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ABSTRACT. We improve a classical spreading argument for ℓ-adic representations allow-
ing us to preserve the property of having finite determinant. Additionally, we prove that
such spreadings are unique in an appropriate sense.

1. INTRODUCTION

Let G and H be profinite groups and let G act continuously on H . Write G̃ = H ⋊G for
the semi-direct product of G and H . It is again a profinite group, because the underlying
topology of G̃ is that of G ×H ; hence, it is compact and totally disconnected. We think of
G and H as living inside this semi-direct product. In particular, we denote the action of G
on H by conjugation.

One scenario in which this situation arises naturally is described by the following
standard result.

Proposition 1.1. Suppose we have an exact sequence of profinite groups

1 → H → K →G → 1

such that K → G admits a continuous section G → K . Then G acts continuously on H
by conjugation, and we have an isomorphism K ≃ H ⋊G fitting into the commutative
diagram

1 H K G 1

1 H H ⋊G G 1.

= ≃ =

■
Given a representation ρ : H → GL(V ) of H and an element g ∈G , we obtain a repre-

sentation ρg : H → GL(V ) by precomposing ρ with the map : H → H obtained from the
G-action on H . We consider the set of isomorphism classes of representations derived
from ρ in this way:

[ρ] ·G = {ρg : g ∈G}/ ≃ .

If there exists an open subgroup U ⊂G such that ρ is the restriction of a representation
ρ̃ : H ⋊U → GL(V ), then clearly [ρ] ·G must be finite: for all g ∈U we have

ρg = ρ̃(g ) ·ρ · ρ̃(g )−1.
1
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The first part of the main result of this paper, Theorem 2.5(i), states that finiteness of [ρ]·G
is actually a sufficient condition if ρ is an irreducible continuousQℓ-representations of
H . This is a well-known result whose proof can also be found in [Lit21, Propostion 3.1.1].
Furthermore, in Theorem 2.5(ii), we prove that if the determinant of ρ is finite, then its
spreading to an open subgroup H ⋊U can be chosen to have finite determinant as well.
In corollary 2.6 this additional condition is used to show that in this case spreadings are
unique up to a diminution of U .

Finally, we apply Theorem 2.5(i) to prove a basic result about so-called arithmetic
ℓ-adic local systems in Section 3. The relevance of Theorem 2.5(ii) comes from the fact
that aritmetic ℓ-adic local systems generally have finite determinant. In [Zoc24] this is
crucially exploited.

The appendix clarifies some basic results from the theory of non-abelian Galois co-
homology with non-discrete coefficients. These are likely well known, but seem hard to
track down in the literature.

The contents of this paper have been copied, with some minor modifications, from the
author’s master’s thesis [Zoc24, Chapters 5 and 6]. It was written under the supervision of
Moritz Kerz at the university of Regensburg. The reason for producing a separate paper is
the fact that the results are likely of independent interest.

2. A SPREADING ARGUMENT FOR ℓ-ADIC REPRESENTATIONS WITH FINITE DETERMINANT

2.1. The space ofℓ-adic representations. Notation is as in the introduction. Throughout,
we fix a prime ℓ. By an ℓ-adic representation of a profinite group H we mean a continuous
finite-dimensional Qℓ-representation. We define the set R to be the set of isomorphism
classes of semisimple ℓ-adic representations of H :

R = {semisimple ℓ-adic representations H → GL(V )}/ ≃ .

For ρ : H → GL(V ) a semisimple ℓ-adic representation, we denote by [ρ] ∈R its isomor-
phism class. We have a natural right action of G on R defined by

[ρ]g = [ρg ] (g ∈G , [ρ] ∈R),

where
ρg (h) = ρ(g hg−1) (h ∈ H).

