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Abstract

We introduce the concept of a topological group, and give plenty of examples to
motivate the theory. A few constructions involving topological groups, such as products
and quotients, are discussed. We prove the classification of closed subgroups of Rn . The
separation axioms T0 up to T3 are shown to be equivalent for topological groups. Finally,
we prove a few statements regarding subgroups of topological groups.

1 First results and examples

For a given group G , we denote the identity element by eG , the group operation by

µG : G ×G →G

(g ,h) 7→ g ·h,

and the inversion map by

ιG : G →G

g 7→ g−1.

As already indicated above, the group operation is always denoted multiplicatively. If no
confusion can arise, then we omit the subscript G and just write e, µ and ι, respectively.

Recall that for spaces X and Y , the product X ×Y is naturally equipped with a topology,
referred to as the product topology, which has a basis conisting of opens of the form U ×V ,
with U ⊂ X and V ⊂ Y open.

Definition 1.1. A topological group (G ,T ) is a group G equipped with a topology T such that
the multiplication map µ : G ×G →G and the inversion map ι : G →G are continuous. Here
G ×G is equipped with the product topology.

Remark 1.2. Topological groups are so called “group objects in the category of topological
spaces”. One might also consider, for example, group objects in the category of (complex)
smooth manifolds or algebraic varieties over a field to obtain the notion of a (complex) Lie
group or a group variety. ▲
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Usually, the topology of a group is clear from the context and so we omit it from the notation
and just write G for a topological group.

Proposition 1.3. If H ⊂G is a subgroup of a topological group G, then H with the subspace
topology inherited from G is itself a topological group.

Proof. The product H ×H ⊂G ×G is again equipped with the subspace topology coming from
G ×G . If U ∩ H ⊂ H is an open of H , with U ⊂ G open, then its inverse image under µH is
H ×H ∩µ−1U , which is open in H ×H . Continuity of the inversion map is shown similarly. ■

Example 1.4. (i) Let G be any group. Then we can turn G into a topological group by equip-
ping it with the discrete topology or the chaotic/trivial topology (Lukas also suggested
the term “coarse topology”). Indeed, if G has the discrete topology, then so does G ×G
and it is immediately clear that µ and ι are continuous. If G has the trivial topology, then
any map into G is continuous, and so in particular µ and ι are. We denote G with the
discrete topology by Gd and G with the chaotic topology by Gc .

(ii) The group of real numbers R under addition with the euclidean topology is a topological
group. As an illustration, we prove that the addition map R×R→ R is continuous. To
show this, notice that a convergent sequence in R×R is given by a pair of sequences
(xn) and (yn) in R, both of which are convergent, say to x respectively y . We know from
analysis, that the sequence (xn+yn) is then also convergent and that it converges to x+y .
It follows that

lim
n→∞µ(xn , yn) = lim

n→∞xn + yn = x + y =µ(x, y) =µ( lim
n→∞(xn , yn)),

and so the map µ is continuous by a basic fact from metric topology. Analogously, the
group of nonzero real numbers R× under multiplication is a topological group, and so is
the connected component R>0 of 1 of this group.

(iii) Similarly to the last example, we have topological groups C and C×.

(iv) The circle group,
T= {z ∈C× : |z| = 1}

is a topological subgroup of C×.

(v) Lastly, the matrix groups GLn(R) and GLn(C) are topological groups. They inherit their
topologies from Rn2

and Cn2
. To see that multiplication and inversion are indeed contin-

uous for these topologies, notice that the multiplication maps and the inversion maps
can be written down as rational functions in the coefficients.

(vi) Generalizing example (ii), if k is any field with a norm |·| : k →R, then k gets a topology
from the metric defined by

d(x, y) = |x − y |.
Analogously to (ii), one proves that both k+ = k under addition and k× under multiplica-
tion are topological groups. Tate’s thesis (see [CF10, Chapter 15]) is a piece of number
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theory that applies the analysis from this course to such topological groups, where k is
a number field (think of Q) or a completion thereof (think of R,C or the field of p-adic
numbersQp ).

Definition 1.5. Let G and G ′ be topological groups. A morphism of topological groups is a
homomorphism ϕ : G →G ′ of groups that is continuous with respect to the topologies of G and
G ′.

Topological groups, together with morphisms of topological groups, constitute a category that
we will denote TopGrp and call the category of topological groups.

We remark that if H ⊂ G is a subgroup of a topological group, then its topology is precisely
such that if G ′ →G is a morphism of topological groups whose image lies in H , then it factors
as G ′ → H ,→G (universal property of H ,→G , if you wish).

Example 1.6. (i) If G is any group, then Gd →Gc , g 7→ g is continuous. Indeed, the identity
G →G is a homomorphism of groups, and it is continuous, because Gc is chaotic.

(ii) Consider the exponential map

ϕ : R→T

t 7→ exp(2πi t ).

It is a morphism of topological groups. That ϕ is a homomorphism follows from the
property exp(a +b) = exp(a)exp(b) for complex numbers a and b. Continuity follows
from continuity of exp as a mapC→C and the fact that its restriction to R factors through
T.

