HUGO ZOCK

ABSTRACT. We define the notion of a "base extension", an abstract framework to axiomatize the notion of Galois descent in various contexts. We subsequently retrieve the well known principle that twisted forms of a *k*-object *X* are parametrized by the Galois cohomology set $H^1(k, \operatorname{Aut}_{k^3}(X^s))$ for practically all types of objects.

1. INTRODUCTION

Mathematical objects are often defined over a base field k. Examples include vector spaces, schemes, and elliptic curves. Given an object X over k and a field extension ℓ of k, the object X can often be *extended* to an object X_{ℓ} over ℓ ; for example, by taking a tensor product. If Y is another object over k, then Y is said to be an ℓ/k -twist of X if X_{ℓ} and Y_{ℓ} are isomorphic over ℓ . If Y is furthermore *not* isomorphic to X over k, then Y is said to be a *nontrivial* twist of X.

Example 1.1. Let *Q* be the conic defined by the equation

$$x^2 + y^2 + z^2 = 0$$

over the field of real numbers \mathbb{R} . The conic Q does not have a rational point over \mathbb{R} , and so is not isomorphic to the real projective line $\mathbb{P}^1_{\mathbb{R}}$. However, after extending the base field \mathbb{R} to its algebraic closure \mathbb{C} , the conic $Q_{\mathbb{C}} := Q \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to the complex projective line $\mathbb{P}^1_{\mathbb{C}}$. Hence, Q is a nontrivial twist of $\mathbb{P}^1_{\mathbb{R}}$.

In particular, we are interested in twists along Galois extensions, where we can apply the theory of Galois cohomology. For the basics of (nonabelian) Galois cohomology we refer to [Ser97, Section I.5.1]. The main result of this paper is stated in Theorem 3.8, and gives a concrete parametrization of the twists of an object *X* over *k* along the maximal Galois extension k^s of *k* in terms of the Galois cohomology set H¹(*k*,Aut_{*k*^s}(*X*^s)).

The concept of twists in various contexts has been studied quite extensively. See for example [Ser97, Section III.1] and [Bru09]. Contrary to these texts, this paper is concerned with the parametrization of twists in a general setting. The general setting for twists in this paper is provided by the concept of a *base extension*, introduced in section 2. The concept should be reminiscent of that of a stack. The approach in this paper is inspired by [Poo17, Section 4.4].

2. GALOIS DESCENT

We first introduce the notion of a *base extension*, which will give us an abstract framework in which to state *Galois descent*. Throughout this section we fix a field *k*. Denote by $\mathscr{G} = \mathscr{G}_k$ the *opposite* of the category of Galois extensions $k \subset \ell$; i.e., an arrow $L \to \ell$ in \mathscr{G} is an inclusion $\ell \subset L$ of Galois extensions over *k*. Notice that for $k \subset \ell$ a Galois extension, there is an arrow $\ell \to \ell$ associated to any $\sigma \in \text{Gal}(\ell/k)$.

Definition 2.1. A *base extension over* k is a fibered category $\mathscr{C} \to \mathscr{G}$.

If $\mathscr{C} \to \mathscr{G}$ is a base extension, then we denote by \mathscr{C}_{ℓ} the fiber over ℓ . An object of the category \mathscr{C}_{ℓ} is referred to as *an object over* ℓ . If $\ell \subset L$ is an extension of fields Galois over k, then there is an associated functor

$$(-)_{L/\ell} : \mathscr{C}_{\ell} \to \mathscr{C}_{L}$$

called the *base extension along* L/ℓ . It is unique up to a canonical isomorphism. Similarly, if $\sigma \in \text{Gal}(\ell/k)$ is an element of the Galois group, then there is an associated functor

$$\sigma^{\sigma}(-): \mathscr{C}_{\ell} \to \mathscr{C}_{\ell}$$

For convenience, we will always take $i^{d}(-) = id$. Sometimes we will say that σX is the *twist* of *X* by σ .

Let $\ell \subset L$ be an extension in \mathcal{G} . Let $\sigma \in \text{Gal}(L/k)$ be an element of the Galois group of *L* over *k*, and denote by $\overline{\sigma} \in \text{Gal}(\ell/k)$ its restriction. There is a canonical isomorphism of functors

$$\eta_{\sigma}^{L/\ell}: {}^{\sigma}(-)_{L/\ell}:={}^{\sigma}(-)\circ(-)_{L/\ell} \Rightarrow (-)_{L/\ell}\circ^{\overline{\sigma}}(-).$$

Often the superscript L/ℓ will be omitted when it is clear from the context. Furthermore, the isomorphisms η_{σ} satisfy the cocycle condition: for *X* an object over ℓ and $\sigma, \tau \in \text{Gal}(L/\ell)$ the triangle

(2.1)
$$\begin{array}{c} \sigma^{\tau} X_{L} & \xrightarrow{\eta_{\sigma\tau}} & (\overline{\sigma\tau} X)_{L} \\ & & & & \\ \sigma^{\tau} \overline{T} X)_{L} \end{array}$$

commutes. This is often expressed simply as

(2.2)
$$\eta_{\sigma\tau} = \eta_{\sigma} \circ^{o} \eta_{\tau}.$$

The isomorphisms η_{σ} are also compatible with the functor $(-)_{L/\ell}$ in the sense that for $\sigma \in \text{Gal}(L/k)$ and *X* an object over *k* we have a commutative triangle

(2.3)
$$\overset{\sigma X_L}{\xrightarrow{\eta_{\sigma}^{L/\ell}}} \overset{\eta_{\sigma}^{L/\ell}}{\xrightarrow{(\overline{\sigma}X_{\ell})_L}} (\overline{\sigma}X_{\ell})_L \\ \xrightarrow{\chi_L} \overset{\chi_L}{\xrightarrow{(\eta_{\sigma}^{\ell/k})_L}} (\overline{\sigma}X_{\ell})_L$$

