℓ
0 1

)
and

(
1 0
ℓ 1

)
. It is easy to check that this subgroup does not fix any proper subspace of

Q
⊕2
ℓ . ■
Consider now the representation

(4.15) ρ(p ′) ◦π∗ : π(p ′)
1 (Gm , x̃0) → GL2(Qℓ).

Lemma 4.15. The representation ρ(p ′) ◦π∗ from (4.15) is not semi-simple.

Proof. Identifying π(p ′)
1 (Gm , x̃0)(p ′) with Ẑ(p ′) as before and restricting ρ(p ′) ◦π∗ to Z, we

obtain the representation Z→ GL2(Qℓ) sending 1 to
(

1 ℓ
0 1

)
. Clearly, this representation has

a single non-trivial subrepresentation, and hence is not semi-simple. The same is then
true for the represenation ρ(p ′) ◦π∗ by continuity. ■
4.2.2. Conclusion. We now finally give a construction showing that the answer to Ques-
tion 4.1 is “No”. Consider the S-scheme X :=U \ {n} → S. It is smooth by Lemma 4.10.
Clearly, it is surjective, separated and quasi-compact. Its special fiber is Xs =Us \ {n} →
Speck. Notice also that X is connected, so that we may define local systems on it in
terms of monodromy representations. Define the representation ρ : π1(X , x0) → GL2(Qℓ)
to be the composition

(4.16) π1(X , x0)
≃−→π1(U , x0)↠π

(p ′)
1 (U , x0) ≃π(p ′)

1 (Us , x0)
ρ(p′)
−−−→ GL2(Qℓ).
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Here the first isomorphism is by the Zariski-Nagata purity Theorem, and the second
isomorphism comes from Proposition 4.11.

Corollary 4.16. The representation ρ from (4.16) is irreducible.

Proof. This follows from Lemma 4.14 and the fact that ρ and ρ(p ′) share the same image.
■

To finish the construction, we only have to argue that

(4.17) ρ ◦ i∗ : π1(Xs , x0) → GL2(Qℓ)

is not semi-simple. To this end, consider the diagram

(4.18)

π1(Gm \ {a,b}, x̃0) π1(Xs , x0) π1(X , x0)

π1(Gm , x̃0) π1(Us , x0) π1(U , x0)

π
(p ′)
1 (Gm , x̃0) π

(p ′)
1 (Us , x0) π

(p ′)
1 (U , x0) GL2(Qℓ)

≃ i∗

≃
ρ

π∗ ≃

ρ(p′)

Corollary 4.17. The representation ρ ◦ i∗ from (4.17) is not semi-simple.

Proof. This follows from the fact that ρ ◦ i∗ has the same image as ρ(p ′) ◦π∗ by (4.18), and
the fact that ρ(p ′) ◦π∗ is not semi-simple by Lemma 4.15. ■
Remark 4.18. The representation ρ constructed here is not the exact analogue of the one
constructed in the Complex-geometric version of this example in Section A. If we were to
imitate that construction faithfully, we would get in trouble with the primes p = 2 and
p = 3. We would also have to put additional conditions on ℓ.
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5. SIMPSON’S SPREADING ARGUMENT

Let G and H be profinite groups and let G act continuously on H . Write G̃ = H ⋊G for
the semi-direct product of G and H . It is again a profinite group, because the underlying
topology of G̃ is that of G ×H ; hence, it is compact and totally disconnected. We think of
G and H as living inside this semi-direct product. In particular, we denote the action of G
on H by conjugation.

One scenario in which this situation arises naturally is described by the following
standard result.

Proposition 5.1. Suppose we have an exact sequence of profinite groups

1 → H → K →G → 1

such that K → G admits a continuous section G → K . Then G acts continuously on H
by conjugation, and we have an isomorphism K ≃ H ⋊G fitting into the commutative
diagram

1 H K G 1

1 H H ⋊G G 1.

= ≃ =

■
The main result of this section is Theorem 5.6. The approach of the proof is partially

inspired by [Sim92, Theorem 4].

5.1. The space of ℓ-adic representations. Recall our convention from Terminology 2.13.
Throughout, we fix a prime ℓ. We define the set R to be the set of isomorphism classes of
semisimple ℓ-adic representations of H :

R = {semisimple ℓ-adic representations H → GL(V )}/ ≃ .

For ρ : H → GL(V ) a semisimple ℓ-adic representation, we denote by [ρ] ∈R its isomor-
phism class. We have a natural right action of G on R defined by

[ρ]g = [ρg ] (g ∈G , [ρ] ∈R),

where

ρg (h) = ρ(g hg−1) (h ∈ H).

We intend to equip R with a topology such that the action described above is continuous.
Denote by Map(H ,Qℓ) the set of continuous (set-)maps H →Qℓ. We obtain an injection

R ,→ Map(H ,Qℓ)

[ρ] 7→ Trρ := Tr◦ρ,

where Tr: GL(V ) →Qℓ denotes the (continuous) trace map, by the following lemma.
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Lemma 5.2 ([Wie12, Proposition 2.4.3]). Let k be a field of characteristic 0, A a k-algebra,
and V and V ′ two semisimple A-modules of finite k-dimension. If the characters TrV : G →
k and TrV ′ : G → k obtained by sending g ∈G to Tr(g |V ), respectively Tr(g |V ′), are equal,
then V and V ′ are isomorphic as A-modules. ■

We equip Map(H ,Qℓ) with the compact-open topology. Then R is equipped with the
subspace topology inherited from Map(H ,Qℓ).

Proposition 5.3. The action of G on R is continuous.

Proof. By assumption, the map G ×H → H is continuous. By [Mun14, Theorem 46.11]
the induced map

ϕ : G → Map(H , H)

is continuous if we equip Map(H , H) with the compact-open topology. The space H is
locally compact and Hausdorff (H is profinite), and so by [Mun14, Exercise 7, §46] we
find that the composition map

c : Map(H , H)×Map(H ,Qℓ) → Map(H ,Qℓ)

is continuous. As a result, the map

G ×Map(H ,Qℓ)
ϕ×id−−−→ Map(H , H)×Map(H ,Qℓ)

c−→ Map(H ,Qℓ)

is continuous, and hence so is
G ×R →R.

■
Corollary 5.4. Let [ρ] ∈R. Then the stabilizer Stab[ρ] of [ρ] is a closed subgroup of G. If
the orbit of [ρ] is finite, then Stab[ρ] is also open.

Proof. Write
Φ : G ×R →R

for the action map. We have

Stab[ρ] =Φ−1([ρ])∩G × {[ρ]},

and so we only have to argue that [ρ] ∈R is a closed point. This follows from the fact that
Map(H ,Qℓ) is Hausdorff: Qℓ is Hausdorff so that we can apply [Mun14, Exercise 6, §46].
The second part of the corollary follows from the fact that Stab[ρ] has finite index if the
orbit of [ρ] is finite. ■
Corollary 5.5. Let [ρ] ∈R such that orbit of [ρ] in R is finite. Then the orbit of each of the
irreducible constituents of ρ is finite.

Proof. Let U be the stabilizer of [ρ]. By Corollary 5.4 it is open. The subgroup U permutes
the irreducible constituents of ρ, and so there exists an open subgroup V ⊂U fixing all of
them. ■
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5.2. Spreading ℓ-adic representations with finite determinant. Notation is as before.