(iii) Similarly to the last example, the exponential map gives us a homomorphism of groups

exp: R→R>0.

Its inverse (which we also know to be continuous from analysis), is given by the logarithm

log: R>0 →R.

In particular, the topological groups R and R>0 are isomorphic.

(iv) Let A ∈ Mat(n×m,R) be an (n×m)-matrix with real coefficients. Then the multiplication-
by-A map

A : Rm →Rn .

is a morphism of topological group. It is a homomorphism by linearity, and continuity
follows by the fact that linear maps are continuous. The same is true when replacing R
with C. If the integers m and n happen to be equal and the matrix A is invertible, then
this morphism is actually an isomorphism of topological groups with inverse A−1.

(v) The determinant maps det : GLn(R) → R× and det : GLn(C) → C× are morphisms of
topological groups. Indeed, the fact that they are homomorphisms follows from multi-
plicativity of the determinant. Continuity follows from the fact that the determinant of
A = (ai j ) is a (rather cumbersome) polynomial function in the coefficients ai j .
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Remark 1.7. From topology we know that a continuous bijective map of spaces X → Y is not
necessarily an isomorphism. This is, unfortunately, not true for topological groups either: look
at (i) of the example above. It is, however, true that a continuous bijective map X → Y is a
homeomorphism, if it is in addition an open map (equivalently, a closed map). ▲

For a topological group G and an element g ∈G , define the map λg by

λg : G →G

h 7→ g h.
(1.1)

Define the map ρg by

ρg : G →G

h 7→ hg .
(1.2)

Proposition 1.8. Let G be a topological group. Then for any g ∈ G, the maps λg and ρg

defined in (1.1) and (1.2) are homeomorphisms. Moreover, the inversion map ι : G → G is a
homeomorphism. In particular, if G is abelian, then ι is an automorphism of G as a topological
group.

Proof. We prove that λg is a homeomorphism. The proof for ρg is analogous. The map λg can
be written a composition of maps

G
≃−→ {g }×G ,→G ×G

µ−→G ,

all of which are continuous; hence, λg is continuous. Its inverse is the map λg−1 , which is
continuous by the same argument.

The map ι is continuous by assumption. It is its own inverse, and hence ι is a homeomorphism.
If G happens to be abelian, then ι is also a homomorphism. ■

Remark 1.9. The above proposition, roughly speaking, tells us that G looks “the same at every
point”. Indeed, for any two points g ,h ∈G , there is a homeomorphism (the mapλhg−1 ) sending
g to h. This, for instance, gives us a hunch that the space S1 ∨S1 obtained by glueing two
circles together at a point cannot be given the structure of a topological group: the base point
(where they are glued together) really “looks different” from the other points. One can actually
prove rigorously that S1 ∨S1 can never be equipped with the structure of a topological group
by computing its fundamental group! It turns out that any topological group has an abelian
fundamental group 1. The fundamental group of S1 ∨S1 is Z∗Z by the Van Kampen Theorem,
which is non-abelian.

This theme of object with group structures “looking the same everywhere” also plays a role in
other parts of mathematics. For example, it proves that group varieties are smooth, and that
Lie groups are orientable. ▲

1For those that know a little category theory: you can see this by noticing that π1 : Top∗ → Grp preserves
products, and hence sends group-objects to group-objects. But the group-objects in the category of groups are
precisely the abelian groups.
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We end this section with a technical lemma on topological groups that will prove to be useful
later on. First recall two key concepts from topology.

Definition 1.10. A topological space X is called quasi-compact if any open covering of X admits
a finite subcover. A space which is quasi-compact and Hausdorff is called compact. If A ⊂ X is a
subset of X , then it is said to be (quasi-)compact if it is (quasi-)compact when equipped with
the subspace topology inherited from X .

" For many authors, the term compact means what we call quasi-compact, and thus does not
contain the Hausdorff property. Almost all topological groups in this course will be Hausdorff,
so don’t wory about this unduly.

We list some facts about (quasi-)compact spaces below:

Proposition 1.11. (i) Any closed subset of a compact (respectively quasi-compact) space is
compact (respectively quasi-compact).

(ii) Any compact subset of a Hausdorff space is closed.

(iii) The image of a quasi-compact subset under a continuous map is quasi-compact (be ware
of the “quasi-”!).

Proof. See [Run05, Proposition 3.3.6] for part (i) and (ii) and [Run05, Proposition 3.3.8] for
part (iii). Note: Runde calls quasi-compact spaces compact. ■

We introduce a little more terminology and notation. Let G be a topological group. A unit-
neighborhood U ⊂G is a neighborhood of e ∈G . For a subset V ⊂G , we write

V −1 = {v−1 : v ∈V }.

We say that V is symmetric if V −1 =V . For subsets A,B ⊂G we write

AB = {ab : a ∈ A,b ∈ B}.

We will also write A2 for A A, and so forth.

Lemma 1.12. Let G be a topological group, let U ⊂G be a unit-neighborhoud, and let A,B ⊂G
be subsets.

(i) There exists a symmetric unit-neighborhood V such that V 2 ⊂U .