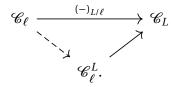
Let *X* be an object over *L*. A collection of isomorphisms $(f_{\sigma} : {}^{\sigma}X \to X)$, with σ ranging over the elements of Gal (L/ℓ) , satisfying the *cocycle condition*

$$(2.4) f_{\sigma\tau} = f_{\sigma} \circ^{\sigma} f_{\tau}$$

is called an L/ℓ -descent datum on *X*. If *X* and *Y* are objects over *L* with descent data (f_{σ}) and (g_{σ}) respectively, and $\varphi : X \to Y$ is a map of *L*-objects, then we say that φ is *compatible with descent data* if for all $\sigma \in \text{Gal}(L/\ell)$ the diagram

$$\begin{array}{c} {}^{\sigma}X \xrightarrow{} {}^{\sigma}\varphi \\ \downarrow f_{\sigma} & \downarrow g_{\sigma} \\ X \xrightarrow{} \varphi & Y \end{array}$$

commutes. The category of *L*-objects with L/ℓ -descent data and compatible maps is denoted \mathscr{C}_{ℓ}^{L} . Notice that there is a natural forgetful functor $\mathscr{C}_{\ell}^{L} \to \mathscr{C}_{L}$. If *x* is an object over ℓ , then x_{L} is canonically equipped with a descent datium by (2.2). As a result, there is a factorization



- **Definition 2.2.** (i) If $(f_{\sigma}: {}^{\sigma}X \to X)$ is an L/ℓ -descent datum on an *L*-object *X*, then we say it is *effective* if there is an object *x* over ℓ such that x_L and *X* are isomorphic in \mathscr{C}_{ℓ}^L . In other words, *X* descends to *x*.
 - (ii) We say that a base extension satisfies *Galois descent* if for every *finite* Galois extension ℓ/k the induced functor $\mathscr{C}_k \to \mathscr{C}_k^{\ell}$ is fully faithful.

We sketch some of the most important examples of base extensions below.

Example 2.3. In all of the examples $\ell \subset L$ denotes a generic extension in \mathcal{G} , and *F* denotes a general field.

(i) Let Vect be the category of pairs (V, ℓ), where ℓ/k is a Galois extension and V is a vector space over ℓ. A morphism of pairs (W, ℓ) → (V, L) consists of an arrow L → ℓ in 𝔅 and a morphism of L-vector spaces W → V ⊗_ℓ L. There is an obvious forgetful functor Vect → 𝔅, which is a base extension over k.

Suppose now that ℓ/k is finite. To give a descent datum on a vector space W over ℓ is the same as defining a *semi-linear* Gal(ℓ/k)-action on W. It is then a theorem that the functor $-\otimes_k \ell$ defines an equivalence between Vect_k and the category of ℓ -vector spaces equipped with a semi-linear $\operatorname{Gal}(\ell/k)$ -action. See [Poo17, Theorem 1.3.11] for more details. It follows that the base extension $\operatorname{Vect} \to \mathscr{G}$ satisfies Galois descent, and that all descent data along finite Galois extensions is effective for this base extension.

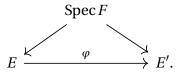
- (ii) We write Alg for the category of pairs (A, l), where l/k is a Galois extension and A is an algebra over l. Morphisms are defined analogously to the previous example. We obtain a base extension Alg → G. This base extension then also satisfies Galois descent, and all descent data along finite extensions is effective for this base extension.
- (iii) Write Sch for the category of pairs (X, ℓ) , where ℓ/k is a Galois extension and X is a scheme over ℓ . A morphism of pairs $(Y, L) \to (X, \ell)$ consists of an arrow $L \to \ell$ in \mathscr{G} and a morphism $Y \to X_L$ of *L*-schemes. Here $X_L = X \times_{\ell} \operatorname{Spec} L$. We obtain a base extension Sch $\to \mathscr{G}$.

By fpqc-descent the base extension Sch $\rightarrow \mathscr{G}$ satisfies Galois descent (see [Poo17, Theorem 4.3.5]). If *Y* is a quasi-projective scheme over ℓ , then all descent data on *Y* along ℓ/k is effective if ℓ/k is finite (see [Poo17, Corollary 4.4.6]).

(iv) For a scheme *S* we denote the category of sheaves over *S* by Sh(*S*). Fix a scheme *X* over *k*. We let Sh_{*X*} be the category consisting of pairs (*F*, ℓ), where ℓ/k is a Galois extension and *F* is a sheaf on X_{ℓ} . A morphism of pairs (*G*, *L*) \rightarrow (*F*, ℓ) is given by an arrow $L \rightarrow \ell$ in \mathscr{G} together with a morphism $G \rightarrow F \otimes_{\ell} L$ of sheaves on X_L . We obtain a base extension Sh_{*X*} $\rightarrow \mathscr{G}$.

Replacing sheaves by quasi-coherent sheaves, we similarly obtain a base extension $\operatorname{Qcoh}_X \to \mathscr{G}$. It is then also true that the functor $\operatorname{Qcoh}(X) \to \operatorname{Qcoh}(X_\ell)_k^\ell$ is an equivalence if ℓ/k is finite. This is the content of [Jah00, Proposition 2.6 and 2.9]. Hence, the base extension $\operatorname{Qcoh}_X \to \mathscr{G}$ satisfies Galois descent, and all descent data along finite Galois extensions is effective for this base extension.

(v) We define an *elliptic curve* over *F* to be a morphism *O*: Spec $F \rightarrow E$ of *F*-schemes, where *E* is a smooth, projective, geometrically integral curve of genus 1 over *F*. An *isogeny* of elliptic curves is a map of *F*-schemes $\varphi : E \rightarrow E'$ fitting into a commutative triangle



If $O: \operatorname{Spec} \ell \to E$ is an elliptic curve over ℓ , then $O_L: \operatorname{Spec} L \to E_L$ is naturally an elliptic curve over L.