Theorem 5.6. Let ρ : H → GLr (Qℓ) be an irreducible ℓ-adic representation and assume
that the orbit [ρ] ·G ⊂R is finite. Then there exists an open subgroup U ⊂G such that ρ
extends to a continuous representation

ρ̃ : Ũ := H ⋊U → GLr (Qℓ).

Furthermore, if detρ is finite (i.e., the determinant character of ρ has finite image), then ρ̃
can be chosen such that det ρ̃ is finite.

Proof. We can find E a finite extension of Qℓ such that ρ factors as H → GLr (E) →
GLr (Qℓ). By the assumption that [ρ] ·G is finite, and Corollary 5.4, Stab[ρ] is open. By
potentially replacing G by the open subgroup Stab[ρ], we can assume that G acts trivially
on [ρ]. As a result, for every g ∈G there is an isomorphism ρg ≃ ρ so that ρ and ρg are
conjugate to each other by some Ag ∈ GLr (E):

ρg = Ag ·ρ · A−1
g .

We can indeed take the Ag to be defined over E , because G acts trivially on the trace
character of ρ, and hence trivially on the E-isomorphism class of ρ by Lemma 5.2. We
define

A : G → PGLr (E)

g 7→ Ag ,

where Ag denotes the class of Ag in PGLr (E). It is easily seen that A is a homomorphism

by Schur’s Lemma. We argue that A is additionally continuous by applying Lemma 5.9
below. We employ the notation introduced in that lemma. Notice first that, since ρ is
irreducible overQℓ, we have

E [ρ(h) : h ∈ H ] = Mat(r × r ;E)

by [EG11, Theorem 3.2.2]. For 1 ≤ i , j ≤ r we can therefore write

ei , j =
∑

h∈H
α

i , j
h ρ(h)

with αi , j
h ∈ E zero for all but finitely many h ∈ H . Then for g ∈G we compute

(evi , j ◦A)(g ) = Ag ei , j A−1
g

= ∑
h∈H

α
i , j
h ρg (h)

= ∑
h∈H

α
i , j
h ρ(g hg−1).

We see that evi , j ◦A is a linear combination of continuous functions and hence is contin-

uous. It follows that A is continuous by Lemma 5.9.
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Our goal is to lift A |U to a continuous homomorphism A : U → GLr (E) for some open
subgroup U ⊂G . To this end, we apply the theory of continuous non-abelian cohomology,
which is recalled in Appendix B. Consider the strict exact sequence of topological G-
groups (each with trivial G-action)

1 →µr → SLr (E) → PSLr (E) → 1

from Corollary 5.12 below. By Theorem B.3, we obtain an exact sequence of pointed sets

H 1
cont(G ;SLr (E)) → H 1

cont(G ;PSLr (E))
δ−→ H 2

cont(G ;µr ).

By potentially shrinking G to an open subgroup we can assume that the image of A lies
in PSLr (E) by Lemma 5.11. Let U ⊂ G be an open subgroup such that resG

U (δ(A)) = 0.
This is possible by the fact that µr is discrete. Then, since restriction is compatible with
connecting homomorphisms, we find

δ(resG
U (A)) = 0 ∈ H 2

cont(U ;µr ),

where now δ denotes the connecting homomorphism in the sequence

H 1
cont(U ;SLr (E)) → H 1

cont(U ;PSLr (E)) → H 2
cont(U ;µr ).

It follows that there exists A ∈ H 1
cont(U ;SLr (E)) lifting A |U 3. We now set

ρ̃ = ρ⋊ A : H ⋊U → GLr (E).

The last part of the proposition follows by construction since A takes values in SLr (E ). ■
Remark 5.7. Suppose ρ : H → GLr (Qℓ) is irreducible with finite determinant. Then
an extension ρ̃ : H ⋊U → GLr (Qℓ) of ρ with finite determinant is even unique up to
a diminution of U . Indeed, let ρ̃, ρ̃′ : H ⋊U â GLr (Qℓ) be two extensions of ρ with
finite determinant. Then their “projectivizations” H ⋊U â GLr (Qℓ) → PGLr (Qℓ) must
both equal ρ⋊ A, where A : U → PGLr (Qℓ) is the unique homomorphism such that

ρg = AgρA
−1
g for all g ∈U . Therefore, ρ̃ and ρ̃′ differ by a character χ : H ⋊U →Q

×
ℓ . By

finiteness of the determinants, this must be a finite character. Since χ is trivial on H , χ
will vanish after shrinking U . Hence, ρ̃ and ρ̃′ will coincide after shrinking U .

Corollary 5.8. Let ρ : H → GLr (Qℓ) be a semisimple representation such that the orbit
[ρ] ·G ⊂ R is finite. Then there exists an open subgroup U ⊂ G such that ρ extends to a
continuous representation

ρ̃ : H ⋊U → GLr (Qℓ).

Proof. Each of the irreducible constituents of ρ has finite G-orbit by Lemma 5.5. Then
we apply Theorem 5.6 to spread each of the irreducible constituents. After taking an
appropriate direct sum, we find a spreading of ρ. ■

3Notice that by surjectivity of SLr (E ) → PSLr (E ) we can find an actual lift of A and not just of its conjugacy
class in H 1

cont(U ;SLr (E)).
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5.3. Some auxiliary results. Let E be a finite extension of Qℓ. The projective general
linear group PGLr (E) is equipped with the quotient topology from GLr (E)↠ PGLr (E).
Denote by Mr (E) the algebra of r × r -matrices over E .

Lemma 5.9 (Topology of PGLr ). The space PGLr (E ) has the coarsest topology making each
of the evaluation maps

evi , j : PGLr (E) → Mr (E)

M 7→ Mei , j M−1

continuous. Here ei , j ∈ Mr (E) denotes the matrix with a 1 in the (i , j )-th entry and zeroes
everywhere else.

Proof. By the Skölem-Noether Theorem (see [GS17, Theorem 2.7.2]), we obtain a contin-
uous bijection

PGLr (E) → AutE (Mr (E)),

M 7→ (ϕM : N 7→ M N M−1),
(5.1)

where AutE (Mr (E)) denotes the set of E-algebra automorphisms of Mr (E) with the sub-
space topology inherited from gl(Mr (E)) ∼= E⊕r 4

, the set of E-linear endomorphisms
of Mr (E). The space AutE (Mr (E)) is a locally compact Hausdorff space, because it is a
subspace of gl(Mr (E )). As a result, it is a Baire space. By [Ser92, Part II, Chapter IV, Section
4, Lemma 1], we conclude that the map from (5.1) is a homeomorphism. It is clear that
the topology on gl(Mr (E)) is the coarsest one for which each of the maps

evi , j : gl(Mr (E)) → Mr (E)

ϕ 7→ϕ(ei , j )

is continuous. The result follows. ■
Denote by PSLr (E ) the image of SLr (E ) in PGLr (E ) equipped with the subspace topol-

ogy.

Lemma 5.10. The map SLr (E)↠ PSLr (E) admits a continuous (set-theoretic) section
PSLr (E) → SLr (E).

