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ABSTRACT. We define the notion of a “base extension”, an abstract framework to ax-
iomatize the notion of Galois descent in various contexts. We subsequently retrieve the
well known principle that twisted forms of a k-object X are parametrized by the Galois
cohomology set H! (k, Autys (X*)) for practically all types of objects.

1. INTRODUCTION

Mathematical objects are often defined over a base field k. Examples include vector
spaces, schemes, and elliptic curves. Given an object X over k and a field extension ¢
of k, the object X can often be extended to an object X, over ¢; for example, by taking a
tensor product. If Y is another object over k, then Y is said to be an ¢/ k- twist of X if X,
and Y, are isomorphic over /. If Y is furthermore not isomorphic to X over k, then Y is
said to be a nontrivial twist of X.

Example 1.1. Let Q be the conic defined by the equation
X+ y2 +2°=0

over the field of real numbers R. The conic Q does not have a rational point over R, and so
is not isomorphic to the real projective line IPDIQ. However, after extending the base field R
to its algebraic closure C, the conic Q¢ := Q ®g C is isomorphic to the complex projective
line P_. Hence, Q is a nontrivial twist of Pg,

In particular, we are interested in twists along Galois extensions, where we can apply
the theory of Galois cohomology. For the basics of (nonabelian) Galois cohomology we
refer to [Ser97, Section 1.5.1]. The main result of this paper is stated in Theorem[3.8 and
gives a concrete parametrization of the twists of an object X over k along the maximal
Galois extension k° of k in terms of the Galois cohomology set H! (k, Autys (X9)).

The concept of twists in various contexts has been studied quite extensively. See for
example [Ser97, Section I1I.1] and [Bru09]. Contrary to these texts, this paper is concerned
with the parametrization of twists in a general setting. The general setting for twists in
this paper is provided by the concept of a base extension, introduced in section[2} The
concept should be reminiscent of that of a stack. The approach in this paper is inspired
by [Poo17, Section 4.4].
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2. GALOIS DESCENT

We first introduce the notion of a base extension, which will give us an abstract frame-
work in which to state Galois descent. Throughout this section we fix a field k. Denote by
94 = 9\ the opposite of the category of Galois extensions k c ¢; i.e., an arrow L — ¢ in ¢ is
an inclusion ¢ c L of Galois extensions over k. Notice that for k c ¢ a Galois extension,
there is an arrow ¢ — ¢ associated to any o € Gal(¢/ k).

Definition 2.1. A base extension over k is a fibered category € — 4.

If € — % is a base extension, then we denote by %, the fiber over ¢. An object of the
category 6y is referred to as an object over . If ¢ c L is an extension of fields Galois over
k, then there is an associated functor

(Spse: €r— 61

called the base extension along L/¢. It is unique up to a canonical isomorphism. Similarly,
if o € Gal(¢/k) is an element of the Galois group, then there is an associated functor

7(=): Gr — 6.
For convenience, we will always take id(_) = id. Sometimes we will say that ? X is the twist
of X byo.

Let ¢ c L be an extension in ¢. Let o € Gal(L/ k) be an element of the Galois group of L
over k, and denote by o € Gal(¢/k) its restriction. There is a canonical isomorphism of
functors

15 (e =)o (Do = (Frreo’ ().
Often the superscript L/¢ will be omitted when it is clear from the context. Furthermore,

the isomorphisms 7, satisfy the cocycle condition: for X an object over ¢ and 0,7 €
Gal(L/?¢) the triangle

Not

XL > (XL
2.1) \”’" V
(X)L
commutes. This is often expressed simply as
2.2) Nor =1g 0 Nr.