(ii) If A or B is open, then so is AB.

(iii) If A and B are quasi-compact, then so is AB.

(iv) If A is quasi-compact and B is closed, then AB and B A are closed.

(v) The topological closure A ⊂G of A equals

A =⋂
V

AV ,

where the intersection runs over all unit-neighborhoods V ⊂G.
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Proof. Recall that µ : G ×G →G denotes the multiplication map and ι : G →G the inversion
map.

(i) The set µ−1U is open in G ×G and contains (e,e). By definition of the product topology,
we can find an open V ⊂G such that (e,e) ∈V ×V ⊂µ−1U . Then V 2 =µ(V ×V ) ⊂U . To
see that V can be taken symmetric, replace it by V ∩V −1.

(ii) Without loss of generality, we can assume that A is open, because B A = (A−1B−1)−1.
Then

AB = ⋃
b∈B

Ab = ⋃
b∈B

ρb(A)

is a union of open sets, because ρb is a homeomorphism by Proposition 1.8. Hence AB is
open.

(iii) The product AB ⊂ G is the image of the quasi-compact subset A ×B ⊂ G ×G under µ.
Then apply Proposition 1.11(iii).

(iv) It suffices to prove that AB is closed by the identity B A = (A−1B−1)−1, and A−1 and B−1

are quasi-compact and closed, respectively. We prove that (AB)c :=G \ AB is open. Let
x ∈ (AB)c . Then xB−1 ⊂G is closed by Proposition 1.8. We have xB−1 ∩ A =;. Indeed if
there is an element in the intersection, then there are a ∈ A and b ∈ B such that a = xb−1,
which implies that x = ab ∈ AB . We claim that there is a unit neighborhood U ⊂G such
that UxB−1 ∩U A =;. This would show that

U−1Ux ∩ AB =;,

proving that x has a neighborhood, U−1Ux, in the complement of AB , which is what we
are after.

The complement of x−1B is open and contains A. So, by part (i), for every a ∈ A there
exists a unit-neighborhood V ⊂G such that V 2a ∩x−1B =;. By quasi-compactness of
A, there exist a1, . . . , ak ∈ A and unit-neighborhoods V1, . . . ,Vk such that V 2

i ai ∩x−1B =;
for all i and

A ⊂
k⋃

i=1
Vi ai .

Let V = ⋂k
i=1 Vi , which is still a unit-neighborhood. Then V A ∩ xB−1 = ;. Indeed, if

v ∈ V and a ∈ A, then there exists i with a ∈ Vi ai . It follows that va ∈ V 2
i ai , which is

disjoint from xB−1. Finally, let U ⊂ G be a symmetric unit-neighborhood such that
U 2 ⊂V (which exists by part (i)). Then we have U 2 ∩xB−1 =;, from which it follows that
U A∩UxB−1 =; by symmetry of U .

(v) (after [DE14, Lemma 1.1.3(f), p. 2]) We prove the inclusion from left to right. Let x ∈ A
and let V ⊂G be a unit-neighborhood. Then xV −1 is a neighborhood of x, and so has
nonempty intersection with A. Let a be an element in this intersection. Then we find
v ∈V such that a = xv−1, and hence x = av ∈ AV .
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Conversely, let x ∈ ⋂
AV and let W be a neighborhood of x in G . Then V = x−1W is a

unit-neighborhood and so is V −1. We find a ∈ A and v ∈V such that x = av−1, and hence
a = xv ∈ xV =W .

■

Remark 1.13. The proof of (iv) in the Lemma above is a little awkward. For a more conceptual
proof, using nets, see [DE14, Lemma 1.1.5].

1.1 Constructing new topological groups from old ones

We start off by constructing (finite) products of topological groups.

Proposition 1.14. Let G and G ′ be topological groups. Then G ×G ′ equipped with the product
topology is again a topological group.

Proof. A priori, we know G ×G ′ to at least be a group. Its mutliplication map is continuous,
because it can be written as the composition

(G ×G ′)× (G ×G ′)
∼=−→ (G ×G)× (G ′×G ′)

µG×µG′−−−−−→G ×G ′.

Both µG and µG ′ are continuous, because G and G ′ are topological groups, and hence so is
their product µG ×µG ′ . As a composition of continuous maps, µG×G ′ is continuous.

The inversion map ιG×G ′ : G ×G ′ →G ×G ′ is the product of the continuous maps ιG and ιG ′ ,
and hence is itself continuous. ■

Corollary 1.15. For topological groups G1, . . . ,Gk the product G1 × . . .×Gk with the product
topology is a topological group.

Proof. Apply the previous proposition inductively. ■

We notice that a product of topological groups P = G1 × . . .×Gk with the projection maps
πi : P →Gi now has the following univeral property. For a collection of morphisms fi : G →Gi ,
i = 1, . . . ,k, there exists a unique morphism f : G → P such that πi ◦ f = fi for all i :

G

P

Gi .

fi
f

πi

Example 1.16. (i) For a positive integer n > 0, euclidean n-space Rn is a topological group
under addition.
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(ii) The torus T×T is a topological group.

