Publications
Differential geometry and homogeneous spaces. Springer Universitext 2024.
Abstract: This textbook offers a rigorous introduction to the foundations of Riemannian Geometry, with a detailed treatment of homogeneous and symmetric spaces, as well as the foundations of the General Theory of Relativity.
Starting with the basics of manifolds, it presents key objects of differential geometry, such as Lie groups, vector bundles, and de Rham cohomology, with full mathematical details. Next, the fundamental concepts of Riemannian geometry are introduced, paving the way for the study of homogeneous and symmetric spaces. As an early application, a version of the Poincaré–Hopf and Chern–Gauss–Bonnet Theorems is derived. The final chapter provides an axiomatic deduction of the fundamental equations of the General Theory of Relativity as another important application. Throughout, the theory is illustrated with color figures to promote intuitive understanding, and over 200 exercises are provided (many with solutions) to help master the material.
The book is designed to cover a two-semester graduate course for students in mathematics or theoretical physics and can also be used for advanced undergraduate courses. It assumes a solid understanding of multivariable calculus and linear algebra.
Analytic torsion forms for fibrations by projective curves. Math. Z. 305;47 (2023).
Abstract: An explicit formula for analytic torsion forms for fibrations by projective curves is given. In particular one obtains a formula for direct images in Arakelov geometry in the corresponding setting. The main tool is a new description of Bismut's equivariant Bott-Chern current in the case of isolated fixed points.
Differentialgeometrie und homogene Räume.
2., vollständig überarbeitete und ergänzte Auflage, Springer Spektrum 2020.
Differentialgeometrie und homogene Räume. Springer Spektrum 2014.
Abstract: Das Ziel dieses Buches ist, im Umfang einer zweisemestrigen Vorlesung die wichtigsten
Grundlagen der Riemannschen Geometrie mit allen notwendigen Zwischenresultaten
bereitzustellen und die zentrale Beispielklasse der homogenen Räume ausführlich
darzustellen. Homogene Räume sind Riemannsche Mannigfaltigkeiten, deren Isometriegruppe
transitiv auf ihnen operiert. Alternativ lassen sie sich als Quotienten von Lie-Gruppen
durch Untergruppen beschreiben. Homogene Räume spielen in vielen Gebieten der Mathematik
eine wichtige Rolle, etwa als Modulräume, deren Punkte Lösungen eines mathematischen
Problems parametrisieren. Symmetrische Räume, d.h. Räume, die an jedem Punkt eine
Punktspiegelung erlauben, werden als Spezialfall in einem eigenen Kapitel behandelt.
Im letzten Kapitel werden als eine wichtige Anwendung der Riemannschen Geometrie
einige Grundlagen der allgemeinen Relativitätstheorie axiomatisch deduziert.
A Hirzebruch proportionality principle in
Arakelov geometry. in:
Number Fields and Function Fields--Two Parallel Worlds
, Geer, G. van der; Moonen, B. J.J.; Schoof, R. (Hrsg.), Birkhäuser PM 239 (2005).
2000 MSC: 14G40, 58J52, 20G05, 20G10, 14M17.
Abstract:
We describe a tautological subring in the arithmetic Chow ring of
bases of abelian schemes. Among the results are an Arakelov version
of the Hirzebruch
proportionality principle and a formula for a critical power of the first Arakelov Chern class of the
Hodge bundle.
Old version (i.e. without the last section): Prépublication de l'institut de
mathématiques de Jussieu no. 284 (Avril 2001).
with Gregor Weingart,
Quaternionic analytic torsion.
(PDF)
Adv. Math. 178/2 (2003) 375-395.
Abstract: We define an (equivariant) quaternionic
analytic torsion for antiselfdual vector bundles on quaternionic Kähler
manifolds, using ideas by Leung and Yi. We compute this torsion for vector
bundles on quaternionic homogeneous spaces with respect to any isometry in the
component of the identity, in terms of roots and Weyl groups.
with D. Roessler, A fixed point formula of Lefschetz type in Arakelov
geometry IV: the modular height of C.M. abelian varieties.
(PDF)
J. reine angew. Math. 556
(2003), 127-148.