We intend to equip R with a topology such that the action described above is continuous.
Denote by Map(H ,Qℓ) the set of continuous (set-)maps H →Qℓ. We obtain an injection

R ,→ Map(H ,Qℓ)

[ρ] 7→ Trρ := Tr◦ρ,

where Tr: GL(V ) →Qℓ denotes the (continuous) trace map, by the following lemma.

Lemma 2.1 ([Wie12, Proposition 2.4.3]). Let k be a field of characteristic 0, A a k-algebra,
and V and V ′ two semisimple A-modules of finite k-dimension. If the characters TrV : G →



A SPREADING ARGUMENT FOR ℓ-ADIC REPRESENTATIONS WITH FINITE DETERMINANT 3

k and TrV ′ : G → k obtained by sending g ∈G to Tr(g |V ), respectively Tr(g |V ′), are equal,
then V and V ′ are isomorphic as A-modules. ■

We equip Map(H ,Qℓ) with the compact-open topology. Then R is equipped with the
subspace topology inherited from Map(H ,Qℓ).

Proposition 2.2. The action of G on R is continuous.

Proof. By assumption, the map G ×H → H is continuous. By [Mun14, Theorem 46.11]
the induced map

ϕ : G → Map(H , H)

is continuous if we equip Map(H , H) with the compact-open topology. The space H is
locally compact and Hausdorff (H is profinite), and so by [Mun14, Exercise 7, §46] we
find that the composition map

c : Map(H , H)×Map(H ,Qℓ) → Map(H ,Qℓ)

is continuous. As a result, the map

G ×Map(H ,Qℓ)
ϕ×id−−−→ Map(H , H)×Map(H ,Qℓ)

c−→ Map(H ,Qℓ)

is continuous, and hence so is

G ×R →R.

■
Corollary 2.3. Let [ρ] ∈R. Then the stabilizer Stab[ρ] of [ρ] is a closed subgroup of G. If
the orbit of [ρ] is finite, then Stab[ρ] is also open.

Proof. Write

Φ : G ×R →R

for the action map. We have

Stab[ρ] =Φ−1([ρ])∩G × {[ρ]},

and so we only have to argue that [ρ] ∈R is a closed point. This follows from the fact that
Map(H ,Qℓ) is Hausdorff: Qℓ is Hausdorff so that we can apply [Mun14, Exercise 6, §46].
The second part of the corollary follows from the fact that Stab[ρ] has finite index if the
orbit of [ρ] is finite. ■
Corollary 2.4. Let [ρ] ∈R such that orbit of [ρ] in R is finite. Then the orbit of each of the
irreducible constituents of ρ is finite.

Proof. Let U be the stabilizer of [ρ]. By Corollary 2.3 it is open. The subgroup U permutes
the irreducible constituents of ρ, and so there exists an open subgroup V ⊂U fixing all of
them. ■



A SPREADING ARGUMENT FOR ℓ-ADIC REPRESENTATIONS WITH FINITE DETERMINANT 4

2.2. Spreading ℓ-adic representations with finite determinant. Notation is as before.

Theorem 2.5. (i) Let ρ : H → GLr (Qℓ) be an irreducible ℓ-adic representation and as-
sume that the orbit [ρ] ·G ⊂ R is finite. Then there exists an open subgroup U ⊂G
such that ρ extends to a continuous representation

ρ̃ : Ũ := H ⋊U → GLr (Qℓ).

(ii) Furthermore, if detρ is finite (i.e., the determinant character of ρ has finite image),
then ρ̃ can be chosen such that det ρ̃ is finite.

Proof. We can find E a finite extension of Qℓ such that ρ factors as H → GLr (E) →
GLr (Qℓ). By the assumption that [ρ] ·G is finite, and Corollary 2.3, Stab[ρ] is open. By
potentially replacing G by the open subgroup Stab[ρ], we can assume that G acts trivially
on [ρ]. As a result, for every g ∈G there is an isomorphism ρg ≃ ρ so that ρ and ρg are
conjugate to each other by some Ag ∈ GLr (E):

ρg = Ag ·ρ · A−1
g .