If G is a topological group G with a subgroup H ⊂G , then we equip G/H with the quotient
topology from G →G/H . Specifically, this means that a subset U ⊂G/H is open if and only if
its preimage in G is open.

Lemma 1.17. If G is a topological group and H ⊂G is a subgroup, then G →G/H is an open
map.

Proof. Denote the quotient map G →G/H by π. Let U ⊂G be open, then we have

π−1π(U ) =U H

is open by Lemma 1.12(ii). By definition of the quotient topology, π(U ) is open in G/H . ■

" Quotient maps of topological spaces are in general not open. For example, consider the
quotient map [0,1] → S1 identifying the points 0 and 1. Then the image of the open set
[0,1/2) ⊂ [0,1] is not open, because the preimage of this image in [0,1] is [0,1/2)∪ {1}, which is
not open in [0,1].

Lemma 1.18. Let G1, . . . ,Gk be topological groups with subgroups H1 ⊂G1, . . . , Hk ⊂Gk . Then
the natural map

ϕ : (G1 × . . .×Gk )/(H1 × . . .×Hk ) →G1/H1 × . . .×Gk /Hk

is a homeomorphism. If the subgroups H1, . . . , Hk happen to be normal, then this is an isomor-
phism of topological groups.

Proof. It is clear that ϕ is an isomorphism of groups. We need only prove that it is continuous
and an open map. Consider the following commutative diagram

G1 × . . .×Gk

(G1 × . . .×Gk )/(H1 × . . .×Hk ) G1/H1 × . . .×Gk /Hk .

π π1×...×πk

ϕ

Both diagonal maps are open by Lemma 1.17. For an open U ⊂ (G1 × . . .×Gk )/(H1 × . . .×Hk ),
we have

ϕ(U ) = (π1 × . . .×πk )(π−1U ),

using the fact that the projection maps are surjective. This set is open, because π is continuous
and π1 × . . .×πk is open. An analogous argument shows that the inverse of ϕ sends opens to
opens and hence proves continuity of ϕ. ■

Proposition 1.19. Let G be a topological group and let N ⊂ G be a normal subgroup. Then
G/N , equipped with the quotient topology from G →G/N , is a topological group.
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Proof. We have the following commutative diagram

G G

G/N G/N .

ιG

π π

ιG/N

Surjectivity of π shows that for U ⊂G/N we have

ι−1
G/NU =π(ι−1

G π−1U ).

Continuity of π and ιG , and the fact that π is open by Lemma 1.17, shows that ι−1
G/NU is open,

and hence that ιG/N is continuous.

To show continuity of the multiplication map, consider the commutative diagram

G ×G G

G/N ×G/N G/N ,

π×π

µG

π

µG/N

and apply an argument analogous to the one proving continuity of ιG/N . ■

It is now not hard to see that for a topological group G and a normal subgroup N ⊂ G , the
morphism G → G/N has the following universal property: for any morphism ϕ : G → G ′

vanishing on N (meaning N ⊂ kerϕ), there is a unique arrow ϕ : G/N →G ′ such that

G G ′

G/N

ϕ

ϕ

commutes.

"The first isomorphism theorem is false for general topological groups. That is, ifϕ : G →G ′ is
a morphism of topological groups, then it is not necessarily true that G/kerϕ≃ϕ(G). Example
1.6(i) already shows this. It is, however, true if for example G is quasi-compact and G ′ is
Hausdorff.

Example 1.20. Consider the topological group R and the (normal) subgroup of integers Z.
The map

exp: R→T

from Example 1.6 is surjective and has kernel Z. It therefore induces a continuous bijection

exp: R/Z→T.

The map exp can be proved to be open by proving that exp is open. Hence, we have an
isomorphism of topological groups R/Z≃T. ▲

9



Remark 1.21. For another nice example of quotients in the context of Galois theory, you can
have a look at Example A.2. ▲

We state one more Lemma regarding quotients of topological groups, that should already be
familiar to you from group theory, that will be useful in the next section.

Lemma 1.22. (quotient trick) Let G be a topological group and let N , N ′ ⊂G be normal sub-
groups such that N ′ ⊂ N . Then the natural morphism

G/N ′

N /N ′
≃−→G/N

is an isomorphism of topological groups.

Proof. We know from algebra that the natural map (G/N ′)/(N /N ′) →G/N is an isomorphism
of groups. Consider the commutative diagram

G

G/N ′

(G/N ′)/(N /N ′) G/N .

The vertical maps and the diagonal map are of course the usual quotient maps. They are open
by Lemma 1.17. Now an argument analogous to that found in the proofs of Lemma 1.18 and
Proposition 1.19 shows that the map (G/N ′)/(N /N ′) →G/N is open and continuous; hence, it
is an isomorphism of topological groups. ■

1.2 Closed subgroups of Rn

At first sight, studying a group with a topology, instead of just its algebraic structure, appears to
make things more complicated; but, in fact, quite the opposite is true. To illustrate this, we will
show that the closed subgroups of Rn are much easier to understand than general subgroups
of Rn .

First consider the case n = 1. We examine a few (not necessarily closed) subgroups of R.

