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ABSTRACT. We relate the étale fundamental group of a nodal curve to the étale funda-
mental group of its normalization. Combined with known results on étale fundamental
groups of smooth curves in positive characteristic, this gives us a good grip on the
fundamental groups of these nodal curves.

1. INTRODUCTION

Given a variety over a field of characteristic zero (perhaps singular), its étale funda-
mental group can be understood in terms of a topological fundamental group by using
the generalized Riemann existence theorem; see [GR06, Théorème XII.5.1]. For a smooth
variety in positive characteristic, one can sometimes compute the prime-to-p part of
the fundamental group from the fundamental group of a lift to characteristic zero, using
a specialization argument; see [GR06, Exposé X]. This in particular works for curves.
In some cases, for instance for curves, this technique even works when the variety is
not proper by the specialization techniques for tame fundamental groups developed in
[GR06, Exposé XIII]. Such specialization arguments do not apply when the variety under
consideration is singular. In this paper we will relate the fundamental group of (perhaps
non-proper) nodal curves over a base field of any characteristic to the fundamental
group of its normalization. We will do this by explicitly examining the category of finite
étale covers of such a curve. The main result is Theorem 2.7 below.

2. FUNDAMENTAL GROUPS OF NODAL CURVES

k will always denote an algebraically closed field of characteristic p ě 0. Let C denote
an integral curve over k. We suppose that there is a simple node n P Cpkq, i.e., the (neces-
sarily strict) henselization Oh

C ,n of the local ring OC ,n is isomorphic to pkrx, ys{px yqqh
px,yq

as a local k-algebra.
Denote by π : C̃ Ñ C the morphism obtained by normalizing c; i.e., we take the

normalization of an open neighborhood of n in which n is the only singular point and
we then glue the resulting curve to Cztnu. The preimage of n under π consists of exactly
two points. This can be seen by first pulling back π along SpecOh

C ,n Ñ C and the fact that
1
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this pullback is the normalization of SpecOh
C ,n by [Sta24, Tag 0CBM]; then notice that

the normalization of Specpkrx, ys{px yqqh
px,yq

» SpecOh
C ,n is

(2.1) Speckrxs
h
pxq

\ Speckrys
h
pyq

Ñ Specpkrx, ys{px yqq
h
px,yq

and that the fiber of this morphism over the closed point consists of exactly two points.
Denote by a and b the points of C̃ lying over n. Consider the following “normalization
sequence” of OC -modules

(2.2) 0 Ñ OC Ñπ˚OC̃ Ñ kn Ñ 0,

where kn is the skyscraper sheaf supported only at the node n with stalk k. Here the map
π˚OC̃ Ñ kn is defined by f ÞÑ f paq´ f pbq.

Proposition 2.1. The sequence (2.2) is exact.

The above proposition is a commonly known fact from the theory of algebraic curves;
see, for instance, [Har10, p. IV.1.8]. We prove it here also directly.

Proof. It is clear that for every point c P C , the sequence of stalks at c is exact, except
possibly at one of the nodes n. Consider the sequence of stalks at n

0 Ñ OC ,n Ñ pπ˚OC̃ qn Ñ k “ OC ,n{mn Ñ 0.

Recall that the henselization OC ,n Ñ Oh
C ,n is faithfully flat, and so we need only prove

that the sequence we obtain after tensoring with Oh
C ,n ,

0 Ñ Oh
C ,n Ñ pπ˚OC̃ qn bOC ,n Oh

C ,n Ñ Oh
C ,n{mnOh

C ,n “ k Ñ 0,

is exact. This sequence identifies with the sequence

(2.3) 0 Ñ pkrx, ys{px yqq
h
px,yq

Ñ krxs
h
pxq

ˆ krys
h
pyq

Ñ k Ñ 0

by (2.1) and the argument preceeding it. The sequence (2.3) is clearly exact. ■

2.1. The category of finite étale covers. Denote the category of finite étale covers of C

by FétC . Denote by C the category whose objects are finite étale covers X
f

ÝÑ C̃ equipped
with an isomorphism ϕ : f ´1paq

»
ÝÑ f ´1pbq and whose morphisms p f ,ϕq Ñ p f 1,ϕ1q are

morphisms of finite étale covers such that the square

f ´1paq f 1´1pbq

f ´1paq f 1´1pbq

ϕ ϕ1

https://stacks.math.columbia.edu/tag/0CBM
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commutes. The isomorphism ϕ is referred to as a glueing datum for f . Given a finite
étale cover g : Y Ñ C , we obtain a finite étale cover