The isomorphisms 7, are also compatible with the functor (-);,¢ in the sense that for
o € Gal(L/k) and X an object over k we have a commutative triangle

Li¢
Mo

XL > X1
Lk

(2.3) \”i /
GEioT}

Xr.
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Let X be an object over L. A collection of isomorphisms (f; : ? X — X), with o ranging
over the elements of Gal(L/?¢), satisfying the cocycle condition

(2.4) for=fo0fr

is called an L/¢-descent datum on X. If X and Y are objects over L with descent data
(fo) and (gy) respectively, and ¢ : X — Y is a map of L-objects, then we say that ¢ is
compatible with descent data if for all o € Gal(L/¥¢) the diagram

ox _?yoy

J/fa \Lgo

X L) Y
commutes. The category of L-objects with L/¢-descent data and compatible maps is
denoted € ;. Notice that there is a natural forgetful functor ‘6} — 6. If x is an object
over ¢, then xy is canonically equipped with a descent datium by (2.2). As a result, there

is a factorization
(Frre

G > 6L

Definition 2.2. (i) If (f5 :?X — X) isan L/¢-descent datum on an L-object X, then we
say it is effective if there is an object x over ¢ such that x; and X are isomorphic in
C@L. In other words, X descends to x.
(ii) We say that a base extension satisfies Galois descent if for every finite Galois extension
¢/k the induced functor € — €/ is fully faithful.

We sketch some of the most important examples of base extensions below.

Example 2.3. In all of the examples ¢ c L denotes a generic extension in ¢, and F denotes
a general field.

(i) Let Vect be the category of pairs (V,¢), where ¢/k is a Galois extension and V is a
vector space over ¢. A morphism of pairs (W, ¢) — (V, L) consists of an arrow L — ¢
in ¢ and a morphism of L-vector spaces W — V ®, L. There is an obvious forgetful
functor Vect — ¢, which is a base extension over k.

Suppose now that ¢/ k is finite. To give a descent datum on a vector space W over
¢ is the same as defining a semi-linear Gal(¢/k)-action on W. It is then a theorem
that the functor — ® ¢ defines an equivalence between Vect; and the category of
¢-vector spaces equipped with a semi-linear Gal(¢/ k)-action. See [Poo17, Theorem
1.3.11] for more details. It follows that the base extension Vect — ¢ satisfies Galois
descent, and that all descent data along finite Galois extensions is effective for this
base extension.
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We write Alg for the category of pairs (A, ¢), where ¢/k is a Galois extension and A
is an algebra over ¢. Morphisms are defined analogously to the previous example.
We obtain a base extension Alg — ¢%. This base extension then also satisfies Ga-
lois descent, and all descent data along finite extensions is effective for this base
extension.

Write Sch for the category of pairs (X, ¢), where ¢/k is a Galois extension and X is
a scheme over ¢. A morphism of pairs (Y, L) — (X, ¢) consists of an arrow L — ¢ in
¢ and a morphism Y — X; of L-schemes. Here X; = X x, Spec L. We obtain a base
extension Sch — 4.

By fpqc-descent the base extension Sch — ¢ satisfies Galois descent (see [Po017,

Theorem 4.3.5]). If Y is a quasi-projective scheme over ¢, then all descent data on Y
along ¢/ k is effective if ¢/ k is finite (see [Poo17, Corollary 4.4.6]).
For a scheme S we denote the category of sheaves over S by Sh(S). Fix a scheme X
over k. We let Shx be the category consisting of pairs (F,¢), where ¢/ k is a Galois
extension and F is a sheaf on X,. A morphism of pairs (G, L) — (F,¢) is given by an
arrow L — ¢ in ¢ together with a morphism G — F ®, L of sheaves on X;. We obtain
a base extension Shy — 4.

Replacing sheaves by quasi-coherent sheaves, we similarly obtain a base exten-

sion Qcohy — ¥. It is then also true that the functor Qcoh(X) — QCOh(X[)]l; is an
equivalence if ¢/ k is finite. This is the content of [Jah00, Proposition 2.6 and 2.9].
Hence, the base extension Qcohy — ¥ satisfies Galois descent, and all descent data
along finite Galois extensions is effective for this base extension.
We define an elliptic curve over F to be a morphism O : Spec F — E of F-schemes,
where E is a smooth, projective, geometrically integral curve of genus 1 over F. An
isogeny of elliptic curves is a map of F-schemes ¢ : E — E' fitting into a commutative
triangle

SpecF

N

E > E'.