Let Ec be the category of pairs (E, ℓ) , where ℓ/k is a Galois extension and E is an elliptic curve over ℓ . A morphism of pairs $(E', L) \to (E, \ell)$ consists of an arrow $L \to \ell$ in \mathscr{G} and a morphism $E' \to E_L$ of elliptic curves. We obtain a base extension $Ec \to \mathscr{G}$.

The base extension $Ec \to \mathscr{G}$ satisfies Galois descent and all descent data along finite Galois extensions is effective for this base extension. This can be seen as follows. Suppose ℓ/k is finite. If $O : \operatorname{Spec} \ell \to E'$ is an elliptic curve over ℓ with descent data, then the morphism O is compatible with descent data for the base extension Sch $\to \mathscr{G}$. Since O is a morphism of quasi-projective schemes, we can descend it to a morphism of schemes $o : \operatorname{Spec} k \to E$. The fact that $o : \operatorname{Spec} k \to E$ is

an elliptic curve, follows from the fact that E' is (see, for instance, [Jah00, Lemma 2.12]). This provides us with a quasi-inverse to the functor $(-)_{\ell/k} : \operatorname{Ec}_k \to \operatorname{Ec}_k^{\ell}$.

(vi) We generalize the last example. An algebraic group over *F* is a group scheme over *F* of finite type. We denote by AlgGrp the category of pairs (G, ℓ) , where ℓ/k is a Galois extension and *G* is an algebraic group over ℓ . We have a base extension AlgGrp $\rightarrow \mathcal{G}$. By [Poo17, Theorem 5.2.20] all algebraic groups over *F* are quasi-projective. We can use this to prove that the base extension AlgGrp $\rightarrow \mathcal{G}$ satisfies Galois descent and that all descent data along finite Galois extensions are effective.

2.1. Some properties of base extensions. Let $\mathscr{C} \to \mathscr{G}$ be a base extension over *k*.

Proposition 2.4. For $\ell \subset L$ an extension in \mathcal{G} , the functor $(-)_{L/\ell} : \mathcal{C}_{\ell} \to \mathcal{C}_{L}$ restricts to a functor

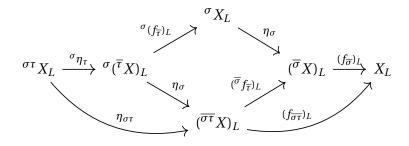
$$(-)_{L/\ell}: \mathscr{C}_k^\ell \to \mathscr{C}_k^L.$$

If X is an object over ℓ with a descent datum $(f_{\sigma} : {}^{\sigma}X \to X)$, then X_L is equipped with the L/k-descent datum

$$(F_{\sigma}: {}^{\sigma}X_L \xrightarrow{\eta_{\sigma}^{L/\ell}} (\overline{\sigma}X)_L \xrightarrow{(f_{\overline{\sigma}})_L} X_L).$$

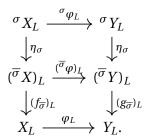
Proof. We have to prove that (F_{σ}) defines a descent datum on X_L and that a map $\varphi : X \to Y$ of ℓ -objects compatible with ℓ/k -descent data, induces a map $\varphi_L : X_L \to Y_L$ compatible with L/k-descent data.

For $\sigma, \tau \in \text{Gal}(L/k)$ consider the diagram



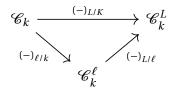
The triangle on the left commutes by the cocycle condition, the middle square commutes by naturality of η_{σ} , and the right triangle commutes by the fact that (f_{σ}) defines a descent datum. Hence, the diagram is commutative. The composition of the top maps is $F_{\sigma}{}^{\sigma}F_{\tau}$, and the composition of the bottom maps is $F_{\sigma\tau}$.

If $\varphi : X \to Y$ is a map of ℓ -objects compatible with ℓ/k -descent data $(f_{\sigma} : {}^{\sigma}X \to X)$ and $(g_{\sigma} : {}^{\sigma}Y \to Y)$. Then we obtain a diagram



The top and bottom square commutes by naturality of η and the fact that φ is compatible with descent data. It follows that φ_L is compatible with descent data.

Proposition 2.5. Suppose $\ell \subset L$ is an extension of fields Galois over k. Then we obtain a commutative diagram of functors



Proof. This comes down to the commutativity of the triangle (2.3).

The above proposition tells us that it does not matter whether we first equip a *k*-object *X* with a descent datum along ℓ/k and then with a descent datum along L/k, or directly with a descent datum along L/k.

Proposition 2.6. If $\ell \subset L$ is an extension of fields Galois over k, then we have a commutative square of functors

$$\begin{array}{c} \mathscr{C}_k \xrightarrow{(-)_{L/k}} & \mathscr{C}_k^L \\ \downarrow^{(-)_{\ell/k}} & \downarrow^U \\ \mathscr{C}_\ell \xrightarrow{(-)L/\ell} & \mathscr{C}_\ell^L , \end{array}$$

where U denotes the natural forgetful functor.

Proof. This is by the commutativity of (2.3) and the fact that $\eta_{id}^{\ell/k}$ is the identity.

Intuitively, for a *k*-object *X*, the L/ℓ -descent datum obtained by "forgetting a part of the L/k-descent datum", agrees with the L/ℓ -descent datum obtained from the extension L/ℓ .