π˚g : π˚Y :“ Y ˆC C̃ Ñ C

by pulling the morphism g back along π. We have a canonical isomorphism

pπ˚g q
´1

paq » pπ˚g q
´1

pbq

and hence a canonical descent datum for π˚g . This gives us a functor

(2.4) π˚ : FétC Ñ C .

The rest of this section is devoted to constructing a pseudo-inverse to this functor.

2.1.1. A glueing construction. Given an object pX
f

ÝÑ C̃ ,ϕq of C , we intend to construct
a finite étale cover of C by “glueing the fibers f ´1paq and f ´1pbq together along the
isomorphism ϕ”. Let U be an affine open neighborhood of n, denote by Ũ Ă C̃ the
pullback of U under π, and denote by V Ă X the pullback of Ũ under f . The open V is
again affine. Define the ring OpV q by

OpV q “ t f P OpV q : f pxq “ f pϕpxqq for all x P f ´1
paqu.

It defines the coordinate ring of an affine scheme V .

Proposition 2.2. The square

f ´1paq\ f ´1pbq V

f ´1pbq V

ϕ\id ρ

defines a pushout square in the category of affine k-schemes.

Proof. The corresponding map on rings defines a pullback square in the category of
k-algebras. ■

We glue V together with X zp f ´1paq Y f ´1pbqq to obtain a scheme X , and we let
ρ : X Ñ X denote the obvious map. Clearly, the scheme X does not depend on the affine
open U we started with.

By construction of the scheme X , we also have an exact sequence of OX -modules on

X

(2.5) 0 Ñ OX Ñ ρ˚OX Ñ
à

xP f ´1paq

kρpxq Ñ 0,
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where
À

xP f ´1paq kρpxq is the skyscraper sheaf on X supported at the points ρpxq “

ρpϕpxqq with stalk k for x P f ´1paq. Letting y “ϕpxq and z “ ρpxq “ ρpyq, we obtain the
exact sequence of stalks

0 Ñ OX ,z Ñ pρ˚OX qz Ñ k Ñ 0.

Set OX ,xYy “ pρ˚OX qz . This is a semilocal ring with maximal ideals mx and my , corre-
sponding to the points x and y . The ideal mzOX ,xYy is precisely the Jacobson radical of
OX ,xYy . As a result, the OX ,z -completion of OX ,xYy is isomorphic to ÔX ,x ˆÔY ,y by [MR86,
Theorem 8.15]. Taking completions of OX ,z-modules now yields the exact sequence

(2.6) 0 Ñ ÔX ,z Ñ ÔX ,x ˆ ÔX ,y Ñ k Ñ 0.

2.1.2. An equivalence of categories. Start with an object pX
f

ÝÑ C̃ ,ϕq of C and let U ,Ũ
and V be as before. We obtain by Proposition 2.2 a commutative diagram

(2.7)
V V

Ũ U .

f

ρ

f

π

Glueing the morphism f with the morphism X zp f ´1paqY f ´1pbqq Ñ X ztnu, we obtain
f : X Ñ C . Again, it is clear that this morphism does not depend on our choice of open
neighborhood U .

Proposition 2.3. The morpism f : X Ñ C constructed in (2.7) is finite étale.

Proof. It is affine by construction, and finite by finiteness of f and π and the fact that C
is noetherian (see [Sta24, Tag 00FP]). The fact that it is étale at all points outside the fiber
over n is clear. To prove that it is étale at the point z “ ρpxq “ ρpyq in the fiber over n, for
some x P f ´1paq and y “ϕpxq, we show that the induced map on completed local rings
ÔC ,n Ñ ÔX ,z is an isomorphism. Then we can apply [Har10, Chapter 2, Exercise 10.4]

and conclude that f is étale at z. Recall the exact sequence from (2.6). We can derive
a similar such sequence for the completed local ring of C at n from (2.2). We obtain a
commutative diagram with exact rows