If O: Spec? — E is an elliptic curve over ¢, then Oy : SpecL — Ej is naturally an
elliptic curve over L.

Let Ec be the category of pairs (E, ¢), where ¢/ k is a Galois extension and E is an
elliptic curve over £. A morphism of pairs (E’, L) — (E, ¢) consists of an arrow L — ¢
in ¢ and a morphism E’ — E| of elliptic curves. We obtain a base extension Ec — 4.

The base extension Ec — ¥ satisfies Galois descent and all descent data along
finite Galois extensions is effective for this base extension. This can be seen as
follows. Suppose ¢/k is finite. If O : Spec? — E' is an elliptic curve over ¢ with
descent data, then the morphism O is compatible with descent data for the base
extension Sch — ¢. Since O is a morphism of quasi-projective schemes, we can
descend it to a morphism of schemes o : Spec k — E. The fact that o: Speck — E is
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an elliptic curve, follows from the fact that E’ is (see, for instance, [Jah00, Lemma
2.12]). This provides us with a quasi-inverse to the functor (=), : Ecx — Eci.

(vi) We generalize the last example. An algebraic group over F is a group scheme over F
of finite type. We denote by AlgGrp the category of pairs (G, ¢), where ¢/ k is a Galois
extension and G is an algebraic group over ¢. We have a base extension AlgGrp — 4.
By [Poo17, Theorem 5.2.20] all algebraic groups over F are quasi-projective. We can
use this to prove that the base extension AlgGrp — ¥ satisfies Galois descent and
that all descent data along finite Galois extensions are effective.

2.1. Some properties of base extensions. Let € — ¥ be a base extension over k.

Proposition 2.4. For ¢ c L an extension in'9, the functor (—);¢ : 6y — 6 restricts to a
functor

(S pie: € — €}

If X is an object over ¢ with a descent datum (fy :° X — X), then X[ is equipped with the
L/ k-descent datum

Li¢ __ (fE)L

(Fy: "X, 2 O x), 125 x)).

Proof. We have to prove that (F,;) defines a descent datum on X; and thatamap¢: X — Y
of /-objects compatible with ¢/ k-descent data, induces a map ¢; : X; — Y; compatible
with L/ k-descent data.

For 0,7 € Gal(L/ k) consider the diagram

X,
U(JV( Y‘

N = — (5
orx, —1y 0(TX), B @x);, L2 x;
% (Uf?)L
Not (ﬁX)L \M\

The triangle on the left commutes by the cocycle condition, the middle square commutes
by naturality of 175, and the right triangle commutes by the fact that (f;) defines a descent
datum. Hence, the diagram is commutative. The composition of the top maps is F;° F;,
and the composition of the bottom maps is Fy;.
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If ¢ : X — Y is a map of Z-objects compatible with ¢/k-descent data (f5 : X — X) and

(80 :?Y — Y). Then we obtain a diagram

7X1 i> 7Yy
No \Lno

@x); L% @y,

\L(fE)L \L(gﬁ) L

The top and bottom square commutes by naturality of  and the fact that ¢ is compatible
with descent data. It follows that ¢ is compatible with descent data. [ |

Proposition 2.5. Suppose ¢ c L is an extension of fields Galois over k. Then we obtain a
commutative diagram of functors

Fix

6 > (gkL
(—)//k\4 K) Li¢
l
cgk
Proof. This comes down to the commutativity of the triangle (2.3). [ |

The above proposition tells us that it does not matter whether we first equip a k-object
X with a descent datum along ¢/ k and then with a descent datum along L/ k, or directly
with a descent datum along L/ k.

Proposition 2.6. If¢ c L is an extension of fields Galois over k, then we have a commutative
square of functors

(ke

G ——— 6}

i(—)l/k \LU

Cr —— 6,
where U denotes the natural forgetful functor.