• We have the group of rational numbersQ⊂R. It is dense in R.

• Consider the subgroup Z[
p

2] = {a +b
p

2 : a,b ∈Z} ⊂R. It is also dense in R (exercise!).

• Another example of a dense subgroup is Z[π] (which is isomorphic to the polynomial
ring over Z in one variable.

Restricting our attention to the closed subgroups of R, we see that things simplify.

Proposition 1.23. If H ⊂ R is a proper non-trivial closed subgroup of R, then there exists
α ∈R\ {0} such that H =Zα.
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Proof. We first prove that there is an element in H that is minimal among all positive non-zero
elements. Suppose this is not the case. We prove that H =R, contradicting properness of H ,
by proving that H lies dense in R. Let x ∈R and let ε> 0. Let h ∈ H be a positive element such
that h < ε. Let n ∈Z be an integer such that |n −x/h| < 1. Then nh ∈ H and we have

|nh −x| = h · |n −x/h| < h < ε.

We conclude that H lies dense in R.

Let α be this minimal element. We prove that H =Zα. Let β ∈ H and suppose β ∉Zα. Then
β/α ∉Z and hence there exists n ∈Z such that 0 <β/α−n < 1. But then

0 <α(β/α−n) =β−nα<α
is a positive element of H that is smaller than α, which contradicts minimality of α. ■

Remark 1.24. Alternatively, we could have proved that H ⊂R as in the above proposition is
always discrete in R and applied Lemma 1.26 below. ▲

For the proof of the main theorem of this section, we will need to discuss briefly how to
“topologize” an aribtrary finite dimensional R-vector space. Let V be an n-dimensional R-
vector space. Picking a basis v = (v1, . . . , vn) of V gives us a linear isomorphism ϕv : Rn ≃−→V ,
turning V into a topological group. If w = (w1, . . . , wn) is any other choice of basis of V , then
there exists A ∈ GLn(R) such that

Rn Rn

V

A

ϕv ϕw

commutes. Since A is a homeomorphism by Example 1.6 (iv), we see that the topology of V is
the same, regardless of whether it comes from v or w .

Definition 1.25. A lattice Γ⊂V of an n-dimensional R-vector space V is a subgroup of the form

Γ=Zv1 + . . .+Zvr ,

where r ≤ n is an integer and v1, . . . , vr are R-linearly independent vectors. The integer r is
called the rank of Γ.

The following lemma is the first key observation in the classification of closed subgroups of
Rn .

Lemma 1.26. Let H ⊂Rn be a non-trivial discrete subgroup. Then H is a lattice.

Proof. (after [NS99, Chapter 1, Proposition 4.2]) Notice that H is closed by Proposition 3.2(vi).

Let h1, . . . ,hm be a set of R-linearly independent elements of H , such that they generate H ⊗ZR
as an R-subspace of Rn . Denote by H0 the subgroup of H generated by h1, . . . ,hm . Let

Φ= {a1h1 + . . .+amhm : 0 ≤ ai < 1}.
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Every element of H/H0 is represented by an element ofΦ. SinceΦ is a bounded set, it contains
at most finitely many elements of H . To see this, notice that the closure of Φ is compact,
because it is closed and bounded, and that H ∩Φ is discrete and compact, because H is closed.
Now notice that compact discrecte spaces are finite. So the index q = (H : H0) is finite. We now
have

H ⊂ 1

q
H0 =Z 1

q
h1 + . . .+Z 1

q
hm ,

and so H isZ-freely generated by r ≤ m elements v1, . . . , vr . Since r ≤ m and H ⊗ZR= H0⊗ZR,
we see that the vectors v1, . . . , vr are also R-linearly independent, because they span an m-
dimensional subspace of Rn . Hence, H is a lattice. ■

Figure 1: The lattice Z(1,2)+Z(2,0) in R2.

Lemma 1.27. Let V be an n-dimensional vector space and let Γ⊂V be a rank r lattice of V .
Then the quotient V /Γ is isomorphic to Tr ×Rn−r .

Proof. We can assume V =Rn . Let W = Γ⊗ZR⊂Rn be the r -dimensional subspace spanned
by Γ. Let W ⊥ be its orthogonal complement so that Rn =W ⊕W ⊥. By Lemma 1.18 we find

Rn/Γ≃W /Γ×W ⊥ ≃W /Γ×Rn−r .

Writing Γ=Zv1+. . .+Zvr , the same Lemma and Example 1.20(i) also gives us an isomorphism

W /Γ≃ (Rv1 ⊕ . . .⊕Rvr )/(Zv1 ⊕ . . .⊕Zvr ) ≃Tr .

■

Theorem 1.28. Let H ⊂ Rn be a non-trivial proper closed subgroup. Then there exists a d-
dimensional subspace W ⊂ Rn and a rank r lattice Γ ⊂ Rn/W such that H = π−1Γ, where
π : Rn →Rn/W is the usual quotient map. The group H is isomorphic toZr ×Rd as a topological
group. Furthermore, the quotient Rn/H is isomorphic to Tr ×Rn−d−r .
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Proof. We proceed by induction on the dimension n. The case n = 1 is treated in Proposition
1.23. If H ⊂Rn is discrete, then we are done by Lemma 1.26 above.