Proof. We show that the map SLr (E) → PGLr (E ) of ℓ-adic Lie groups induces an isomor-
phism on Lie-algebras. The Lie algebra of SLr (E) is slr (E), the r × r matrices over E with
trace 0. By construction of the quotient Lie group (see [Ser92, Part II, Chapter IV, Section
5]), the Lie algebra of PGLr (E) is given by

Lie(PGLr (E)) = Mr (E)/E Ir ,

where Ir denotes the identity matrix. The induced map

slr (E) → Lie(PGLr (E))
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is an isomorphism of Lie algebras. By the Inverse Function Theorem (see [Ser92, Part
II, Chapter 2, Section 9]), SLr (E) → PGLr (E) is a local isomorphism. Certainly then,
SLr (E) → PSLr (E) admits sections locally. Since PSLr (E) has a basis consisting of open
(hence closed) subgroups, we can extend such local sections to the whole of PSLr (E ). ■
Lemma 5.11. The subspace PSLr (E) ⊂ PGLr (E) is open.

Proof. The proof of Lemma 5.10 shows that SLr (E) → PGLr (E) is a local isomorphism,
from which it follows that the image of SLr (E) in PGLr (E) is open. ■
Corollary 5.12. We have a strict exact sequence of topological groups

(5.2) 1 →µr → SLr (E) → PSLr (E) → 1,

where µr ⊂ E denotes the set of r -th roots of unity in E. The sequence (5.2) satisfies proper-
ties (i) and (ii) of Section B.2.
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6. AN ARITHMETIC LOCAL KASHIWARA CONJECTURE IN EQUAL POSITIVE CHARACTERISTIC

In Section 4 we constructed a counterexample to the naive version of the local Kashi-
wara conjecture, Question 4.1. In this section we prove Theorem 1.4, a specific case of the
arithmetic local Kashiwara conjecture, Conjecture 1.2, in equal positive characteristic.
Recall our conventions from Terminology 2.13 and Terminology 2.16.

6.1. Arithmetic local systems. Let k be a finitely generated field of characteristic p ≥ 0,
and let ℓ be a prime different from p. Pick an algebraically closed field Ω containing k
and let k be the separable closure of k in Ω. Let X be an integral separated finite type
k-scheme.

Definition 6.1. A semisimple ℓ-adic local system L on X is said to be arithmetic if there
exists an ℓ-adic local system L0

k ′ on a spreading X 0
k ′ of X to a scheme X 0

k ′ over k ′, for some

finite separable extension k ⊂ f k ′ ⊂ k, such that L0
k ′ pulls back to L.

Of course, when ρ : π1(X , x) → GL(V ) is a semisimple ℓ-adic representation of π1(X , x),
we say that ρ is arithmetic if the associated lisse ℓ-adic sheaf is. Explicitly, ρ is arithmetic
if there exists an ℓ-adic representation ρ0

k ′ : π1(X 0
k ′ , x) → GL(V ) that pulls back to ρ, where

X 0
k ′ is a spreading of X to a scheme over k ′, a finite separable extension k ⊂ f k ′ ⊂ k.

Remark 6.2. Our definition of an arithmetic local system notably differs from the defini-
tion in [Lit21], which drops the assumption of semisimplicity and requires instead that L
arises only as a subquotient of the pullback of L0

k ′ . For semisimple local systems, the two
notions coincide by [Lit21, Proposition 3.1.1].

Example 6.3. Assume that X is also normal and let f : Y → X be a smooth proper
morphism. Then the local system L = R i f∗Qℓ is semisimple by Example 2.17 (ii)4. We
argue that it is arithmetic. By a spreading argument5, we find a finite separable extension
k ⊂ f k ′ ⊂ k and a smooth proper morphism f 0

k ′ : Y 0
k ′ → X 0

k ′ that pulls back to f . Then by

the proper base change theorem, L is the pullback of the local system L0
k ′ := R i f 0

k ′,∗Qℓ on

X 0
k ′ .

We aim to give a different characterization of arithmetic local systems in terms of their
monodromy representations. By potentially replacing k by a finite separable extension,
we can assume that there exists a spreading X 0 of X to a k-scheme. We fix X 0. Notice that
a local system L on X is arithmetic if and only if there exists a finite separable extension
k ⊂ k ′ ⊂ k and a local system L0

k ′ on X 0
k ′ such that L0

k ′ pulls back to L.

4Deligne proves this when k is algebraically closed, but one obtains the same statement for separably
closed base fields by [Sta24, Tag 0BTW].

5See [Gro67, §8, §17]. Such spreading arguments are employed multiple times in this section, often with
details omitted.
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By further enlarging k, we can also assume that X 0 admits a rational point x : Speck →
X 0. We fix x. Let x : SpecΩ→ Spec

x−→ X be the induced geometric point of X , and also
write x for its composition with the map X → X 0. There is a homotopy exact sequence

(6.1) 1 →π1(X , x) →π1(X 0, x) → Gal(k/k) → 1

by [Sza09, Proposition 5.6.1]. It is split by the k-rational point x : Speck → X 0. As a
result, Gal(k/k) acts continuously on π1(X , x) by conjugation. We consider the set of
isomorphism classes of semisimple ℓ-adic representations of π1(X , x),

R = {semisimple ℓ-adic representations ρ : π1(X , x) → GL(V )}/ ≃ .

As argued in Section 5, it injects into the set of continuous maps Map(π1(X , x),Qℓ), from
which it inherits the compact-open topology. The continuous conjugation action of
Gal(k/k) on π1(X , x) equips R with a continuous right Gal(k/k)-action by Proposition
5.3.

Proposition 6.4. Let ρ : π1(X , x) → GL(V ) be a semisimple ℓ-adic representation. Then ρ
is arithmetic if and only if the orbit of [ρ] ∈R under Gal(k/k) is finite.

Proof. If the orbit of [ρ] is finite, then by Corollary 5.8 there exists a finite separable
extension k ⊂ f k ′ ⊂ k and a representation ρ0

k ′ : π1(X 0
k ′ , x) → GL(V ) that pulls back to ρ.

By definition, ρ is arithmetic.
Conversely, if ρ is arithmetic, then ρ descends to ρ0

k ′ : π1(Xk ′ , x) → GL(V ). We see that

for σ ∈ Gal(k/k ′) the representations ρ and ρσ are conjugate to each other:

ρσ = ρ0
k ′(σ) ·ρ ·ρ0

k ′(σ)−1.

So, [ρ] is fixed by the open subgroup Gal(k/k ′) ⊂ Gal(k/k). It follows that the orbit of [ρ]
is finite. ■
Remark 6.5. The proof of the previous proposition is effectively the same as the proof of
[Lit21, Proposition 3.1.1]; however, Litt omits some subtle details regarding the existence
of spreadings of arithmetic representations, which are expanded on here via the results
of Section 5.

Remark 6.6. Alternatively, we can let Gal(k/k) act on the set of ℓ-adic local systems on X
as follows: for σ ∈ Gal(k/k) and L a semisimple local system on X , we define Lσ to be the
pullback of L along the map idX ×k Specσ−1 : X → X . One can show that if ρ : π1(X , x) →
GL(Lx ) is the monodromy representation of L, then the monodromy representation of Lσ

is precisely ρσ. By the above proposition, it follows that L is arithmetic if and only if its
orbit under Gal(k/k) is finite.

By Corollary 5.5 and Proposition 6.4, we immediately obtain the following proposition.

Proposition 6.7. Let L be an arithmetic local system on X . Then each of its irreducible
constituents is arithmetic. ■
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Example 6.8 (local systems coming from geometry are arithmetic). Assume again that X
is normal. Recall the definition of a local system coming from geometry from Example
2.10. Let L be a local system on X coming from geometry. Then we can find a dense
open subscheme U ⊂ X such that L|U is a direct summand of R i f∗Qℓ for some i ≥ 0
and some smooth proper morphism f : Y →U by Example 2.17 (ii). After potentially
enlarging k, we can assume that our rational point x is contained in U . By Example 6.3
and Proposition 6.7, we see that L|U is arithmetic as a local system on U . By surjectivity
of π1(U , x)↠π1(X , x) and Proposition 6.4, we then deduce that also L itself is arithmetic.
Alexander Petrov has conjectured that if X is a smooth variety and k is a number field,
then all irreducible arithmetic local systems on X are of geometric origin; see [Pet23].