Proof. This is by the commutativity of (2.3) and the fact that nf ék is the identity. [ |

Intuitively, for a k-object X, the L//-descent datum obtained by “forgetting a part of
the L/ k-descent datum”, agrees with the L/¢-descent datum obtained from the extension
L/e.
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3. TWISTS

Throughout this paragraph we fix a base extension € — %, over a field k. We fix a
finite Galois extension ¢/ k with group G. Fix an object Z over ¢. If (f;;) and (g,) define
two descent data on Z, then we say they are equivalent, and write (f;) ~ (gy), if the two
resulting objects in <€]f are isomorphic. Define the set Dz by

Dy ={Xeb:Xp=2Z} =.

Define the set Ez to be the set of ¢/ k-descent data on Z modulo equivalence.
Given an object X over k such that there is an isomorphism ¢ : Z — Xy, we define

fo=¢loggop:"Z~Z

for o € G, where (g,) is the induced descent datum on X,. The collection of maps (f,)
defines a descent datum on Z: for 0,7 € G we have

g o f =g oggolpo (g ogro )
= (p_l 0807807
=@ logero”Tp=f1,
where the last equality follows from the fact that (g) is a descent datum. The descent
datum (fY) is defined precisely such that ¢ defines an isomorphism Z — X, in the

category cglf , if we equip Z with the descent datum (f).
Now suppose we have a second k-object Y, a k-isomorphism Y = X, and an ¢-

isomorphism v : Z = Y,. We obtain a commutative diagram

aw - U(p—l
°z > 9Y), — Xy — °Z
i 1T
7Yy, =5 x, 2 7

for all o € G, which shows that the descent data ( f;’/ ) and (f) on Z are equivalent. In
particular, the choice of isomorphism ¢ is irrelevant up to equivalence of descent data.
We will often write (fX), instead of (fy), when we only care about descent data up to
equivalence. We obtain a map

a:D 7 — E 7
X — (5.
Proposition 3.1. (i) Ifthe base extension ¢ — 9 satisfies Galois descent, then the map

constructed in equation (3.1) is injective;
(ii) if all descent data along ¢/ k is effective, then it is surjective.

(3.1

Proof. (i) Let X and Y be objects in Dz whose image under a agrees. Then there is
an isomorphism ¢ : X, — Y, of objects in C@f . Using the fact that € — <€,f is fully
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faithful, we can descend ¢ to an isomorphism X = Y of k-objects. Hence, the classes
of X and Y in D  agree.
(i) This is clear.
]

3.1. Parametrization of twists. In the setting of the previous paragraph, we turn our
attention to the case where Z is the extension of a fixed object X defined over k. Again fix
a base extension € — ¢ over k and a finite Galois extension ¢/k with group G. We write
(fo) for the induced descent datum on X,. We define the set Ty, (X) = T(X) by

T(X)={Y €€x: Yy =Xp} =,

the set of ¢/ k-twists of X. We equip the set T'(X) with a basepoint: the class of the object
X itself. In terms of notation from the previous section, this is just the set Dx,. We denote
the set Ex, from the previous section by Ey. The set Ex also has the structure of a pointed
set, with basepoint the induced descent datum (f;) on X,.

Let A be the group Aut,(Xy) of automorphisms of X, in 6. It is naturally equipped
with an action of the Galois group G as follows: for o € G and ¢ € A we define

32) o(g) = fao o f.
Let (g,) be a descent datum on X,. For o € G we define
co=8s0f, €A
The collection ¢ = (cy) defines a 1-cocycle: for g,7 € G we compute
Coo0(cr) =gyo fy oo(grofi )
=800 f; o fgol(grofi o fy
= 8507810 (feo f)7!
= 8010 fgr = Cor)

where the last equality follows from the fact that (f;) and (g,) are descent data.
Suppose (gl’,) is another descent datum on Xy, which is equivalent to (g5). Then there
is a € A such that for all o0 € G we have

8o = a”’! ogso’a.
For ¢’ = (g/, o f; 1), the cocycle associated to (g,), and o € G, we have
a_locooga: a_loggofg_loa(a)

= a_1°gzr°fa_1°fooga°fa_l

= a_logaoaaofa_1

_ -1_ 7
_gaofa _Co'
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It follows that the cocycles ¢ and ¢’ are cohomologous. We conclude that we have a

well-defined map
B:Ex — H(G; A)
(3.3) .
(8s) — (8o Ofg ).