3. TWISTS

Throughout this paragraph we fix a base extension $\mathscr{C} \to \mathscr{G}_k$, over a field k. We fix a finite Galois extension ℓ/k with group G. Fix an object Z over ℓ . If (f_{σ}) and (g_{σ}) define two descent data on Z, then we say they are *equivalent*, and write $(f_{\sigma}) \sim (g_{\sigma})$, if the two resulting objects in \mathscr{C}_k^ℓ are isomorphic. Define the set D_Z by

$$D_Z = \{X \in \mathscr{C}_k : X_\ell \simeq Z\} / \simeq_k.$$

Define the set E_Z to be the set of ℓ/k -descent data on Z modulo equivalence.

Given an object *X* over *k* such that there is an isomorphism $\varphi : Z \to X_{\ell}$, we define

$$f_{\sigma}^{\varphi} = \varphi^{-1} \circ g_{\sigma} \circ^{\sigma} \varphi : {}^{\sigma} Z \to Z$$

for $\sigma \in G$, where (g_{σ}) is the induced descent datum on X_{ℓ} . The collection of maps (f_{σ}^{φ}) defines a descent datum on Z: for $\sigma, \tau \in G$ we have

$$\begin{aligned} f^{\varphi}_{\sigma} \circ^{\sigma} f^{\varphi}_{\tau} &= \varphi^{-1} \circ g_{\sigma} \circ^{\sigma} \varphi \circ^{\sigma} (\varphi^{-1} \circ g_{\tau} \circ^{\tau} \varphi) \\ &= \varphi^{-1} \circ g_{\sigma} \circ^{\sigma} g_{\tau} \circ^{\sigma\tau} \varphi \\ &= \varphi^{-1} \circ g_{\sigma\tau} \circ^{\sigma\tau} \varphi = f^{\varphi}_{\sigma\tau}, \end{aligned}$$

where the last equality follows from the fact that (g_{σ}) is a descent datum. The descent datum (f_{σ}^{φ}) is defined precisely such that φ defines an isomorphism $Z \xrightarrow{\simeq} X_{\ell}$ in the category \mathscr{C}_{k}^{ℓ} , if we equip Z with the descent datum (f_{σ}^{φ}) . Now suppose we have a second k-object Y, a k-isomorphism $Y \simeq X$, and an ℓ -

isomorphism $\psi: Z \xrightarrow{\simeq} Y_{\ell}$. We obtain a commutative diagram

$$\begin{array}{cccc} {}^{\sigma}Z & \xrightarrow{\sigma_{\psi}} {}^{\sigma}Y_{\ell} & \xrightarrow{\simeq} {}^{\sigma}X_{\ell} & \xrightarrow{\sigma_{\varphi^{-1}}} {}^{\sigma}Z \\ \downarrow {}^{f_{\sigma}^{\psi}} & \downarrow & \downarrow & \downarrow {}^{f_{\sigma}^{\psi}} \\ Z & \xrightarrow{\psi} {}^{Y_{\ell}} & \xrightarrow{\simeq} {}^{Z_{\ell}} & \xrightarrow{\varphi^{-1}} {}^{Z_{\ell}}, \end{array}$$

for all $\sigma \in G$, which shows that the descent data (f_{σ}^{ψ}) and (f_{σ}^{φ}) on *Z* are equivalent. In particular, the choice of isomorphism φ is irrelevant up to equivalence of descent data. We will often write (f_{σ}^X) , instead of (f_{σ}^{φ}) , when we only care about descent data up to equivalence. We obtain a map

(3.1)
$$\begin{aligned} \alpha : D_Z \to E_Z \\ X \mapsto (f_{\sigma}^X). \end{aligned}$$

(i) If the base extension $\mathscr{C} \to \mathscr{G}$ satisfies Galois descent, then the map **Proposition 3.1.** constructed in equation (3.1) is injective;

- (ii) if all descent data along ℓ/k is effective, then it is surjective.
- *Proof.* (i) Let *X* and *Y* be objects in D_Z whose image under α agrees. Then there is an isomorphism $\varphi: X_\ell \to Y_\ell$ of objects in \mathscr{C}_k^ℓ . Using the fact that $\mathscr{C}_k \to \mathscr{C}_k^\ell$ is fully

faithful, we can descend φ to an isomorphism $X \simeq Y$ of *k*-objects. Hence, the classes of *X* and *Y* in D_Z agree.

(ii) This is clear.

3.1. **Parametrization of twists.** In the setting of the previous paragraph, we turn our attention to the case where *Z* is the extension of a fixed object *X* defined over *k*. Again fix a base extension $\mathscr{C} \to \mathscr{G}$ over *k* and a finite Galois extension ℓ/k with group *G*. We write (f_{σ}) for the induced descent datum on X_{ℓ} . We define the set $T_{\ell/k}(X) = T(X)$ by

$$T(X) = \{Y \in \mathscr{C}_k : Y_\ell \simeq X_\ell\} / \simeq_k,$$

the set of ℓ/k -*twists* of X. We equip the set T(X) with a basepoint: the class of the object X itself. In terms of notation from the previous section, this is just the set $D_{X_{\ell}}$. We denote the set $E_{X_{\ell}}$ from the previous section by E_X . The set E_X also has the structure of a pointed set, with basepoint the induced descent datum (f_{σ}) on X_{ℓ} .