Proposition 6.9. Assume that X 0 → Speck is a smooth curve. Let χ : π1(X , x) →Q
×
ℓ be an

arithmetic character. Then χ is finite, meaning that its image is finite. In particular, if L is
any arithmetic local system on X , then its determinant is finite.

Proof. We first reduce to the case that k is a finite field. It suffices to prove that χ(U )
is finite for any open subgroup U ⊂ π1(X , x). By Remark 4.13, we can assume that χ
factors over the maximal prime-to-p quotient of π1(X , x) after replacing X by a finite
étale cover (see also the proof of Lemma 6.18). We write XΩ for the base change of X
along SpecΩ→ Speck. We let XΩ → SpecΩ be the unique smooth compactification
of XΩ. We can find a finite type Fp -subalgebra R ⊂Ω and a smooth proper spreading

X R → SpecR of XΩ→ SpecΩ with geometrically connected fibers. After enlarging R, we
can also spread the open immersion XΩ ,→ XΩ to an open immersion XR ,→ X R over R
such that the boundary of XR in X R is an effective Cartier divisor that is étale over SpecR .
Denote the fraction field of R by L and its separable closure in Ω by L. We may assume
that k ⊂ L by potentially enlarging R, because k is assumed to be finitely generated.

By [Lan24], we have an isomorphism π
(p ′)
1 (XL , x) ≃π(p ′)

1 (X , x) so that it suffices to prove

that the pullback of χ to π(p ′)
1 (XL , x) is finite. Notice that this pullback is again arithmetic

(see also the proof of Lemma 6.17). Pick a regular closed point z ∈ SpecR and a separable
closure κ(z) of the finite field κ(z). Write z = Specκ(z) → Xκ(z). We obtain a specialization
isomorphism

sp: π(p ′)
1 (XL , x) ≃π(p ′)

1 (Xκ(z), z)

by Theorem 3.2. Hence, χ defines a character of π(p ′)
1 (Xκ(z), z).

It remains to be seen that this character is arithmetic. Let Φ ∈ Gal(κ(z)/κ(z)) be the
Frobenius element. We also denote its image under the isomorphism Gal(κ(z)/κ(z))

≃−→
π1(SpecRh

z , z) by Φ. Here Rh
z denotes the henselization of the localization of R at the

maximal ideal corresponding to z. Via the composition

Gal(L/Lh)↠π1(SpecRh
z ,SpecΩ) ≃π1(SpecRh

z , z),
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Φ lifts to an element Φ̃ ∈ Gal(L/Lh), where Lh = FracRh
z . Here, surjectivity of the first map

above follows from normality. Now, the outer action of Φ̃ on π
(p ′)
1 (XL , x) is compatible

with the outer action of Φ on π
(p ′)
1 (Xκ(z), z) under the specialization isomorphism. By

arithmeticity of the character on π1(XL , x), we find that Φ̃m acts trivially on it for some
m ≥ 1. Hence, Φm acts trivially on the character on π1(Xκ(z), z). In other words, it is
arithmetic.

So we may assume that k is a finite field. The proposition then follows from [Del80,
Proposition 1.3.4]. ■
Remark 6.10. The proposition above can also be proved if X 0 is a smooth connected
quasi-projective variety of some higher dimension by using a Lefschetz theorem to reduce
to the case that X 0 is a smooth curve; see [EK15].

Remark 6.11. To prove that a given semsimple local system on X is arithmetic or not is in
general difficult, but the above proposition does provide at least one necessary condition.
It is not a sufficient condition. For an example of a semisimple local system with finite
determinant that is not arithmetic, see Remark 6.14.

6.2. A local Kashiwara conjecture. Let q be a power of a prime p. Let C /Fq be a con-
nected normal curve and let c ∈ C be a closed point with residue field κ = κ(c). Let
k be an algebraic closure of κ. We denote by O = Ohs

C ,c
the strict henselization of C at

c = Speck → Specκ→ C , the geometric k-valued point lying over c. It is again a dis-
crete valuation ring by [Sta24, Tag 07QL]. We denote by K = FracO the fraction field of
O . Notice that K is a separable extension of Fq (C ), the field of rational functions on C .

We fix an algebraically closed field Ω containing K and let K be the induced separable
closure. Throughout, X → SpecO denotes a surjective smooth separated quasi-compact
morphism of schemes. We assume that XK is a connected curve.

Proposition 6.12. The scheme X is regular and connected. In particular, it is integral.

Proof. Connectedness of X follows by flatness over O and the fact that the generic fiber is
connected by assumption. For regularity, notice that the points in the generic fiber are
regular by smoothness and the fact that XK ,→ X is an open immersion. For a point x ∈ X
in the special fiber, the quotient OX ,x/(π) is regular by smoothness of the special fiber.
Now notice that π is not a zero-divisor in OX ,x by flatness and apply [Sta24, Tag 00NU].
Integrality follows from the fact that X is connected, regular and noetherian. ■
Theorem 6.13 (Arithmetic local Kashiwara conjecture). Let L be an ℓ-adic local system on
X . Assume that the pullback LK of L to a local system on XK is arithmetic. Then Lk = L|Xk

is semisimple.

Remark 6.14. By copying the construction of Section 4.2 verbatim, we can construct a
surjective smooth separated quasi-compact O-scheme, X → SpecO , whose geometric
generic fiber is a connected curve, together with a semisimple ℓ-adic local system L on
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X such that Lk is not semisimple. The local system LK is semisimple by Lemma 6.23.
It is not arithmetic, because this would contradict Theorem 6.13. Its determinant is
nonetheless finite by construction, which demonstrates that having a finite determinant
is a necessary but insufficient condition for arithmeticity of a local system.

By potentially shrinking C to an étale neighborhood of c, we can assume that X →
SpecO spreads to a smooth separated quasi-compact C -scheme XC →C . It is connected
by the same argument used to prove connectedness of X . The idea of the proof is to
“spread” the problem to the following theorem of global nature.

Theorem 6.15. If L denotes an irreducible local system on XC with finite determinant,
then Lk = L|Xk is semisimple.

We will defer its proof to the next section.

Lemma 6.16. Let L be an ℓ-adic local system on X such that LK is arithmetic. Let Y → X
be a finite connected étale cover and write LY = L|Y . Then YK is a connected curve, LY ,K is
arithmetic, and LY ,k is semisimple if and only if Lk is.

Proof. By Lemma 6.23 below, we see that YK is connected. By Proposition 2.19, we see that
semisimplicty of LY ,K , respectively LY ,k , is equivalent to semisimplicity of LK , respectively
Lk . Arithmeticity of LY ,K also follows from arithmeticity of LK : we can spread YK → XK

to a morphism YF → XF , with Fq (C ) ⊂ f F ⊂ K a finite separable extension, such that LK
spreads to a local system LF on XF . Then LY ,F = LF |YF pulls back to LY ,K . ■

Morally, the above lemma says that we are free to replace X by a finite étale cover in
the proof of Theorem 6.13.