0 ÔX ,z ÔX ,x ˆ ÔX ,y k 0

0 ÔC ,n ÔGm ,a ˆ ÔGm ,b k 0,

» “

where the middle vertical map is an isomorphism by the fact that f is étale. It follows
that ÔC ,n Ñ ÔX ,z is an isomorphism. ■

https://stacks.math.columbia.edu/tag/00FP
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This construction is clearly functorial, and so we obtain the functor

G : C Ñ FétC ˝

pX
f

ÝÑ C̃ ,ϕq ÞÑ pX
f

ÝÑ Cq.
(2.8)

Theorem 2.4. The functors from (2.4) and (2.8) are pseudo-inverse to each other. As a
result, we obtain an equivalence of categories

FétC » C .

Proof. Let Y Ñ C be a finite étale morphism. We naturally obtain a commutative triangle

π˚Y Y

C .

Since π˚Y and Y are finite étale of the same degree over C , the dashed arrow above is
finite étale of degree 1 because it is surjective. It follows that the dashed arrow is an
isomorphism. So we have an isomorphism of functors G ˝π˚ » id.

Conversely, if pX ,ϕq is a finite étale cover of C̃ with a descent datum, then we naturally
obtain a commutative triangle

X π˚X

C̃ .

By the same argument as before, the dashed arrow is an isomorphism. Hence, we obtain
an isomorphism of functors π˚ ˝G » id. ■
2.2. Computing the fundamental group.

2.2.1. Some generalities about profinite groups. We first recall a few elementary facts
about free products of profinite groups. Denote by Grp the category of groups, by PrGrp
the category of profinite groups, and by PrGrppp1q the category of profinite groups G
such that (the supernatural number) #G “ rG : 1s is prime to p. We will call such groups

pro-prime-to-p. Let p̂´q : Grp Ñ PrGrp be the functor sending a group G to its profinite
completion Ĝ . Let p´qpp1q : PrGrp Ñ PrGrppp1q denote the functor sending a profinite
group G to its maximal prime-to-p quotient Gpp1q. Recall that it is defined as

Gpp1q
“ lim

ÐÝ
prG :U s,pq“1

G{U ,
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where the projective limit ranges over the open normal subgroups U of G of index
prime-to-p. It is often much easier to get a grip on the prime-to-p quotient of the
fundamental group of a scheme over a field of characteristic p. This is because the
prime-to-p quotient filters out wildly ramified covers, of which there are usually many.
The following lemma illustrates this.

Lemma 2.5. Denote by Gm the curve P1
kzt0,8u. There is an isomorphism π

pp1q

1 pGmq »

Ẑpp1q.

The lemma follows immediately from [GR06], but we also give the following elemen-
tary proof.

Proof. Let ϕ : Y Ñ Gm be a degree d connected étale cover of Gm , where d is prime-
to-p. Denote by Y the unique smooth compactifcation of Y . Then ϕ extends to a
degree-d morphism ϕ : Y ÑP1 of curves. Denote by e1, . . . ,er , respectively f1, . . . , fs , the
ramification indices of ϕ over 0, respectively 8. Since ϕ is of degree prime-to-p, we can
apply the Riemann Hurwitz formula ([Har10, Chapter IV, Corollary 2.4]). We obtain

2gY ´ 2 “ ´2d `

r
ÿ

i“1

pei ´ 1q`

s
ÿ

j “1

p f j ´ 1q,

where gY denotes the genus of Y . After some consideration, this shows that gY “ 0 and
e1 “ f1 “ d . This leaves exactly one option for Y and ϕ up to isomorphism, namely
Y »Gm and ϕ : y ÞÑ yd . It has automorphism group cyclic of order d . We find

π
pp1q

1 pGmq » lim
ÐÝ

pd ,pq“1

Z{dZ» Ẑpp1q.