We can indeed take the Ag to be defined over E , because G acts trivially on the trace
character of ρ, and hence trivially on the E-isomorphism class of ρ by Lemma 2.1. We
define

A : G → PGLr (E)

g 7→ Ag ,

where Ag denotes the class of Ag in PGLr (E). It is easily seen that A is a homomorphism

by Schur’s Lemma. We argue that A is additionally continuous by applying Lemma 2.8
below. We employ the notation introduced in that lemma. Notice first that, since ρ is
irreducible overQℓ, we have

E [ρ(h) : h ∈ H ] = Mat(r × r ;E)

by [EG11, Theorem 3.2.2]. For 1 ≤ i , j ≤ r we can therefore write

ei , j =
∑

h∈H
α

i , j
h ρ(h)

with αi , j
h ∈ E zero for all but finitely many h ∈ H . Then for g ∈G we compute

(evi , j ◦A)(g ) = Ag ei , j A−1
g

= ∑
h∈H

α
i , j
h ρg (h)

= ∑
h∈H

α
i , j
h ρ(g hg−1).

We see that evi , j ◦A is a linear combination of continuous functions and hence is contin-

uous. It follows that A is continuous by Lemma 2.8.
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Our goal is to lift A |U to a continuous homomorphism A : U → GLr (E) for some open
subgroup U ⊂G . To this end, we apply the theory of continuous non-abelian cohomology,
which is recalled in Appendix A. Consider the strict exact sequence of topological G-
groups (each with trivial G-action)

1 →µr → SLr (E) → PSLr (E) → 1

from Corollary 2.11 below. By Theorem A.3, we obtain an exact sequence of pointed sets

H 1
cont(G ;SLr (E)) → H 1

cont(G ;PSLr (E))
δ−→ H 2

cont(G ;µr ).

By potentially shrinking G to an open subgroup we can assume that the image of A lies
in PSLr (E) by Lemma 2.10. Let U ⊂ G be an open subgroup such that resG

U (δ(A)) = 0.
This is possible by the fact that µr is discrete. Then, since restriction is compatible with
connecting homomorphisms, we find

δ(resG
U (A)) = 0 ∈ H 2

cont(U ;µr ),

where now δ denotes the connecting homomorphism in the sequence

H 1
cont(U ;SLr (E)) → H 1

cont(U ;PSLr (E)) → H 2
cont(U ;µr ).

It follows that there exists A ∈ H 1
cont(U ;SLr (E)) lifting A |U 1. We now set

ρ̃ = ρ⋊ A : H ⋊U → GLr (E).

The last part of the proposition follows by construction since A takes values in SLr (E ). ■
Corollary 2.6. With hypotheses as in the theorem above, suppose that ρ : H → GLr (Qℓ)
is irreducible with finite determinant. Then an extension ρ̃ : H ⋊U → GLr (Qℓ) of ρ with
finite determinant is unique up to a diminution of U .

Proof. Let ρ̃, ρ̃′ : H ⋊U â GLr (Qℓ) be two extensions of ρ with finite determinant. Then
their “projectivizations” H ⋊U â GLr (Qℓ) → PGLr (Qℓ) must both equal ρ⋊ A, where

A : U → PGLr (Qℓ) is the unique homomorphism such that ρg = AgρA
−1
g for all g ∈ U .

Therefore, ρ̃ and ρ̃′ differ by a characterχ : H⋊U →Q
×
ℓ . By finiteness of the determinants,

this must be a finite character. Since χ is trivial on H , χ will vanish after shrinking U .
Hence, ρ̃ and ρ̃′ will coincide after shrinking U . ■
Corollary 2.7. Let ρ : H → GLr (Qℓ) be a semisimple representation such that the orbit
[ρ] ·G ⊂ R is finite. Then there exists an open subgroup U ⊂ G such that ρ extends to a
continuous representation

ρ̃ : H ⋊U → GLr (Qℓ).