Lemma 6.17. Let L be an ℓ-adic local system on X such that LK is arithmetic. Let C ′ →C
be a non-constant morphism of connected normal Fq -curves and let c ′ →C ′ be a geometric
point over c. Write O ′ = Ohs

C ′,c ′ , SpecK ′ = FracO ′, X ′ = X ×O SpecO ′ and L′ = L|X ′ . Let

K ′ ⊂ Ω be an embedding extending the embedding K ⊂ Ω and let K ′ be the separable
closure of K ′ in Ω. Then L′

K ′ is arithmetic.

Proof. We have π1(XK ′) ≃ π1(XK ), because both are isomorphic to π1(XK alg ) by [Sta24,

Tag 0BTW]. As a result, L′
K ′ is semisimple. To see that L′

K ′ is arithmetic, let Fq (C ) ⊂ f F ⊂ K

be a finite separable extension such that LK spreads to a local system on XF ; then L′
K ′

spreads to a local system on XFq (C ′)F . ■
In the lemma above, notice that X ′

k = Xk and L′k = Lk . Furthermore, X ′
K ′ = XK ′ is again

a connected curve. Morally, the above lemma says that we are free to replace C by a curve
over it in the proof of Theorem 6.13.

The proof of Theorem 6.13 now proceeds by repeatedly applying Lemma 6.16 and
6.17 to show that we can, without loss of generality, impose additional conditions on the
objects of Theorem 6.13 until we have reduced to Theorem 6.15.
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Lemma 6.18. In the context of Theorem 6.13, we can assume without loss of generality to
the theorem as stated that L, respectively LK , factors over the maximal prime-to-p quotient
of π1(X ), respectively π1(XK ).

Proof. Denote by x → XK a geometric point of XK . We find E/Qℓ an ℓ-adic field so

that the monodromy representation of L, ρ : π1(X , x) → GLr (Qℓ), factors as π1(X , x) →
GLr (E) ,→ GLr (Qℓ). By Remark 4.13, there is an open pro-ℓ subgroup Γℓ ⊂ GLr (E). So
we can find U ⊂π1(X , x) an open subgroup such that U lands in Γℓ under ρ. Let Y → X
be the the finite étale cover corresponding to U . Denote by LY the local system on
Y obtained by pulling back L to a local system on Y , and denote by ρY : π1(Y , y) →
GLr (Qℓ) its monodromy representation. Here y is a geometric point of YK lifting x.
Then by construction ρY (π1(Y , y)) ⊂ Γℓ. Since ℓ is assumed to be different from p, the
representation ρY factors over the maximal prime-to-p quotient of π1(Y , y). Then, being
the pullback of ρY , the monodromy representation of LY ,K factors over the maximal
prime-to-p quotient of π1(YK , y). By Lemma 6.16, we may assume that Y = X without
loss of generality to Theorem 6.13. ■
Lemma 6.19. In the context of Theorem 6.13, we can assume without loss of generality
to the theorem as stated that XC \{c} = XC ×C C \ {c} →C \ {c} admits a nice compactifica-
tion XC \{c} ,→ X C \{c} → C \ {c} with geometrically connected fibers; i.e., there is an open
immersion XC \{c} ,→ X C \{c} of C \ {c}-schemes such that

(i) X C \{c} →C \ {c} is smooth and proper with geometrically connected fibers;
(ii) the boundary of XC \{c} in X C \{c} is an effective Cartier divisor that is étale over C \ {c};

(iii) the geometric fibers of X C \{c} →C \ {c} are conneceted.

Additionally, we can assume the existence of a section C \ {c} → XC \{c}.

The relevance of the above lemma comes from the fact that we obtain the split homo-
topy exact sequence

(6.2) 1 π
(p ′)
1 (XK , x) π′

1(XC \{c}, x) π1(C \ {c}, x) 1

from Proposition 3.3. Here x → XK denotes the geometric point induced by SpecΩ→
C \ {c} → XC \{c}.

Proof of Lemma 6.19. Denote by K perf the perfect closure of K in Ω. Then there exists a
unique regular compactification X K perf → SpecK perf, which is smooth by the fact that
K perf is perfect. We can find a finite extension K ⊂ f K ′ ⊂ K perf such that the compact-

ification X K perf → SpecK perf spreads to a smooth proper morphism X K ′ → SpecK ′ that
defines a smooth compactification of XK ′ . Next, we find a finite (inseparable) extension
Fq (C ) ⊂ Fq (C ′) such that K ′ is the compositum of K and Fq (C ′) inside Ω. By potentially
enlarging K ′, we can assume that Fq (C ) ⊂ Fq (C ′) is a normal extension. The extension
Fq (C ) ⊂ Fq (C ′) corresponds to a map of Fq -curves C ′ →C . We let c ′ →C ′ be a geometric
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point over c and we set O ′ =Ohs
C ′,c ′ . After choosing an embedding FracO ′ ⊂Ω extending

the embedding K ⊂Ω, we get K ′ = KFq (C ′) ⊂ FracO ′; hence, by enlarging K ′, we may
assume that FracO ′ = K ′. By Lemma 6.17, we can assume that C ′ = C without loss of
generality to Theorem 6.13.

So, we have a smooth compactification X K → SpecK of XK → SpecK . We spread this
to a smooth compactification of XC \{c}. Indeed, we have

SpecK = lim←−−C ′ \ {c ′,c ′2, . . . ,c ′n},

where the limit ranges over (C ′,c ′) → (C ,c), the connected étale neighborhoods of c, and
c ′,c ′2, . . . ,c ′n are the points of C ′ over c. So, by potentially shrinking C , we can assume the
existence of a smooth proper morphism X C \{c} →C \{c} that is a smooth compactification
of XC \{c} →C \{c} in such a way that the boundary of XC \{c} in X C \{c} is an effective Cartier
divisor that is étale over C \ {c}. By shrinking C a little further, we may also assume that
the fibers of X C \{c} →C \ {c} are geometrically connected by [Sta24, Tag 055G]. Finally, by
spreading a K -point of XK , we can assume the existence of a section C \ {c} → XC \{c}. ■

Remark 6.20. In the proof of the lemma above, we crucially use that XK is a curve
to guarantee the existence of a nice compactification. If XK is instead some higher
dimensional variety, we would need to be able to assume that XK is an open subscheme
of a smooth proper K -scheme X K such that the boundary X K \ XK is a normal crossing
divisor. If K were a field of characteristic 0, this would be possible by Hironaka’s Theorem,
but it is unknown whether such a compactification always exists in positive characteristic.

Lemma 6.21. In the context of Theorem 6.13, we can assume without loss of generality to
the theorem as stated that each of the irreducible constituents L1,K , . . . ,Lm,K of LK can be
spread to a local system on XC \{c} with finite determinant.

Proof. Let x → XK be the geometric point defined below (6.2). Let ρi ,K : π1(XK , x) →
GL(Li ,K ,x) be the monodromy representation of Li ,K . The representations ρi ,K are pre-
cisely the irreducible constituents of the monodromy representation of LK . By Lemma
6.18, we can assume that each of them factors over the maximal prime-to-p quotient

π
(p ′)
1 (XK , x) of π1(XK , x). The exact sequence (6.2) and the theory in Section 5 gives us

an action of π1(C \ {c}, x) on the space of isomorphism classes of semisimple ℓ-adic

representations of π(p ′)
1 (XK , x).