■
We have the adjunctions of functors

(2.9) Grp PrGrp PrGrppp1q,

p̂´q

K

p´qpp1q

K

where the unnamed arrows are the evident forgetful functors.
Given groups G and G 1, we denote by G ˚G 1 the free product of G and G 1. If G and

G 1 are profinite groups, then we also denote by G ˚ G 1 the free profinite product of G
and G 1. If G and G 1 are pro-prime-to-p groups, then we denote by G ˚pp1q G 1 the free
pro-prime-to-p product of G and G 1. In all three cases, this defines the coproduct of G
and G 1 in their respective category. For a construction of the free profinite product and
the free pro-prime-to-p product, see [NSW, Chapter IV, Section 1].
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Lemma 2.6. (i) For groups G and G 1 we have a canonical isomorphism�G ˚G 1 » Ĝ ˚Ĝ 1.

(ii) For profinite groups G and G 1 we have a canonical isomorphism

pG ˚G 1
q

pp1q
» Gpp1q

˚
pp1q G 1pp1q.

Proof. This is immediate by (2.9) and the fact that left adjoints preserve colimits. ■
2.2.2. Computing the fundamental group. We fix, once and for all, an étale path Fiba »

Fibb , where Fiba ,Fibb : FétC̃ Ñ sets are the fiber functor over a and b. Via this étale path,
we obtain the equivalences of categories

FétC » C

» tpairs p f : X Ñ C̃ ,ϕ P Autp f ´1
paqqq with f finite étaleu

» tfinite sets F with a continuous action of π1pC̃ , aq and of Ẑu

»π1pC̃ , aq˚ Ẑ-sets,

(2.10)

where the last category consists of finite sets with a continuous action of π1pC̃ , aq ˚ Ẑ.
Here the third equivalence is induced by the functor Fiba . We have a commutative
triangle

(2.11)
FétC π1pC̃ , aq˚ Ẑ-sets

sets,

Fibn

»

where the arrow π1pC̃ , aq˚ Ẑ-sets Ñ sets is the evident forgetful functor.

Theorem 2.7. (i) The diagram (2.11) induces a canonical isomorphism

π1pC ,nq »π1pC̃ , aq˚ Ẑ.

(ii) The map π˚ : π1pC̃ , aq Ñπ1pC ,nq is identified with the canonical inclusion

π1pC̃ , aq Ñπ1pC̃ , aq˚ Ẑ

under the isomorphism of (i).

Proof. Part (i) is clear by the general machinery of Galois categories. Part (iii) follows
from the commutative square

FétC FétC̃

π1pC , aq˚ Ẑ-sets π1pC̃ , aq-sets,

»

π˚

»
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where the horizontal arrow on the bottom is given by precomposing the action on a
finite set by the canonical inclusion π1pC̃ , aq Ñπ1pC̃ , aq˚ Ẑ. ■

Suppose now that C has r -singularities n1, . . . ,nr , all of whom are simple nodes. Let
ν : C n Ñ C denote the normalization of C . Applying the above theorem inductively, we
obtain the following corollary.

Corollary 2.8. There is an isomorphism

π1pCq »π1pC n
q˚

`

˚r
i“1Ẑ

˘

.

2.2.3. Some applications. Suppose now that C is a proper rational curve whose only
singularity is the node n. Then its normalization is π : C̃ »P1 Ñ C .

Corollary 2.9. We have an isomorphism π1pCq » Ẑ.

Proof. Follows immediately from Corollary 2.8 and the fact that π1pP1q “ 1. ■
We may assume without loss of generality that neither a nor b is the point 0 or 8.

Write Gm “P1zt0,8u and C ˝ “ Cztπp0q,πp8qu.

Corollary 2.10. The maximal prime-to-p quotient of π1pC ˝,nq is canonically isomorphic
to

π1pC ˝,nq
pp1q

» �Z˚Z
pp1q

,

and the map π˚ : π1pGm , aq Ñπ1pC ˝,nq is identified with the canonical inclusion

π1pGm , aq Ñπ1pGm , aq˚ Ẑ

under the isomorphism above.

Proof. The second part of the corollary is by Theorem 2.7(iii). The first part follows from
Lemma 2.6 and Lemma 2.5:

π1pC ˝,nq
pp1q

» pπ1pGm , aq˚ Ẑq
pp1q

»π1pGm , aq
pp1q

˚
pp1q Ẑpp1q

» Ẑpp1q
˚

pp1q Ẑpp1q

» pẐ˚ Ẑq
pp1q

» �Z˚Z
pp1q

.

■
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