Proof. Each of the irreducible constituents of ρ has finite G-orbit by Lemma 2.4. Then
we apply Theorem 2.5 to spread each of the irreducible constituents. After taking an
appropriate direct sum, we find a spreading of ρ. ■
1Notice that by surjectivity of SLr (E ) → PSLr (E ) we can find an actual lift of A and not just of its conjugacy
class in H 1

cont(U ;SLr (E)).
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2.3. Some auxiliary results. Let E be a finite extension of Qℓ. The projective general
linear group PGLr (E) is equipped with the quotient topology from GLr (E) ↠ PGLr (E).
Denote by Mr (E) the algebra of r × r -matrices over E .

Lemma 2.8 (Topology of PGLr ). The space PGLr (E ) has the coarsest topology making each
of the evaluation maps

evi , j : PGLr (E) → Mr (E)

M 7→ Mei , j M−1

continuous. Here ei , j ∈ Mr (E) denotes the matrix with a 1 in the (i , j )-th entry and zeroes
everywhere else.

Proof. By the Skölem-Noether Theorem (see [GS17, Theorem 2.7.2]), we obtain a contin-
uous bijection

PGLr (E) → AutE (Mr (E)),

M 7→ (ϕM : N 7→ M N M−1),
(2.1)

where AutE (Mr (E)) denotes the set of E-algebra automorphisms of Mr (E) with the sub-
space topology inherited from gl(Mr (E)), the set of E-linear endomorphisms of Mr (E).
As a topological space, it is homeomorphic to E⊕r 4

. The space AutE (Mr (E)) is a locally
compact Hausdorff space, because it is a subspace of gl(Mr (E)). As a result, it is a Baire
space. By [Ser92, Part II, Chapter IV, Section 4, Lemma 1], we conclude that the map from
(2.1) is a homeomorphism. It is clear that the topology on gl(Mr (E)) is the coarsest one
for which each of the maps

evi , j : gl(Mr (E)) → Mr (E)

ϕ 7→ϕ(ei , j )

is continuous. The result follows. ■
Denote by PSLr (E ) the image of SLr (E ) in PGLr (E ) equipped with the subspace topol-

ogy.

Lemma 2.9. The map SLr (E) ↠ PSLr (E) admits a continuous (set-theoretic) section
PSLr (E) → SLr (E).

Proof. We show that the map SLr (E) → PGLr (E ) of ℓ-adic Lie groups induces an isomor-
phism on Lie-algebras. The Lie algebra of SLr (E) is slr (E), the r × r matrices over E with
trace 0. By construction of the quotient Lie group (see [Ser92, Part II, Chapter IV, Section
5]), the Lie algebra of PGLr (E) is given by

Lie(PGLr (E)) = Mr (E)/E Ir ,

where Ir denotes the identity matrix. The induced map

slr (E) → Lie(PGLr (E))
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is an isomorphism of Lie algebras. By the Inverse Function Theorem (see [Ser92, Part
II, Chapter 2, Section 9]), SLr (E) → PGLr (E) is a local isomorphism. Certainly then,
SLr (E) → PSLr (E) admits sections locally. Since PSLr (E) has a basis consisting of open
(hence closed) subgroups, we can extend such local sections to the whole of PSLr (E ). ■
Lemma 2.10. The subspace PSLr (E) ⊂ PGLr (E) is open.

Proof. The proof of Lemma 2.9 shows that SLr (E) → PGLr (E) is a local isomorphism,
from which it follows that the image of SLr (E) in PGLr (E) is open. ■
Corollary 2.11. We have a strict exact sequence of topological groups

(2.2) 1 →µr → SLr (E) → PSLr (E) → 1,

where µr ⊂ E denotes the set of r -th roots of unity in E. The sequence (2.2) satisfies proper-
ties (i) and (ii) of Section A.2.