Clearly § is a map of pointed sets.

We intend to construct an inverse to the map f. Let ¢ = (¢s) be a cocycle. For o € G, we
define

The collection of maps (g,) defines a descent datum on Xy: for 0,7 € G we compute
8o ogg‘[ =Cg OfU OU(CT Of‘r)
= CUOfUOUCT onT
= (;Uofaoac.[ofa_l ofgoaf.[
=cg00(cq) OfO’T
= Co7° for = 8o
where the last two equalities follow from the fact that (f;) is a descent datum and c a
cocycle. Suppose that ¢’ = (¢,) is a cocycle which is equivalent to ¢, i.e., there exists a € A
such that
c=alocyo0(a)
for all o € G. We compute
(,‘('Tof(7 = a_locaoa(a)ofg
= a_locaofaoaaofa_lofa
=a'o(cgofy)o%a,
and so we conclude that the descent data (¢, © f,;) and (c.; o f,) are equivalent. We have
now constructed a well-defined map
:H'(G;A) — E
(3.4) Y *
c=(co)— (Caofa)-

The following lemma is now clear.

Lemma 3.2. The maps  and y defined in equations (3.3) and (3.4) are inverse to each
other. [ |

The composition of the map a from with the map g from gives the map
(3.5) 0,0 =07": Ty (0 — H'(G; Auty (X)),

which sends the k-isomorphism class of an ¢/ k-twist Y of X to the class of the cocycle
¢ = (cg) defined by

co=¢p togso¢pof;
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where ¢ : X, — Y, denotes an isomorphism, (g,) the induced descent datum on Yy, and
(fo) the induced descent datum on Xp.

Theorem 3.3. (i) Ifthe base extension ((=) ;¢ : ‘€¢ — 61) satisfies Galois descent, then

the map 0" from (3.5) is injective;

(ii) ifall ¢/ k-descent data is effective, then 07! is surjective.

Proof. Combine Proposition[3.1]and Lemma[3.2 [ |

Example 3.4. (i) Consider the elliptic curve E over F5 defined by the short Weierstrass

(i)

equation
y2 =x(x-D(x+1).
It has j-invariant 3 = 1728, and so general theory tells us that its automorphism
group over [5 is cyclic of order 4 (see [Sil13, III, Corollary 10.2]). It is generated by
(x,y) = (=x,2y),

which is defined over Fs. Consider the finite Galois extension ¢ = F5(v/3)/Fs with
Galois group G of order 2. Theorem 3.3|applied to Example[2.3|(v) tells us that there
is an isomorphism of pointed sets

Tesrs (E) = H' (G; Aut, (Ep)).

The Galois group G acts trivially on Aut,(E,). A basic group cohomological com-
putation shows that H!(G; Aut, (E,)) is of order 2. The only non-trivial twist of E is
given by

E':y*=2x(x-1)(x+1).

Indeed, E and E' are isomorphic over ¢ via
E,—E,
(x, ) = (%, yV3);

however, the two are not isomorphic over F5: they don't have the same number of
points over [Fs.
Let G, be the multiplicative group over R:

Gm = Ag \ {0} = SpecRIx, yl/(xy - 1).

Consider the base extension of algebraic groups over R defined in Example[2.3](vi). A
C/R-twist of G, is called a forus of dimension 1 over R. It is called split if it is trivial as
a twist of G,,. denote the base extension of G, to C by G,,. Its automorphism group
over Cis given by {+1} = (x — y = x~1). By Theoremthere is an isomorphism of
pointed sets

{1-dimensional tori over R}/ =g= Te/r(G;;) = H' (R, {+1}) = Z/27Z.
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We conclude that there is exactly one non-split torus over R up to R-isomorphism.
We set out to compute it. Consider the algebraic group G over R defined by

G= Specl]%i[x,y]/(x2 + y2 -1).
Its multiplication is defined by
(a,b)-(c,d) =(ac—-bd,ad + bc).
We have an isomorphism G¢ = G,, of algebraic groups over C given by

Ge = G, = SpecClx, yl/(xy —1)
(X, )= (x+iy,x—1iy).