If H is not discrete, then H contains a line L by Lemma 1.29 below. We now argue as follows.
Let πL : Rn → Rn/L denote the quotient map. Then H/L ⊂ Rn/L is again a closed subgroup
by the definition of the quotient topology, because π−1

L (H/L) = H +L = H ⊂ Rn is closed.
By the induction hypothesis, there exists a subspace W0 ⊂Rn/L and a lattice Γ⊂ (Rn/L)/W0

such that H/L =π−1
W0
Γ, where πW0 : Rn/L → (Rn/L)/W0 is the natural quotient map. Now W0

is of the form W /L for some linear subspace W ⊂ Rn and (Rn/L)/W0 ≃ Rn/W by Lemma
1.22. If πW : Rn → Rn/W denotes the quotient map, then we have πW = πW0 ◦πL under this
identification and we find

H =π−1
L (H/L) =π−1

L (π−1
W0
Γ) =π−1

W Γ.

This argument is perhaps best visualised in the diagram below; but if you disagree, feel free to
ignore it.

H Rn

H/L Rn/L

Γ (Rn/L)/W0 Rn/W.

πL πW

πW0

≃

Here the squares are pullbacks.

The projection map Rn →Rn/W admits a section, given by sending a vector v to its orthogonal
component with respect to W . This gives us a canonical (topological) splitting to the short
exact sequence

0 →W → H
π−→ Γ→ 0,

proving that
H ≃W ×Γ≃Rd ×Zr .

We prove the last part of the theorem regarding the quotient Rn/H . We have

Rn/H =Rn/π−1Γ≃ Rn/W

π−1Γ/W
= Rn/W

Γ
,

by Lemma 1.22. Now Lemma 1.27 gives us an isomorphism

Rn/H ≃ Rn/W

Γ
≃Tr ×Rn−d−r .

■

Lemma 1.29. Let H ⊂ Rn be a closed subgroup of Rn . If H is not discrete, then H contains a
line, i.e., a 1-dimensional linear subspace.
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Proof. (after [Gar]) There exists a sequence (hi ) in H which converges to a point h ∈Rn with
none of the hi equal to h, since H is not discrete. Since H is closed we have h ∈ H and we
can assume h = 0 by translating the sequence (hi ). Now consider the sequence (hi /|hi |) on
the unit-sphere. Since the sphere is compact, the sequence (hi /|hi |) admits a convergent
subsequence, converging to say u ∈ Sn . Replace the sequence (hi /|hi |) by this convergent
subsequence. We prove that H contains the line Ru. Let t ̸= 0 be a real number, and let ni be
an integer such that |ni − t/|hi || ≤ 1. Then we find

|ni ·hi − tu| ≤
∣∣∣∣(ni − t

|hi |
)

hi

∣∣∣∣+ ∣∣∣∣ thi

|hi |
− tu

∣∣∣∣≤ 1 · |hi |+ |t | ·
∣∣∣∣ hi

|hi |
−u

∣∣∣∣→ 0 as i →∞.

We conclude that tu is contained in the closure of
⋃

i Zhi , which is contained in H . ■

Remark 1.30. In Example A.3 we briefly discuss the classification of closed subgroups of the
profinite integers Ẑ. The need for closed subgroups is also more evident in that example.

2 The separation axioms for topological groups

We recall the so called “seperation axioms” from topology (“Trennungsaxiome” auf Deutsch).

Definition 2.1. Let X be a topological space. Then X is called regular if for any closed subset
A ⊂ X and any point x ∈ Ac := X \ A, there exist neighborhoods A ⊂U ⊂ X and x ∈V ⊂ X with
U ∩V =;.

Definition 2.2 (separation axioms). Let X be a topological space. Then X is called

(i) T0 if for any two distinct point x, y ∈ X , there exists either a neighborhood x ∈U ⊂ X with
y ∉U , or a neighborhood y ∈V ⊂ X with x ∉V ;

(ii) T1 if for any two disctinct points x, y ∈ X , there exist neighborhoods x ∈ U ⊂ X and
y ∈V ⊂ X with x ∉V and y ∉U ;

(iii) T2 (Hausdorff) if for any two distinct points x, y ∈ X , there exist neighborhoods x ∈U ⊂ X
and y ∈V ⊂ X with U ∩V =;.

(iv) T3 if it is T0 and regular.

We have the following implications between these axioms:

Proposition 2.3. Let X be a topological space. Then

X is T3 ⇒ X is T2 ⇒ X is T1 ⇒ X is T0.

Proof. Only the first implication is non-trivial. Assume X to be T0 and regular. Let x, y ∈ X
be distinct points of X . We can assume, without loss of generality, that there is an open
neighborhood U ⊂ X of x such that y ∉U , by the fact that X is T0. Then x is not in the closure
of {y}, and so we can separate x and {y} by disjoint opens using regularity. ■
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We also have the following useful alternative formulation for the T1 axiom:

Proposition 2.4. Let X be a space. Then X is T1 if and only if for all x ∈ X , {x} ⊂ X is closed.