Let *A* be the group $\operatorname{Aut}_{\ell}(X_{\ell})$ of automorphisms of X_{ℓ} in \mathcal{C}_{ℓ} . It is naturally equipped with an action of the Galois group *G* as follows: for $\sigma \in G$ and $\varphi \in A$ we define

(3.2)
$$\sigma(\varphi) = f_{\sigma} \circ^{\sigma} \varphi \circ f_{\sigma}^{-1}.$$

Let (g_{σ}) be a descent datum on X_{ℓ} . For $\sigma \in G$ we define

$$c_{\sigma} = g_{\sigma} \circ f_{\sigma}^{-1} \in A$$

The collection $c = (c_{\sigma})$ defines a 1-cocycle: for $\sigma, \tau \in G$ we compute

$$\begin{aligned} c_{\sigma} \circ \sigma(c_{\tau}) &= g_{\sigma} \circ f_{\sigma}^{-1} \circ \sigma(g_{\tau} \circ f_{\tau}^{-1}) \\ &= g_{\sigma} \circ f_{\sigma}^{-1} \circ f_{\sigma} \circ^{\sigma}(g_{\tau} \circ f_{\tau}^{-1}) \circ f_{\sigma}^{-1} \\ &= g_{\sigma} \circ^{\sigma} g_{\tau} \circ (f_{\sigma} \circ^{\sigma} f_{\tau})^{-1} \\ &= g_{\sigma\tau} \circ f_{\sigma\tau}^{-1} = c_{\sigma\tau}, \end{aligned}$$

where the last equality follows from the fact that (f_{σ}) and (g_{σ}) are descent data.

Suppose (g'_{σ}) is another descent datum on X_{ℓ} , which is equivalent to (g_{σ}) . Then there is $a \in A$ such that for all $\sigma \in G$ we have

$$g'_{\sigma} = a^{-1} \circ g_{\sigma} \circ^{\sigma} a.$$

For $c' = (g'_{\sigma} \circ f_{\sigma}^{-1})$, the cocycle associated to (g'_{σ}) , and $\sigma \in G$, we have

$$a^{-1} \circ c_{\sigma} \circ^{\sigma} a = a^{-1} \circ g_{\sigma} \circ f_{\sigma}^{-1} \circ \sigma(a)$$

= $a^{-1} \circ g_{\sigma} \circ f_{\sigma}^{-1} \circ f_{\sigma} \circ^{\sigma} a \circ f_{\sigma}^{-1}$
= $a^{-1} \circ g_{\sigma} \circ^{\sigma} a \circ f_{\sigma}^{-1}$
= $g'_{\sigma} \circ f_{\sigma}^{-1} = c'_{\sigma}$.

It follows that the cocycles c and c' are cohomologous. We conclude that we have a well-defined map

(3.3)
$$\beta: E_X \to \mathrm{H}^1(G; A)$$
$$(g_{\sigma}) \mapsto (g_{\sigma} \circ f_{\sigma}^{-1}).$$

Clearly β is a map of pointed sets.

We intend to construct an inverse to the map β . Let $c = (c_{\sigma})$ be a cocycle. For $\sigma \in G$, we define

$$g_{\sigma} = c_{\sigma} \circ f_{\sigma} : {}^{\sigma} X_{\ell} \to X_{\ell}.$$

The collection of maps (g_{σ}) defines a descent datum on X_{ℓ} : for $\sigma, \tau \in G$ we compute

$$g_{\sigma} \circ^{\sigma} g_{\tau} = c_{\sigma} \circ f_{\sigma} \circ^{\sigma} (c_{\tau} \circ f_{\tau}) = c_{\sigma} \circ f_{\sigma} \circ^{\sigma} c_{\tau} \circ^{\sigma} f_{\tau} = c_{\sigma} \circ f_{\sigma} \circ^{\sigma} c_{\tau} \circ f_{\sigma}^{-1} \circ f_{\sigma} \circ^{\sigma} f_{\tau} = c_{\sigma} \circ \sigma (c_{\tau}) \circ f_{\sigma\tau} = c_{\sigma\tau} \circ f_{\sigma\tau} = g_{\sigma\tau},$$

where the last two equalities follow from the fact that (f_{σ}) is a descent datum and c a cocycle. Suppose that $c' = (c'_{\sigma})$ is a cocycle which is equivalent to c, i.e., there exists $a \in A$ such that

$$c'_{\sigma} = a^{-1} \circ c_{\sigma} \circ \sigma(a)$$

for all $\sigma \in G$. We compute

$$c'_{\sigma} \circ f_{\sigma} = a^{-1} \circ c_{\sigma} \circ \sigma(a) \circ f_{\sigma}$$
$$= a^{-1} \circ c_{\sigma} \circ f_{\sigma} \circ^{\sigma} a \circ f_{\sigma}^{-1} \circ f_{\sigma}$$
$$= a^{-1} \circ (c_{\sigma} \circ f_{\sigma}) \circ^{\sigma} a,$$

and so we conclude that the descent data $(c_{\sigma} \circ f_{\sigma})$ and $(c'_{\sigma} \circ f_{\sigma})$ are equivalent. We have now constructed a well-defined map

(3.4)
$$\begin{aligned} \gamma : \mathrm{H}^{1}(G; A) \to E_{X} \\ c = (c_{\sigma}) \mapsto (c_{\sigma} \circ f_{\sigma}). \end{aligned}$$

The following lemma is now clear.

Lemma 3.2. The maps β and γ defined in equations (3.3) and (3.4) are inverse to each other.

The composition of the map α from (3.1) with the map β from (3.3) gives the map

(3.5)
$$\theta_{\ell/k}^{-1} = \theta^{-1} : T_{\ell/k}(X) \to \mathrm{H}^{1}(G; \mathrm{Aut}_{\ell}(X_{\ell})),$$

which sends the *k*-isomorphism class of an ℓ/k -twist *Y* of *X* to the class of the cocycle $c = (c_{\sigma})$ defined by

$$c_{\sigma} = \varphi^{-1} \circ g_{\sigma} \circ^{\sigma} \varphi \circ f_{\sigma}^{-1},$$

where $\varphi : X_{\ell} \to Y_{\ell}$ denotes an isomorphism, (g_{σ}) the induced descent datum on Y_{ℓ} , and (f_{σ}) the induced descent datum on X_{ℓ} .

- **Theorem 3.3.** (i) If the base extension $((-)_{L/\ell} : \mathscr{C}_{\ell} \to \mathscr{C}_{L})$ satisfies Galois descent, then the map θ^{-1} from (3.5) is injective;
 - (ii) if all ℓ/k -descent data is effective, then θ^{-1} is surjective.