This isomorphism does not descend to one over R, and we can see that none do,
because the composition of this isomorphism with the only non-trivial automor-
phism of G,, does not descend either. We conclude that G is the only non-trivial
1-dimensional torus over R up to isomorphism.

3.2. Twists along a separable closure. In practice we don’t often care about whether
two k-objects become isomorphic over some fixed finite Galois extension, but rather
whether they become isomorphic after base extension to the separable closure. When
k is perfect this is expressed by saying that two k-objects are “geometrically the same”,
but that they “differ arithmetically”. Under some mild conditions we can parametrize
k* | k-twists using Galois cohomology.

For the rest of this paragraph we let k be a field with a fixed separable closure k* and
absolute Galois group G = Gal(k*/ k). All Galois extensions of k are assumed to lie in k°.
Again fix a base extension € — %. Let X be an object over k. If Y is an object over k,
then we denote its base extension to k° by Y*. We define the set T'(X) by

T(X)={Y €6r:Y* =X} ~;

the set of k°/ k-twists, or just twists, of X.

The Galois group G acts on the group Autys(X®) as in (3.2). More generally, if Y and Z
denote two objects over k and ¢/k denotes a Galois extension, then the group Gal(¢/k)
acts on the set Isom,(Yy, Zy) of isomorphisms Y, — Z, in 6, by

(3.6) a(p) =hs0%¢@og,?,
where (g;) denotes the ¢/k-descent datum on Y, and (h,) denotes the ¢/k-descent
datum on Z,.

For any Galois extension ¢/ k, the functor (—)s;, induces a map

(=) s 2 Isomy (Y, Zg) — Isomys (Y, Z%) G116

by the fact that the extension of amap ¢ : Y, — Z, to €6y is compatible with the induced
k*®/¢-descent data on Y* and Z*, and Proposition[2.6] In case Y = Z this is a homomor-
phism of groups. An easy verification using Propositions[2.4]and [2.5|shows that this map
is compatible with Gal(¢/k)-actions.
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Definition 3.5. A base extension € — ¥ over k is called continuous if
(i) for all finite Galois extensions ¢/k and all k-objects Y and Z the map

() gs/e :Isomy (Y, Zg) — Isomys (YS, Z%)GalE70

is an isomorphism of Gal(¢/ k)-sets;
(ii) for all k-objects Y and Z we have

Isomys(Y?®,Z2°%) = UIsomks(YS,ZS)Gal(ks/@,
where ¢/ k ranges over the finite Galois extensions of k.

Example 3.6. The base extensions of finite dimensional vector spaces, finite type alge-
bras, finite type schemes, coherent sheaves on a noetherian scheme, elliptic curves and
algebraic groups are all continuous.

Remark 3.7. If a base extension over k is continuous, then the group G acts continuously
on the set Isomys (Y, Z%), for all k-objects Y and Z, when we equip it with the discrete
topology. In particular this makes Autys(X*) a discrete G-group.

Assume for the rest of this section that € — ¥ is continuous. By the above remark and
part (i) of Definition[3.5|we obtain

H!(G; Autys (Xs)) = ﬁ_r)nHl([/k,Autks(Xs)Gal(ks/Z))
=~ limH' (¢/k; Aute(Xy)),

with the direct limit ranging over the finite Galois extension of k. The natural maps
Ty (X) — T(X), with ¢/ k finite Galois, also give us an isomorphism

(3.8) T(X) = 1im Ty x(X),

(3.7)

because any isomorphism X* = Y* can be descended to an isomorphism X, = Y, with
¢k finite Galois, by continuity of the base extension. For every finite Galois extension
¢/ k we have a map of pointed sets

62/1](: : Ty (X) — H (€1 k; Aut (X))
from (3.5). We prove that these maps are compatible; i.e., that the diagram

-1
gi/k

Ter(X) — HY(0/k,Aut, (X))