Proof. See [Run05, Proposition 3.5.4]. ■

Example 2.5. We show that the implications in Proposition 2.3 really are strict in general.

(i) T1 ⇏ T0: the spaceA1
C
= SpecC[x] is T0 (in fact, the spectrum of any commutative ring

is), but it is not T1, because the zero ideal is contained in any open ofA1
C

.

(ii) T2 ⇏ T1: let (A1
C

)(1) be the set of closed points of A1
C

. It is the set C with topology
consisting of the subsets U ⊂Cwith finite complement. It is easily seen to be T1, but it is
not T2, because any two open subsets have nonempty intersection.

(iii) T3 ⇏ T2: Let K be the set {1/n : n ∈ Z>0} ⊂ R. The K -topology T on R is the topology
generated by the sets of the form (a,b)\K ⊂R, where (a,b) is an open interval. The space
(R,T ) is T2, but not regular: the point 0 and the closed subset K cannot be separated by
disjoint opens.

If you dislike these examples, you can find your own in [SS78]. ▲

It is remarkable that for topological groups all the separation axioms are equivalent.

Lemma 2.6. Let G be a topological group. Then G is regular.

Proof. Let A ⊂G be a closed subset of G and let x ∈U := Ac be a point. Let ϕ : G ×G →G be
the map (g ,h) 7→ g h−1. It is continuous, since it can be written as a composition of continuous
maps µ◦ (idG ×ι). We have (x,e) ∈ϕ−1U , and so by definition of the product topology, there
exist an open neighborhood V ⊂ G of x and an open neighborhood W0 ⊂ G of e such that
(x,e) ∈V ×W0 ⊂ϕ−1U . Set W = AW0. It is open by Lemma 1.12(ii) and contains A by the fact
that e ∈W0. To complete the proof, we show that

V ∩W =;.

Suppose there is an element in this intersection. Then we can find a ∈ A, v ∈V and w0 ∈W0

such that v = aw0. But this would imply that

a = v w−1
0 =ϕ(v, w0) ∈U = Ac ,

which is nonsense. ■

Proposition 2.7. For a topological group G, all separation axioms are equivalent.

Proof. In light of the above lemma, and Proposition 2.3, we only need to prove that
T0 ⇒ T2. Let x, y ∈ G be two different points of G . We can assume that there exists a unit-
neighborhood U ⊂G not containing x y−1. If this is not the case, then by the fact that we’ve

15



assumed G to be T0, we can find a neighborhood U ′ of x y−1 not containing e. Then U :=
y−1xU ′ is a unit-neighborhood not containing y−1x, and so we just exchange x and y .

Now, by Lemma 1.12 (i), there exists a symmetric unit-neighborhood V ⊂G such that V 2 ⊂U .
We show that V x∩V y =;, completing the proof. Indeed, if v1, v2 ∈V were such that v1x = v2 y ,
then we would find x y−1 = v−1

1 v2 ∈V 2 ⊂U , by symmetry of V . ■

3 Subgroups of topological groups

In this last section we consider some “topological algebraic” properties of subgroups of topo-
logical groups. First, we introduce one more definition.

Definition 3.1. A topological space X is called locally compact if X is Hausdorff and every point
of X admits a compact neighborhood.

" This initially looks weaker than another common definition of locally compact: for every
x ∈ X and every open x ∈U ⊂ X , there exists a compact neighborhood K ⊂ X of x such that
K ⊂U . However, by the assumption that X is Hausdorff, the two are equivalent.

Proposition 3.2. Let G be a topological group.

(i) If H ⊂G is a subgroup (respectively a normal subgroup), then so is its closure H ⊂G.

(ii) If G is Hausdorff and H ⊂G is an abelian subgroup, then so is H ⊂G.

(iii) Let H = {e}. Then H ⊂G is a normal subgroup of G. Moreover, any closed subgroup of G
contains H.

(iv) Any open subgroup of G is also closed.

(v) If G is locally compact, then so is any closed subgroup of G.

(vi) If G is Hausdorff and H ⊂ G is a subgroup which is locally compact (in the subspace
topology inherited from G), then H is also closed. In particular, any discrete subgroup of G
is closed.

(vii) Let G ′ be a Hausdorff topological group and ϕ : G → G ′ be a morphism of topological
groups. Then kerϕ is a closed subgroup.

Proof. Again, the multiplication map for G is denoted µ : G ×G →G and the inversion map
ι : G →G .

(i) Let ϕ : G ×G →G denote the map (g ,h) 7→ g h−1. It is continuous as it is a composition of
continuous maps: ϕ=µ◦ (id×ι). To show that H is again a subgroup of G , we only need
to show that ϕ(H ×H) = H . Since ϕ−1H is closed, we have

H ×H = H ×H ⊂ϕ−1H ,

which proves this. The equality H ×H = H ×H is a little exercise in topology.
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Now suppose that H is normal. For σ ∈ G , let cσ : G → G denote the conjugation-
by-σ-map g 7→ σgσ−1. It is a homeomorphism by Proposition 1.8 and the fact that
cσ =λσ ◦ρσ−1 . We find,

σHσ−1 = cσ(H) = cσ(H) = H ,

using the assumption that H is normal. So H is normal.