We argue that the orbit of [ρi ,K ] under π1(C \{c}, x) is finite. The section C \{c} → XC \{c}

from Lemma 6.19 gives rise to an Fq (C )-rational point SpecFq (C ) → XFq (C ) on XFq (C ) →
SpecFq (C ), and x is a geometric point lying over this rational point. As a result, we obtain
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a homomorphism of exact sequences with compatible splittings

1 π
(p ′)
1 (XK , x) π′

1(XC \{c}, x) π1(C \ {c}, x) 1

1 π1(XK , x) π1(XFq (C ), x) Gal(K /Fq (C )) 1.

It follows that the conjugation action of Gal(K /Fq (C )) on π1(XK , x) is compatible with

the conjugation action of π1(C \ {c}, x) on π
(p ′)
1 (XK , x). Because C \ {c} is normal, the

homomorphism Gal(K /Fq (C ))↠π1(C \ {c}, x) is surjective. By Proposition 6.7, the repre-

sentations ρi ,K are arithmetic; hence, their orbit under Gal(K /Fq (C )) is finite. Therefore,
the orbit of ρi ,K under π1(C \ {c}, x) is finite. By Theorem 5.6, we find an open sub-
group U ⊂π1(C \ {c}, x) such that every representation ρi ,K spreads to a representation of

π
(p ′)
1 (XK , x)⋊U ,→π′

1(XC \{c}, x).
The subgroup U ⊂π1(C \ {c}, x) corresponds to a finite cover C ′ →C , étale over C \ {c},

but perhaps ramified over c. By Lemma 6.17 we can assume C ′ =C , and hence that ρi ,K
spreads to a representation of π′

1(XC \{c}, x). Thus, Li ,K spreads to a local system on XC \{c}.
Notice also that the local systems Li ,K have finite determinant by Proposition 6.9, and
so by Theorem 5.6 we can assume that the resulting local systems on XC \{c} have finite
determinant. ■
Lemma 6.22. In the context of Theorem 6.13, we can assume without loss of generality to
the theorem as stated that each of the irreducible constituents L1,K , . . . ,Lm,K of LK spreads
to a local system on XC with finite determinant.

Proof. By Lemma 6.21, we can spread the irreducible constituents L1,K , . . . ,Lm,K of LK to
local systems L1, . . . ,Lm on XC \{c} with finite determinant. We next argue that the local
systems Li can be extended to local systems on XC , or, in other words, that they are
unramified over XC . By Lemma 6.25 below, it suffices to prove that each of the local
systems Li ,K is unramified over X . Let x = SpecΩ→ XK be a geometric point. Denote by
ρi : π1(XC \{c}, x) → GL(Li ,x) the monodromy representation of Li , and by ρ : π1(X , x) →
GL(Lx) the monodromy representation of L. Define Gal(K /K )-representations V1, . . . ,Vm

by

Vi = Hom(ρi |π1(XK ,x),ρ|π1(XK ,x)).

A priori, these are only π1(XK , x)-representations, with the action of π1(XK , x) on Vi

defined as in (6.5); but this action factors over the quotient by π1(XK , x). By Lemma 6.24,
we have an isomorphism of π1(XK , x)-representations

(6.3) ρ|π1(XK ,x) ≃ ρ1|π1(XK ,x) ⊗V1 ⊕ . . .⊕ρm |π1(XK ,x) ⊗Vm .
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Consider the diagram with exact rows and columns

(6.4)

1 1

1 HK π1(XK , x) π1(X , x) 1

1 HK π1(XK , x) π1(X , x) 1

Q Gal(K /K )

1 1.

=

≃

A diagram chase shows that the dashed arrow Q 99KGal(K /K ) in (6.4) is an isomorphism.
We know that ρ|π1(XK ,x) is trivial on HK . So, for σ ∈ HK , ρi (σ)⊗σ|Vi is the identity by

(6.3). This implies that ρi (σ) =α · id and σ|Vi =α−1 · id for some α ∈Q×
ℓ . Furthermore, α

must be a root of unity, because ρi has finite determinant. Hence; the representation
ρi |HK is just a finite character, and so the subgroup Ui ⊂ HK consisting of σ ∈ HK such
that ρi (σ) is trivial, is open in HK . Furthermore, we have HK ⊂Ui , because σ|Vi is trivial
for σ ∈ HK .

The group Ui defines an open subgroup of Q, denoted Ui . By Galois theory, Ui ⊂
Q ≃ Gal(K /K ) corresponds to a finite extension K ⊂ f K ′

i ⊂ K . It follows that Ui =
kerπ1(XK ′

i
, x) →π1(X , x).

Setting K ′ equal to the compositum of all the K ′
i , we can conclude that all the represen-

tations ρi |π1(XK ′ ,x) vanish on kerπ1(XK ′ , x) →π1(X , x), and hence that the local systems
Li ,K ′ extend to local systems on X . By an analogous argument to the one in Lemma 6.19,
we can now assume without loss of generality that K ′ = K and that each of the local
systems Li ,K are unramified over X . By Lemma 6.25, we then find that the local systems
Li are unramified over XC . ■
Proof of Theorem 6.13. By Lemma 6.22, we obtain local systems L1, . . . ,Lm on XC with
finite determinant by spreading the irreducible constituents L1,K , . . . ,Lm,K of LK . We find

L≃ L⊕e1
1 |X ⊕ . . .⊕L⊕em

m |X ,

where ei is the multiplicity with which Li ,K occurs in L|XK
, by the surjectivity of π1(XK ) →

π1(X ) (Lemma 6.23). We set

LC = L⊕e1
1 ⊕ . . .⊕L⊕em

m .

Theorem 6.15 shows that each of the pullbacks Li ,k is semisimple, and hence the local
system LC ,k = Lk is as well. ■
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6.2.1. Some auxiliary results.

Lemma 6.23. The homomorphism π1(XK ) →π1(X ) is surjective.

Proof. We’re to prove that if Y → X is a connected étale cover, its pullback YK → XK is
connected. Notice that since X is normal and irreducible by Proposition 6.12, the map
π1(XK ) →π1(X ) is surjective. Indeed, XK ,→ X is an open immersion into an irreducible
normal scheme; hence, this follows from [Sza09, Proposition 5.4.9]. It follows that YK →
XK is connected.

The composition Y → X → SpecO is smooth. By assumption, the special fiber of X is
non-empty, and hence the special fiber of Y is non-empty. By [Mil16, Chapter I, Exercise
4.13], there exists a section SpecO → Y . This section induces a K -point SpecK → YK . By
[Sta24, Tag 04KV], the étale cover YK → XK is connected. ■

Let G be a profinite group, and let H ⊂G be a closed subgroup. Suppose we have an ℓ-
adic representation ρ : G → GLr (Qℓ) such that its restriction to an H-representation, ρH ,
is semisimple with (pairwise non-isomorphic) irreducible constituents ρ1,H , . . . ,ρm,H .
Suppose now that ρ1,H , . . . ,ρm,H extend to continuous representations ρ1, . . . ,ρm : G →
GLr (Qℓ). Set Vi = HomH (ρi |H ,ρ|H ). It has a continuousQℓ-linear action of G given by

(6.5) σϕ(x) =σϕ(σ−1x)

for σ ∈G and ϕ ∈Vi . Notice that H acts trivially on Vi . We obtain a homomorphism of
G-representations

(6.6) ρ1 ⊗V1 ⊕ . . .⊕ρm ⊗Vm → ρ

given by x ⊗ϕ 7→ϕ(x).