(3.9) l . l

Lk

Ty(X) —= H'(L/k,Auty (X1))

commutes for every extension ¢ c L of finite Galois extensions over k. Let Y be an ¢/ k-
twist of X. Denote the ¢/k-descent datum on Xy by (f;) and the ¢/k-descent datum on
Y, by (g5). Let ¢ : Xy — Y, be an isomorphism over ¢. The cocycle class of 6;/1k(Y) in
H!(¢/k,Aut,(Xp)) is then given by the class of the cocycle

co=¢p togso¢pofil.
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Inflating this cocycle class to H!(L/k,Aut; (X;)), we obtain the class of the cocycle
Co=¢7' o810 @)oo (£ N1,
which we can expand to
Co=¢;'o(g7)oes0 pron, o (fz1),

where £, denotes the canonical isomorphism ? Y7 — (°Y); and 7+ denotes the canonical
isomorphism ? X; — ©X);.

Taking the alternative route through diagram (3.9), Y is an L/k twist of X via ¢y :
Xr — Yr. The descent datum on Y7 is given by ((g5)1 © €5) and the descent datum on
X1 is given by ((fz)L o 1), by Propositions and The cocycle class of GZ}k(YL) in
H!(L/k,Aut; (X)) is then given by the class of the cocycle

D=1 o(gs)oesopron, o (f- )L,

which is precisely the cocycle C; from before. Hence (3.9) commutes and by taking lim
we obtain a map

(3.10) 671: T(X) — H'(G,Auts (X)),

using (3.7) and (3.8). It is now not hard to see that this map is explicitly given by sending
a twist Y of X to the class of the cocycle

o=@ 0Gy0%poF,",

where ¢ : X*° = YSisan isomorphism, and (F;) and (G,) denote the the descent datum
on X° respectively Y.

Theorem 3.8. Let ((—)1,¢: 6¢ — 1) be a continuous base extension over k.

@) If (=) 11¢ : €r — 61) satisfies Galois descent, then the map 0~ constructed in 3.10) is
injective;
(ii) if all descent data along finite Galois extensions £k is effective, then 07! is surjective.

Proof. This follows from Theorem[3.3|and the fact that taking a filtered direct limit pre-
serves injections/surjections of sets. ]

Corollary 3.9 (Hilbert Theorem 90). For n =1 we have
H'(G,GL, (k%) = 0.

Proof. Apply the Theorem above to the base extension over k of finite dimensional vector
spaces, and use the fact that all twists of a vector space are trivial. [ ]

Example 3.10. (i) Let k be a perfect field of characteristic not 2 or 3. Consider the base
extension of elliptic curves over k and fix an elliptic curve E over k. We denote its



(i)
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extension to k by E. By [Sil13, Corollary 10.2] we have an isomorphism
po if j(E) #0,1728,
Autz(E) =< pg if j(E) = 1728,
ue if j(E) =0,

where 1, ¢ k denotes the group of n-th roots of unity. From the Kummer sequence

—X x—x" —x

and Corollary[3.9|we obtain an isomorphism
H (K, ) = k™ 1 ()™,

By Example [3.6/and the above Theorem applied with the base extension of elliptic
curves over k, we conclude that

k*1(k*)? if j(E) #0,1728,

T(E) =< k*/(k*)* if j(E)=1728,

k*1(k*)8 if j(E)=0.
(After [Poo17, Remark 5.5.8]) Consider the base extension of algebraic groups over k
from Example[2.3|(vi). Let G};, be the multiplicative group over k. A torus of dimension
n over k is a twist of G}},. Denote the extension of G}, to k* by (G)* = (G})". Its
automorphism group over k* is given by GL; (Z). The Galois group Gal(k®/k) acts

trivially on it. By Theorem 3.8|applied to the base extension of algebraic groups, we
obtain

{n-dimensional tori over k}/ =
=T(G})

~H'(k,GL,,(2))

= Hom,(Gal(k*/ k), GL,(Z))/conjugacy

=~ {Gal(k®/ k)-modules which are free of rank 7 over 7}/ =.
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