3. ARITHMETIC ℓ-ADIC LOCAL SYSTEMS

Let k be a finitely generated field of characteristic p ≥ 0, and let ℓ be a prime different
from p. Pick an algebraically closed fieldΩ containing k and let k be the separable closure
of k in Ω. Let X be an integral separated finite type k-scheme. Let x : SpecΩ→ X be a
geometric point. An ℓ-adic (or Qℓ-) local system L on X is completely determined by its
monodromy representation πét

1 (X , x) → GL(Lx ). Conversely, any ℓ-adic representation of
π1(X , x) gives rise to a local system on X . See, for instance, [FK13, Appendix A].

Definition 3.1. An ℓ-adic local system L on X is said to be arithmetic if there exists an
ℓ-adic local system L0

k ′ on a spreading X 0
k ′ of X to a scheme X 0

k ′ over k ′, for some finite

separable extension k ⊂ f k ′ ⊂ k, such that L0
k ′ pulls back to L.

Example 3.2. A local system coming from geometry is a local system of the form R i f∗Qℓ,
where f is a smooth proper morphism and X is normal. By [Del80, Corollaire 3.4.13]
these are semisimple local systems. A spreading argument shows that local systems
coming from geometry are arithmetic.

By potentially replacing k by a finite extension in k, we can assume that X spreads to a
scheme X 0 → Speck. Furthermore, by enlarging k further, we can assume that X 0 admits
a k-rational point x : Speck → X 0. Let x : SpecΩ→ X be the induced geometric point.
The rational point x now splits the homotopy exact sequence

(3.1) 1 →π1(X , x) →π1(X 0, x) → Gal(k/k) → 1

from [Sza09, Proposition 5.6.1]. As a result, Gal(k/k) acts continuously on π1(X 0, x) by
conjugation.

Notice that an ℓ-adic local system L on X is arithmetic if and only if it spreads to Xℓ for
some finite extension k ⊂ ℓ⊂ k. By Corollary 2.7 the following result is now clear.
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Proposition 3.3. A semisimple ℓ-adic local system L on X is arithmetic if and only if the
isomorphism class of the associated monodromy representation ρ : π1(X , x) → GL(Lx) has
finite orbit under Gal(k/k).

This result also appears in [Lit21, Propostion 3.1.1].
As already mentioned in the introduction, Theorem 2.5(ii) and the fact that arithmetic

ℓ-adic local systems have finite determinant on curves are crucial ingredients in the proof
of the main result of [Zoc24]. Finiteness of the determinant of an arithmetic ℓ-adic local
system on a normal curve over Fp is [Del80, Proposition 1.3.4]. On a curve over a general
field one reduces to the case where the base field is Fp by a specialization argument. See
also [Zoc24, Proposition 6.9].

APPENDIX A. CONTINUOUS NON-ABELIAN GALOIS COHOMOLOGY

Throughout, G is a profinite group. We collect a few facts regarding continuous non-
abelian cohomology used in Section 2. Although there are many references on both
continuous cohomology and non-abelian cohomology, the author was unable to find
any references regarding the cohomology of profinite groups with non-discrete and
non-abelian coefficients. Many of the statements in this appendix are straightforward
generalizations of well known results. In particular, we mimic [Ser79, Appendix to Chapter
VII].

A.1. The cohomology groups.

Definition A.1. A G-group T is a topological group T (perhaps non-abelian) with a con-
tinuous action of G . A morphism of topological G-groups is a continuous homomorphism
compatible with the actions of G .

If T is a G-group, t ∈ T is an element of T and σ ∈G , is an element of G , then we will
denote the image of t under the action of σ by σt .

Definition A.2. Let T be a G-group. We define a continuous one-cocycle of G with
coefficients in T to be a continuous map of spaces

c : G → T σ 7→ cσ

such that for all σ,τ ∈G we have
cστ = cσ

σcτ.