Lemma 6.24. The homomorphism of 6.6 is an isomorphism of G-representations.

Proof. It is easily seen to be an isomorphism of representations over H . So it is a G-
equivariant homomorphism and an isomorphism on the level of vector spaces; hence, it
is an isomorphism of G-representations. ■
Lemma 6.25. Let L be an ℓ-adic local system on XC \{c} = XC ×C C \ {c}, and denote by
LK = L|XK the pullback of L to XK . Then L is unramified over XC if and only if LK is
unramified over X .

Proof. We need only prove that if LK is unramified over X , then also L is uramified over
XC . Let η ∈ Xc be a generic point, and let η′ ∈ Xk be a generic point lying over η. Let
η′ → X be a geometric point lying over η′, and let η→ XC be the induced geometric
point of XC . By purity of the branch locus, it suffices to prove that the pullback of L
along SpecK hs

η
→ XC \{c} is trivial. Here K hs

η
= FracOhs

XC ,η
is the fraction field of the strict

henselization of XC at η. Set K hs
η′ = FracOhs

X ,η′ . By the fact that X → XC is weakly étale
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and [Sta24, Tag 094Z], we have an isomorphism SpecK hs
η′

≃−→ SpecK hs
η

that fits into the

commutative square

SpecK hs
η′ XK

SpecK hs
η

XC \{c}.

By the assumption that LK is unramified, the pullback LK |SpecK hs
η′

is trivial. Therefore also

L|SpecK hs
η

is trivial. ■

6.3. Proof of Theorem 6.15. Notation is as before.

6.3.1. Weights. Let X be a separated scheme of finite type over Fq and let F be a Qℓ-
sheaf on X . Given a closed point x ∈X , the geometric Frobenius Fx ∈ Gal(k/κ(x)) at x
is defined to be the inverse of the usual Frobenius α 7→ αN (x). Here N (x) denotes the
cardinality of the residue field κ(x). The geometric Frobenius Fx gives rise to aQℓ-linear
operator

Fx : Fx →Fx ,

where x = Speck →X denotes the k-valued geometric point induced by x.

Definition 6.26 ([Del80, Définition 1.2.2]). Let n ∈Z be a integer. The sheaf F is said to
be pure of weight n if for every closed point x ∈X , all the eigenvalues α of

Fx : Fx →Fx

are algebraic numbers, and such that for every embedding ι : Q(α) ,→Cwe have

|ι(α)|2 = N (x)n .

If F is pure of some weight n, then we say that F is pure.

Remark 6.27. More recent definitions of weights allow weights to be arbitrary real num-
bers and do not require the eigenvalues of the Frobenii to be algebraic. See, for instance,
[Wei01, Chapter I, Definition 2.1].

6.3.2. Proof of Theorem 6.15.

Lemma 6.28. Let X be a normal variety of finite type over Fq . Let L be an irreducible local
system with finite determinant. Then L is pure of weight 0.

Proof. This is [Laf02, Proposition VII.7]. Lafforgue proves this by first reducing to the case
that X is a curve. This reduction step is, however, flawed. See [Del12, Section 0.7 and
Sections 1.5-1.9] for the corrected proof. ■
Lemma 6.29. Let X0 be a normal finite type scheme over Fq . Let L0 be a pure local system
on X0. Then L, the pullback of L0 to X :=X0 ×Fq SpecFq , is semisimple.
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Proof. This is [Del80, Theorem 3.4.1(iii)]. ■
Proof of Theorem 6.15. By Lemma 6.28, L is pure. Then also L |Xc , the pullback of L to a
local system on the fiber of XC →C over c , is pure. By Lemma 6.29, Lk is semisimple. ■
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APPENDIX A. MOCHIZUKI’S COUNTEREXAMPLE TO A COMPLEX-GEOMETRIC VERSION OF

THE NAIVE LOCAL KASHIWARA CONJECTURE

Let ∆ denote the complex unit disc, and let ∆∗ =∆\ {0} be the punctured unit disc. In
this appendix, we give a counterexample to the complex-geometric version of the naive
local Kashiwara conjecture suggested in the introduction. Specifically, we show that the
answer to Question A.1 below is “No”.

Question A.1. Given a smooth map f : X →∆, with X a complex manifold, and a semi-
simple complex local system L on X . Is the pullback L0 of L to a local system on X0 again
semisimple? Here X0 denotes the fiber of f over 0.

The counterexample constructed in this section is originally due to Takurō Mochizuki.
Recall the correspondence between complex local systems and complex monodromy
representations from (2.1).

A.1. Topological aspects of the construction. Let f : X →∆ be an elliptic fibration such
that the fibre X0 over 0 is reduced and of type I1 in the Kodaira classification of singular
fibers of elliptic fibrations described in [Kod63]. We take this to mean that f is a proper
holomorphic map, f is smooth over ∆∗, the fiber over any point of ∆∗ is a smooth
connected genus one curve, and the special fiber X0 is a rational curve with a single node
(or ordinary double point). We denote the singular point of X0 by p0. Specifically, p0 has
a neighborhood that is complex-analytically isomorphic to a neighborhood of the origin
in the zero locus cut out by x y = 0 in C2.

Example A.2. Consider

X = {((x : y : z),λ) ∈P2(C)×∆ : y2z = 4x3 + (λ−3)xz2 + (λ−1)z3}

with the obvious projection map X →∆. It is an elliptic fibration. Its fiber over 0 is the
nodal cubic

X0 : y2z = 4x3 −3xz2 − z3 = (2x + z)2(x − z).

Denote byϕ : P1 → X0 the normalization. We can assume thatϕ−1(p0) = {0,∞}. Define
points in P1 by

z̃0 = 1, z̃1 = 1+p−1 and z̃2 = 1−p−1,

and set

zi =ϕ(z̃i ) (i = 0,1,2).

Notice that these are all smooth points. By potentially shrinking ∆, we can assume that
there exist holomorphic sections s1 : ∆→ X and s2 : ∆→ X of f such that z1 ∈ s1(∆), z2 ∈
s2(∆) and s1(∆)∩ s2(∆) =;. Indeed, X \ {p0} →∆ is smooth, and smooth maps between
complex manifolds always admit local sections at all points.
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Consider the loops γi : ([0,1], {0,1}) → (P1 \ {z̃1, z̃2}, z̃0) for i = 1,2 given by

γ1(t ) = 1+p−1−p−1exp(2π
p−1t ) (0 ≤ t ≤ 1),

γ2(t ) = 1−p−1+p−1exp(2π
p−1t ) (0 ≤ t ≤ 1).

We denote the induced elements in π1(P1 \ {z̃1, z̃2}, z̃0) by [γ1] and [γ2] repectively. They
both generateπ1(P1 \{z̃1, z̃2}, z̃0). Furthermore, [γ1] and [γ2] and are inverse to each other.
Define paths ρ1 and ρ2 by

ρ1 : [0,1/2] →P1

t 7→ 1−2u,

and

ρ2 : [1/2,1] →P1

t 7→ 1−u

u − 1
2

+1.

Here ρ2( 1
2 ) is sent to ∞= (1 : 0) ∈ P1. Composing both paths with ϕ and glueing them

together we obtain a loop ρ : ([0,1], {0,1}) → (X0 \ D, z0).

Lemma A.3. The group π1(X0 \ D, z0) is freely generated by ϕ∗[γ1] and [ρ].