Proof. Combine Proposition 3.1 and Lemma 3.2.

Example 3.4. (i) Consider the elliptic curve *E* over \mathbb{F}_5 defined by the short Weierstrass equation

$$y^2 = x(x-1)(x+1).$$

It has *j*-invariant 3 = 1728, and so general theory tells us that its automorphism group over $\overline{\mathbb{F}}_5$ is cyclic of order 4 (see [Sil13, III, Corollary 10.2]). It is generated by

$$(x, y) \mapsto (-x, 2y),$$

which is defined over \mathbb{F}_5 . Consider the finite Galois extension $\ell = \mathbb{F}_5(\sqrt{3})/\mathbb{F}_5$ with Galois group *G* of order 2. Theorem 3.3 applied to Example 2.3(v) tells us that there is an isomorphism of pointed sets

$$T_{\ell/\mathbb{F}_5}(E) \simeq \mathrm{H}^1(G; \mathrm{Aut}_{\ell}(E_{\ell})).$$

The Galois group *G* acts trivially on $\operatorname{Aut}_{\ell}(E_{\ell})$. A basic group cohomological computation shows that $\operatorname{H}^{1}(G; \operatorname{Aut}_{\ell}(E_{\ell}))$ is of order 2. The only non-trivial twist of *E* is given by

$$E': y^2 = 2x(x-1)(x+1).$$

Indeed, *E* and *E'* are isomorphic over ℓ via

$$E_{\ell} \xrightarrow{\simeq} E'_{\ell}$$

(x, y) \mapsto (x, y $\sqrt{3}$);

however, the two are not isomorphic over \mathbb{F}_5 : they don't have the same number of points over \mathbb{F}_5 .

(ii) Let \mathbb{G}_m be the multiplicative group over \mathbb{R} :

$$\mathbb{G}_m = \mathbb{A}_{\mathbb{R}}^1 \setminus \{0\} \simeq \operatorname{Spec} \mathbb{R}[x, y]/(xy-1).$$

Consider the base extension of algebraic groups over \mathbb{R} defined in Example 2.3(vi). A \mathbb{C}/\mathbb{R} -twist of \mathbb{G}_m is called a *torus of dimension 1* over \mathbb{R} . It is called *split* if it is trivial as a twist of \mathbb{G}_m . denote the base extension of \mathbb{G}_m to \mathbb{C} by $\overline{\mathbb{G}}_m$. Its automorphism group over \mathbb{C} is given by $\{\pm 1\} = \langle x \mapsto y = x^{-1} \rangle$. By Theorem 3.3 there is an isomorphism of pointed sets

 $\{1\text{-dimensional tori over } \mathbb{R}\}/\simeq_{\mathbb{R}}=T_{\mathbb{C}/\mathbb{R}}(\mathbb{G}_m)\simeq\mathrm{H}^1(\mathbb{R},\{\pm 1\})\simeq\mathbb{Z}/2\mathbb{Z}.$

We conclude that there is exactly one non-split torus over \mathbb{R} up to \mathbb{R} -isomorphism. We set out to compute it. Consider the algebraic group *G* over \mathbb{R} defined by

 $G = \operatorname{Spec} \mathbb{R}[x, y] / (x^2 + y^2 - 1).$

Its multiplication is defined by

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc).$$

We have an isomorphism $G_{\mathbb{C}} \simeq \overline{\mathbb{G}}_m$ of algebraic groups over \mathbb{C} given by

$$G_{\mathbb{C}} \xrightarrow{\simeq} \overline{\mathbb{G}}_m \simeq \operatorname{Spec} \mathbb{C}[x, y] / (xy - 1)$$
$$(x, y) \mapsto (x + iy, x - iy).$$

This isomorphism does not descend to one over \mathbb{R} , and we can see that none do, because the composition of this isomorphism with the only non-trivial automorphism of $\overline{\mathbb{G}}_m$ does not descend either. We conclude that *G* is the only non-trivial 1-dimensional torus over \mathbb{R} up to isomorphism.

3.2. **Twists along a separable closure.** In practice we don't often care about whether two *k*-objects become isomorphic over some fixed finite Galois extension, but rather whether they become isomorphic after base extension to the separable closure. When *k* is perfect this is expressed by saying that two *k*-objects are "geometrically the same", but that they "differ arithmetically". Under some mild conditions we can parametrize k^{s}/k -twists using Galois cohomology.

For the rest of this paragraph we let k be a field with a fixed separable closure k^s and absolute Galois group $G = \text{Gal}(k^s/k)$. All Galois extensions of k are assumed to lie in k^s . Again fix a base extension $\mathscr{C} \to \mathscr{G}_k$. Let X be an object over k. If Y is an object over k, then we denote its base extension to k^s by Y^s . We define the set T(X) by

$$T(X) = \{Y \in \mathscr{C}_k : Y^s \simeq X^s\} / \simeq_k;$$

the set of k^s/k -twists, or just *twists*, of *X*.

The Galois group *G* acts on the group $\operatorname{Aut}_{k^s}(X^s)$ as in (3.2). More generally, if *Y* and *Z* denote two objects over *k* and ℓ/k denotes a Galois extension, then the group $\operatorname{Gal}(\ell/k)$ acts on the set $\operatorname{Isom}_{\ell}(Y_{\ell}, Z_{\ell})$ of isomorphisms $Y_{\ell} \to Z_{\ell}$ in \mathcal{C}_{ℓ} by

(3.6)
$$\sigma(\varphi) = h_{\sigma} \circ^{\sigma} \varphi \circ g_{\sigma}^{-1}$$

where (g_{σ}) denotes the ℓ/k -descent datum on Y_{ℓ} and (h_{σ}) denotes the ℓ/k -descent datum on Z_{ℓ} .