Two one-cocyles c and b are said to be cohomologous if there is t ∈ T such that for all
σ ∈G we have

cσ = t−1bσ
σt .

For a G-group T , “being cohomologous” defines an equivalence relation ∼ on the set
of continuous one-cocyles of G with coefficients in T . We define

H 1
cont(G ;T ) = {continuous one-cocycles c : G → T }/ ∼ .
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Notice that H 1
cont(G ,T ) is equipped with a canonical basepoint: the class of the trivial

one-cocycle σ 7→ 1.
If T happens to be an abelian G-group, then H 2

cont(G ;T ) is defined in the usual way as
continuous 2-cocyles modulo continuous 2-coboundaries; see [Tat76].

If H ⊂G is a closed subgroup, then we can define restriction

resG
U : H i

cont(G ,T ) → H i
cont(U ,T )

as usual.

A.2. An analogue of the long exact sequence. Suppose now that we have a strict exact
sequence of topological G-groups

1 → T ′ → T → T ′′ → 1.

This means in particular that T ′ carries the subspace topology inherited from T and T ′′
carries the quotient topology inherited from T . Assume also that

(i) T ′ lands in the center of T ;
(ii) we have a continuous set-theoretic section s : T ′′ → T .

Notice that T ′ is abelian so that H 2
cont(G ;T ′) is defined. We construct a boundary map

(A.1) δ : H 1
cont(G ;T ′′) → H 2

cont(G ;T ′)

as follows: for the class of a continous one-cocyle c : G → T ′′, we define

(A.2) δ(c)σ,τ = bσ
σbτb−1

στ ∈ T ′ (σ,τ ∈G),

where b : G → T is a continuous lift of c. Such a lift always exists, since we can compose
c with the section s from (ii). As shown in [Ser79], it is a 2-cocycle. Furthermore, δ(c)
is continuous by continuity of b. If we pick a different lift σ 7→ a′

σbσ, with a′
σ ∈ T ′, then

σ 7→ a′
σ is continuous. Now, the two-cocycle δ(c) is replaced by (σ,τ) 7→ aσ,τδ(c)σ,τ, where

aσ,τ = (∂a′)σ,τ = a′
σ
σa′

τa′−1
στ .

It follows that the class of δ(c) in H 2
cont(G ;T ′) is independent of the choice of the lift.

We show that δ does not depend on the choice of representative for the cocycle class of
c . Indeed, if c ′ is a continuous one-cocycle cohomologous to c , then there is t ′′ ∈ T ′′ such
that

c ′σ = t ′′−1cσ
σt ′′ (σ ∈G).

Let t ∈ T such that t 7→ t ′′. We can lift c ′ toσ 7→ t−1bσσt . Clearly, this is again a continuous
lift. As shown in [Ser79], the resulting continuous two-cocycles of G with coefficients in
T ′ are the same. We conclude that the map δ is well-defined.

Theorem A.3. The sequence

H 1
cont(G ;T ) → H 1

cont(G ;T ′′) δ−→ H 2
cont(G ;T ′),

with δ the map from (A.1), is an exact sequence of pointed sets.
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Proof. The fact that the composition of the two maps is the trivial map is exactly as in
the classical discrete case. Suppose we have a one-cocycle c ∈ H 1

cont(G ;T ′′) such that
δ(c) = 0 ∈ H 2

cont(G ;T ′). Then there is a ∈C 1
cont(G ;T ′) a continuous map such that

δ(c)σ,τ = aσ
σaτa−1

στ (σ,τ ∈G).

By property (i) above we get

(A.3) (bσa−1
σ )σ(bτa−1

τ )(bστa−1
στ)−1 = 1 ∈ T ′ (σ ∈G).

Define now b′ : G → T by σ 7→ bσa−1
σ . Then b′ is continuous by the fact that a and b are.

By (A.3), b′ is a cocycle. We clearly have b′ 7→ c and so we win. ■
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