Proof. Topologically, ϕ : P1 \ {z̃1, z̃2} → X \ D is the quotient map for the equivalence
relation on P1 \ {z̃1, z̃2} glueing 0 and ∞ together. The result then follows by the Van
Kampen theorem. ■
Lemma A.4. The inclusion of the fiber i0 : X0 \ D ,→ X \ D is a homotopy equivalence.

Proof. This uses a slightly more general version of [Cle77, Theorem 5.7]. ■
A.2. Aspects of the construction from representation theory. We define the representa-
tion κ0 : π1(X0 \ D, z0) → GL2(C) by

κ0(ϕ∗[γ1]) =
(
1 1
0 1

)
, κ0([ρ]) =

(
0 −1
1 0

)
.

Lemma A.5. (i) The representation κ0 is irreducible.
(ii) The representation κ0 ◦ϕ∗ : π1(P1 \ {z̃1, z̃2}, z̃0) → GL2(C) is not semi-simple.

Proof. (i) This is clear by the fact that the image of κ0 does not fix any non-trivial
subspaces of C2.

(ii) The image κ0 ◦ϕ∗ fixes only the subspace C · (1,0) of C2.
■

Applying Lemma A.4, we obtain an irreducible representation

π1(X \ D, z0) → GL2(C).
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To find an answer to Question A.1, we now proceed as follows. Let X := (X \ D)sm →∆

be the smooth locus of the relative curve X \ D →∆. It is precisely X \ D with the nodal
point p0 of the singular fiber removed. Its fiber over 0 is X0 = (X0 \ D)sm := X0 \ (D ∪
{p0}). Let i0 : X0 ,→ X denote the inclusion map. The fundamental group π1(X , z0) is
isomorphic to π1(X \ D, z0), and so we obtain from κ0 an irreducible representation

κ :π1(X , z0) → GL2(C).

We argue that the restriction of this representation along the fiber over 0 is not semisimple.
We have the commutative diagram of groups

π1(P1 \ {z̃1, z̃2,0,∞}, z̃0)}) π1(X0, z0) π1(X , z0)

π1(P1 \ {z̃1, z̃2}, z̃0) π1(X0 \ D, z0) π1(X \ D, z0).

≃ i0,∗

≃
ϕ∗ ≃

This diagram shows that the representation κ◦ i0,∗ : π1((X0 \ D)sm, z0) → GL2(C) has the
same image as κ0 ◦ϕ∗. By Lemma A.5 we see that κ◦ i0,∗ is not semi-simple, since κ0 ◦ϕ∗
is not. This gives a negative answer to Question A.1.
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APPENDIX B. CONTINUOUS NON-ABELIAN GALOIS COHOMOLOGY

Throughout, G is a profinite group. We collect a few facts regarding continuous non-
abelian cohomology used in Section 5. Although there are many references on both
continuous cohomology and non-abelian cohomology, the author was unable to find
any references regarding the cohomology of profinite groups with non-discrete and
non-abelian coefficients. Many of the statements in this appendix are straightforward
generalizations of well known results. In particular, we mimic [Ser79, Appendix to Chapter
VII].

B.1. The cohomology groups.

Definition B.1. A G-group T is a topological group T (perhaps non-abelian) with a con-
tinuous action of G . A morphism of topological G-groups is a continuous homomorphism
compatible with the actions of G .

If T is a G-group, t ∈ T is an element of T and σ ∈G , is an element of G , then we will
denote the image of t under the action of σ by σt .

Definition B.2. Let T be a G-group. We define a continuous one-cocycle of G with
coefficients in T to be a continuous map of spaces

c : G → T σ 7→ cσ

such that for all σ,τ ∈G we have

cστ = cσ
σcτ.

Two one-cocyles c and b are said to be cohomologous if there is t ∈ T such that for all
σ ∈G we have

cσ = t−1bσ
σt .

For a G-group T , “being cohomologous” defines an equivalence relation ∼ on the set
of continuous one-cocyles of G with coefficients in T . We define

H 1
cont(G ;T ) = {continuous one-cocycles c : G → T }/ ∼ .

Notice that H 1
cont(G ,T ) is equipped with a canonical basepoint: the class of the trivial

one-cocycle σ 7→ 1.
If T happens to be an abelian G-group, then H 2

cont(G ;T ) is defined in the usual way as
continuous 2-cocyles modulo continuous 2-coboundaries; see [Tat76].

If H ⊂G is a closed subgroup, then we can define restriction

resG
U : H i

cont(G ,T ) → H i
cont(U ,T )

as usual.
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B.2. An analogue of the long exact sequence. Suppose now that we have a strict exact
sequence of topological G-groups

1 → T ′ → T → T ′′ → 1.

This means in particular that T ′ carries the subspace topology inherited from T and T ′′
carries the quotient topology inherited from T . Assume also that

(i) T ′ lands in the center of T ;
(ii) we have a continuous set-theoretic section s : T ′′ → T .

Notice that T ′ is abelian so that H 2
cont(G ;T ′) is defined. We construct a boundary map

(B.1) δ : H 1
cont(G ;T ′′) → H 2

cont(G ;T ′)

as follows: for the class of a continous one-cocyle c : G → T ′′, we define

(B.2) δ(c)σ,τ = bσ
σbτb−1

στ ∈ T ′ (σ,τ ∈G),

where b : G → T is a continuous lift of c. Such a lift always exists, since we can compose
c with the section s from (ii). As shown in [Ser79], it is a 2-cocycle. Furthermore, δ(c)
is continuous by continuity of b. If we pick a different lift σ 7→ a′

σbσ, with a′
σ ∈ T ′, then

σ 7→ a′
σ is continuous. Now, the two-cocycle δ(c) is replaced by (σ,τ) 7→ aσ,τδ(c)σ,τ, where

aσ,τ = (∂a′)σ,τ = a′
σ
σa′

τa′−1
στ .

It follows that the class of δ(c) in H 2
cont(G ;T ′) is independent of the choice of the lift.

We show that δ does not depend on the choice of representative for the cocycle class of
c . Indeed, if c ′ is a continuous one-cocycle cohomologous to c , then there is t ′′ ∈ T ′′ such
that

c ′σ = t ′′−1cσ
σt ′′ (σ ∈G).

Let t ∈ T such that t 7→ t ′′. We can lift c ′ toσ 7→ t−1bσσt . Clearly, this is again a continuous
lift. As shown in [Ser79], the resulting continuous two-cocycles of G with coefficients in
T ′ are the same. We conclude that the map δ is well-defined.

Theorem B.3. The sequence

H 1
cont(G ;T ) → H 1

cont(G ;T ′′) δ−→ H 2
cont(G ;T ′),

with δ the map from (B.1), is an exact sequence of pointed sets.

Proof. The fact that the composition of the two maps is the trivial map is exactly as in
the classical discrete case. Suppose we have a one-cocycle c ∈ H 1

cont(G ;T ′′) such that
δ(c) = 0 ∈ H 2

cont(G ;T ′). Then there is a ∈C 1
cont(G ;T ′) a continuous map such that

δ(c)σ,τ = aσ
σaτa−1

στ (σ,τ ∈G).

By property (i) above we get

(B.3) (bσa−1
σ )σ(bτa−1

τ )(bστa−1
στ)−1 = 1 ∈ T ′ (σ ∈G).

Define now b′ : G → T by σ 7→ bσa−1
σ . Then b′ is continuous by the fact that a and b are.

By (B.3), b′ is a cocycle. We clearly have b′ 7→ c and so we win. ■
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