For any Galois extension ℓ/k , the functor $(-)_{k^{s}/\ell}$ induces a map

$$(-)_{k^{s}/\ell}$$
: Isom $_{\ell}(Y_{\ell}, Z_{\ell}) \rightarrow$ Isom $_{k^{s}}(Y^{s}, Z^{s})^{\text{Gal}(k^{s}/\ell)}$,

by the fact that the extension of a map $\varphi: Y_{\ell} \to Z_{\ell}$ to \mathscr{C}_{k^s} is compatible with the induced k^s/ℓ -descent data on Y^s and Z^s , and Proposition 2.6. In case Y = Z this is a homomorphism of groups. An easy verification using Propositions 2.4 and 2.5 shows that this map is compatible with Gal(ℓ/k)-actions.

Definition 3.5. A base extension $\mathscr{C} \to \mathscr{G}$ over *k* is called *continuous* if

(i) for all finite Galois extensions ℓ/k and all *k*-objects *Y* and *Z* the map

 $(-)_{k^{s}/\ell}$: Isom $_{\ell}(Y_{\ell}, Z_{\ell}) \rightarrow$ Isom $_{k^{s}}(Y^{s}, Z^{s})^{\text{Gal}(k^{s}/\ell)}$

is an isomorphism of $Gal(\ell/k)$ -sets;

(ii) for all *k*-objects *Y* and *Z* we have

$$\operatorname{Isom}_{k^{s}}(Y^{s}, Z^{s}) = \bigcup \operatorname{Isom}_{k^{s}}(Y^{s}, Z^{s})^{\operatorname{Gal}(k^{s}/\ell)},$$

where ℓ/k ranges over the finite Galois extensions of k.

Example 3.6. The base extensions of finite dimensional vector spaces, finite type algebras, finite type schemes, coherent sheaves on a noetherian scheme, elliptic curves and algebraic groups are all continuous.

Remark 3.7. If a base extension over k is continuous, then the group G acts continuously on the set $\text{Isom}_{k^s}(Y^s, Z^s)$, for all k-objects Y and Z, when we equip it with the discrete topology. In particular this makes $\text{Aut}_{k^s}(X^s)$ a *discrete* G-group.

Assume for the rest of this section that $\mathscr{C} \to \mathscr{G}$ is continuous. By the above remark and part (*i*) of Definition 3.5 we obtain

(3.7)
$$H^{1}(G; \operatorname{Aut}_{k^{s}}(X_{k^{s}})) = \varinjlim H^{1}(\ell/k, \operatorname{Aut}_{k^{s}}(X^{s})^{\operatorname{Gal}(k^{s}/\ell)}) \\ \simeq \lim H^{1}(\ell/k; \operatorname{Aut}_{\ell}(X_{\ell})),$$

with the direct limit ranging over the finite Galois extension of *k*. The natural maps $T_{\ell/k}(X) \rightarrow T(X)$, with ℓ/k finite Galois, also give us an isomorphism

$$(3.8) T(X) \simeq \lim T_{\ell/k}(X),$$

because any isomorphism $X^s \simeq Y^s$ can be descended to an isomorphism $X_\ell \simeq Y_\ell$ with ℓ/k finite Galois, by continuity of the base extension. For every finite Galois extension ℓ/k we have a map of pointed sets

$$\theta_{\ell/k}^{-1}: T_{\ell/k}(X) \to \mathrm{H}^1(\ell/k; \mathrm{Aut}_\ell(X_\ell))$$

from (3.5). We prove that these maps are compatible; i.e., that the diagram

commutes for every extension $\ell \subset L$ of finite Galois extensions over k. Let Y be an ℓ/k -twist of X. Denote the ℓ/k -descent datum on X_{ℓ} by (f_{σ}) and the ℓ/k -descent datum on Y_{ℓ} by (g_{σ}) . Let $\varphi : X_{\ell} \to Y_{\ell}$ be an isomorphism over ℓ . The cocycle class of $\theta_{\ell/k}^{-1}(Y)$ in $\mathrm{H}^{1}(\ell/k, \mathrm{Aut}_{\ell}(X_{\ell}))$ is then given by the class of the cocycle

$$c_{\sigma} = \varphi^{-1} \circ g_{\sigma} \circ^{\sigma} \varphi \circ f_{\sigma}^{-1}.$$

Inflating this cocycle class to $H^1(L/k, Aut_L(X_L))$, we obtain the class of the cocycle

$$C_{\sigma} = \varphi_L^{-1} \circ (g_{\overline{\sigma}})_L \circ (\overline{\sigma} \varphi)_L \circ (f_{\overline{\sigma}}^{-1})_L,$$

which we can expand to

$$C_{\sigma} = \varphi_L^{-1} \circ (g_{\overline{\sigma}})_L \circ \varepsilon_{\sigma} \circ^{\sigma} \varphi_L \circ \eta_{\sigma}^{-1} \circ (f_{\overline{\sigma}}^{-1})_L,$$

where ε_{σ} denotes the canonical isomorphism ${}^{\sigma}Y_{L} \to (\overline{\sigma}Y)_{L}$ and η_{σ} denotes the canonical isomorphism ${}^{\sigma}X_{L} \to (\overline{\sigma}X)_{L}$.