(ii) Consider the commutator-bracket-mapϕ : G×G →G given by (g ,h) 7→ [g ,h] = g hg−1h−1.
It is a continuous map, since we can express it as a composition of continuous maps

G ×G → (G ×G)× (G ×G)
µ×µ−−−→G ×G

µ−→G ,

(g ,h) 7→ ((g ,h), (g−1,h−1))

where the first map comes from id: G ×G →G ×G and ι× ι : G ×G →G ×G . Since H is
abelian, we have H ×H ⊂ϕ−1{e}. The fiber ϕ−1 is closed by the fact that {e} ⊂G is closed
(G is Hausdorff). Hence, H ⊂ϕ−1{e}, and we conclude that H is also abelian.

(iii) The first part is clear by part (i). For the second part, if H ⊂G is a closed subgroup of G ,
then {e} ⊂ H and hence {e} ⊂ H .

(iv) Let U ⊂G be an open subgroup of G . Its complement is given by

U c = ⋃
σ∈G\U

σU = ⋃
σ∈G\U

λσ(U ),

which is open by Proposition 1.8. Hence, U is closed.

(v) Let H ⊂G be a closed subgroup of G . Let x ∈ H be a point in H . Then by the fact that G
is locally compact, x admits a compact neighborhood K ⊂G . Then K ∩H is a compact
neighborhood of x in H by the fact that H is closed.

(vi) (after [Mor77, Proposition 7, p.9]) Let K be a compact neighborhood of e in H . Then
there exists a neighborhood e ∈U ⊂G such that U ∩H = K . Let V be an neighborhood of
e in G such that V 2 ⊂U (which exists by Lemma 1.12(i)). If x ∈ H , then as H is a group by
part (i), we have x−1 ∈ H . So there is an element y ∈V x−1 ∩H . We will prove that y x ∈ H .
This will prove that H = H is closed, since x = y−1(y x) will then be in H .

We will prove that y x is in the closure of U ∩H . Since U ∩H = K is closed as a compact
subspace of a Hausdorff space, this proves y x ∈U ∩H ⊂ H , which is what we want. Let
W be an arbitrary neighborhood of y x in G . Then y−1W is a neighborhood of x, and so
y−1W ∩ xV is a neighborhood of x. As x ∈ H , there is an element h ∈ (y−1W ∩ xV )∩H .
So, yh ∈ W . We also have yh ∈ (V x−1)(xV ) = V 2 ⊂U , and yh ∈ H . It follows that yh ∈
W ∩ (U ∩H), completing the proof.

(vii) This is clear by the fact that {e} ⊂G ′ is closed, since G ′ is Hausdorff.

■
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A Some Galois theory

In this appendix we describe a few examples from Galois theory that were ommited from the
talk.

Example A.1 (Galois correspondence). Let L/k be a Galois extension (particularly, we’re
interested in the case where it is infinite). We have an isomorphism of topological groups

Gal(L/k) ≃ lim←−−Gal(ℓ/k),

where the limit ranges over the finite Galois extensions k ⊂ ℓ contained in L. The topology of
the limit is the subspace topology inherited from

∏
Gal(ℓ/k), where all the groups Gal(ℓ/k)

are discrete. We immediately see that Gal(L/k) is compact by Tychonoff’s theorem. Notice
that this group is not discrete when L/k is infinite, because a compact discrete group is finite!
Galois theory tells us that the intermediate fields of k ⊂ L are in correspondence with the
closed (= compact) subgroups of Gal(L/k). You can consult [Len] for some facts about Galois
groups and their topology.

Example A.2 (quotients of Galois groups). If L/k is a Galois extension and N ⊂ Gal(L/k) =G
is a normal closed subgroup. Then by the correspondence from Example A.1, there is an
intermediate field k ⊂ ℓ⊂ L such that N = Gal(L/ℓ). We then have a natural restriction map

G → Gal(ℓ/k)

whose kernel is precisely N . This induces an isomorphism (because Galois groups are com-
pact) G/N ≃ Gal(ℓ/k).

Example A.3 (the group of profinite integers). Consider the infinite Galois extensions Fp /Fp ,
where Fp is the finite field with p elements and Fp is an algebraic closure thereof. The Galois
group of this extension is the group of profinite integers

Ẑ= lim←−−
n>0

Z/nZ.

This group contains many subgroups that are not closed (there are uncountably many!). For
instance, the group Z lies dense inside Ẑ, but the two are not equal. There are, however, much
fewer closed subgroups of Z. They are in bijective correspondence with the Steinitz numbers:
formal products of the form

∏
p pep , where p ranges over the primes and ep ∈N∪ {∞} for all p.

See [htt] (although the proof there relies on Pontryagin duality, which we will encounter later!).
From the perspective of Galois Theory (Example A.1) it is also precisely the closed subgroups
of Ẑ that are of interest. ▲
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