Taking the alternative route through diagram (3.9), *Y* is an *L*/*k* twist of *X* via φ_L : $X_L \rightarrow Y_L$. The descent datum on Y_L is given by $((g_{\overline{\sigma}})_L \circ \varepsilon_{\sigma})$ and the descent datum on X_L is given by $((f_{\overline{\sigma}})_L \circ \eta_{\sigma})$, by Propositions 2.4 and 2.5. The cocycle class of $\theta_{L/k}^{-1}(Y_L)$ in $H^1(L/k, \operatorname{Aut}_L(X_L))$ is then given by the class of the cocycle

$$D_{\sigma} = \varphi_L^{-1} \circ (g_{\overline{\sigma}})_L \circ \varepsilon_{\sigma} \circ^{\sigma} \varphi_L \circ \eta_{\sigma}^{-1} \circ (f_{\overline{\sigma}}^{-1})_L,$$

which is precisely the cocycle C_{σ} from before. Hence (3.9) commutes and by taking \varinjlim we obtain a map

(3.10)
$$\theta^{-1}: T(X) \to \mathrm{H}^{1}(G, \mathrm{Aut}_{k^{s}}(X^{s})),$$

using (3.7) and (3.8). It is now not hard to see that this map is explicitly given by sending a twist *Y* of *X* to the class of the cocycle

$$c_{\sigma} = \varphi^{-1} \circ G_{\sigma} \circ^{\sigma} \varphi \circ F_{\sigma}^{-1},$$

where $\varphi: X^s \xrightarrow{\simeq} Y^s$ is an isomorphism, and (F_{σ}) and (G_{σ}) denote the descent datum on X^s respectively Y^s .

Theorem 3.8. Let $((-)_{L/\ell} : \mathscr{C}_{\ell} \to \mathscr{C}_{L})$ be a continuous base extension over k.

- (*i*) If $((-)_{L/\ell} : \mathscr{C}_{\ell} \to \mathscr{C}_{L})$ satisfies Galois descent, then the map θ^{-1} constructed in (3.10) is injective;
- (ii) if all descent data along finite Galois extensions ℓ/k is effective, then θ^{-1} is surjective.

Proof. This follows from Theorem 3.3 and the fact that taking a filtered direct limit preserves injections/surjections of sets.

Corollary 3.9 (Hilbert Theorem 90). *For* $n \ge 1$ *we have*

$$\mathrm{H}^{1}(G,\mathrm{GL}_{n}(k^{s}))=0.$$

Proof. Apply the Theorem above to the base extension over *k* of finite dimensional vector spaces, and use the fact that all twists of a vector space are trivial.

Example 3.10. (i) Let *k* be a perfect field of characteristic not 2 or 3. Consider the base extension of elliptic curves over *k* and fix an elliptic curve *E* over *k*. We denote its

REFERENCES

extension to \overline{k} by \overline{E} . By [Sil13, Corollary 10.2] we have an isomorphism

$$\operatorname{Aut}_{\overline{k}}(\overline{E}) \simeq \begin{cases} \mu_2 & \text{if } j(E) \neq 0, 1728, \\ \mu_4 & \text{if } j(E) = 1728, \\ \mu_6 & \text{if } j(E) = 0, \end{cases}$$

where $\mu_n \subset \overline{k}$ denotes the group of *n*-th roots of unity. From the Kummer sequence

$$1 \to \mu_n \to \overline{k}^{\times} \xrightarrow{x \mapsto x^n} \overline{k}^{\times} \to 1$$

and Corollary 3.9 we obtain an isomorphism

$$\mathrm{H}^{1}(k,\mu_{n})\simeq k^{\times}/(k^{\times})^{n}.$$

By Example 3.6 and the above Theorem applied with the base extension of elliptic curves over *k*, we conclude that

$$T(E) \simeq \begin{cases} k^{\times} / (k^{\times})^2 & \text{if } j(E) \neq 0, 1728, \\ k^{\times} / (k^{\times})^4 & \text{if } j(E) = 1728, \\ k^{\times} / (k^{\times})^6 & \text{if } j(E) = 0. \end{cases}$$

(ii) (After [Poo17, Remark 5.5.8]) Consider the base extension of algebraic groups over k from Example 2.3(vi). Let \mathbb{G}_m^n be the multiplicative group over k. A *torus of dimension* n over k is a twist of \mathbb{G}_m^n . Denote the extension of \mathbb{G}_m^n to k^s by $(\mathbb{G}_m^n)^s = (\mathbb{G}_m^s)^n$. Its automorphism group over k^s is given by $\operatorname{GL}_n(\mathbb{Z})$. The Galois group $\operatorname{Gal}(k^s/k)$ acts trivially on it. By Theorem 3.8 applied to the base extension of algebraic groups, we obtain

 $\{n\text{-dimensional tori over } k\}/\simeq_k$

$$= T(\mathbb{G}_m^n)$$

$$\simeq \mathrm{H}^{1}(k, \mathrm{GL}_{n}(\mathbb{Z}))$$

= Hom_c(Gal(k^{s}/k), GL_n(\mathbb{Z}))/conjugacy

 \simeq {Gal(k^{s}/k)-modules which are free of rank *n* over \mathbb{Z} }/ \simeq .

REFERENCES

- [Bru09] Eric Brussel. *Galois descent and Severi-Brauer varieties*. 2009. URL: http://www.mathcs.emory.edu/~brussel/Papers/galoisdescent.pdf.
- [Jah00] Jörg Jahnel. The Brauer-Severi variety associated with a central simple algebra: A Survey. 2000. URL: https://www.math.uni-bielefeld.de/LAG/man/052. pdf.
- [Poo17] Bjorn Poonen. *Rational points on varieties*. Vol. 186. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society, 2017.
- [Ser97] Jean-Pierre Serre. *Galois cohomology*. eng. Springer Monographs in Mathematics. Berlin ; New York: Springer, 1997.

REFERENCES

- [Sil13] Joseph H. Silverman. *The arithmetic of elliptic curves*. Vol. 106. Graduate texts in mathematics. Springer, 2013.
- [Sta23] The Stacks project authors. *The Stacks project*. https://stacks.math.columbia.edu.2023.

Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Ger-Many

Email address: hugo.zock@uni-duesseldorf.de