Abstract: We give a new proof of a slightly
weaker form of a theorem of P. Colmez. This theorem gives a formula for the
Faltings height of abelian varieties with complex multiplication by a C.M. field
whose Galois group over Q is abelian; it reduces to the formula of Chowla
and Selberg in the case of elliptic curves. We show that the formula can be
deduced from the arithmetic fixed point formula proved in [KR2]. Our proof is
intrinsic in the sense that it does not rely on the computation of the periods of
any particular abelian variety.
with Ch. Kaiser, A fixed point formula of
Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and
heights of flag varieties.
(PDF)
Invent. Math. 147 (2002), 633-669.
Abstract: We give a new proof of the Jantzen
sum formula for integral representations of Chevalley schemes over Spec Z.
This is done by applying the fixed point formula of Lefschetz type in Arakelov
geometry to generalized flag varieties. Our proof involves the computation of the
equivariant Ray-Singer torsion for all equivariant bundles over complex
homogeneous spaces. Furthermore, we find several explicit formulae for the global
height of any generalized flag variety.
with D. Roessler, A fixed point formula of Lefschetz type in Arakelov
geometry II: a residue formula.
(PDF)
Ann. Inst. Fourier 52 (2002), 81--103.
Abstract: This is the second of a series of
papers dealing with an Arakelovian analog of the holomorphic Lefschetz fixed
point formula. We use the main result of the first paper to prove a residue
formula for arithmetic characteristic classes living on arithmetic varieties
acted upon by a diagonalisable torus; here recent results of Bismut-Goette on the
equivariant analytic torsion play a key role.
with D. Roessler, A fixed point formula of Lefschetz type in Arakelov
geometry I: statement and proof
(PDF),
Invent. Math. 145 (2001), 333-396
; announced in C. R. Acad. Sci. 326 (1998),
719-722.
Abstract: We consider arithmetic
varieties endowed with an action of the group scheme of n-th roots of
unity and we define equivariant arithmetic K0-theory for these
varieties. We use the equivariant analytic torsion to define direct image maps in
this context and we prove a Riemann-Roch theorem for the natural transformation
of equivariant arithmetic K0-theory induced by the restriction
to the fixed point scheme; this theorem can be viewed as an analog, in the
context of Arakelov geometry, of the regular case of the theorem proved by P.
Baum, W. Fulton and G. Quart. We show that it implies an equivariant refinement
of the arithmetic Riemann-Roch theorem, in a form conjectured by J.-M. Bismut.
Complex analytic torsion forms for torus
fibrations and moduli spaces,
(PDF)
166--195 in: Regulators in
Analysis, Geometry and Number Theory, N. Schappacher, A. Reznikov (ed.),
Progress in Math. 171, Birkhäuser 2000. Abstract: We
construct analytic torsion forms for line bundles on holomorphic fibrations by
tori, which are not necessarily Kähler fibrations. This is done by double
transgressing the top Chern class. The forms are given in terms of Epstein zeta
functions. Also, we establish a corresponding double transgression formula and an
anomaly formula. The forms are investigated more closely for the universal bundle
over the moduli space of polarized abelian varieties and for the bundle of
Jacobians over the Teichmüller space.
Equivariant Reidemeister torsion on symmetric
spaces,
(PDF)
Math. Ann. 307 (1997), 57-69. Abstract: We
calculate explicitly the equivariant real-analytic Ray-Singer torsion for all
symmetric spaces G/K of compact type with respect to the action of
G. We show that it equals zero except for the odd-dimensional
Graßmannians and the space SU(3)/SO(3). As a corollary, we classify up to
diffeomorphism all isometries of these spaces which are homotopic to the
identity; also, we classify their quotients by finite group actions up to
homeomorphism.
Holomorphic torsion on Hermitian symmetric
spaces,
J. reine angew. Math. 460 (1995), 93-116; announced
(PDF)
in C. R. Acad. Sci. 319 (1994),
247-252. Abstract: We calculate explicitly the equivariant holomorphic
Ray-Singer torsion for all equivariant Hermitian vector bundles over Hermitian
symmetric spaces G/K of the compact type with respect to any isometry
$g\in G$. In particular, we obtain the value of the usual non-equivariant
torsion. The result is shown to provide very strong support for Bismut's
conjecture of an equivariant arithmetic Grothendieck-Riemann-Roch theorem.
Equivariant analytic torsion on
PnC
(PDF,)
Math. Ann. 297 (1993),
553-565; announced
(PDF)
in C. R. Acad. Sci. 316
(1993), 471-476. Abstract: The subject of the paper is to calculate an
equivariant version of the complex Ray-Singer torsion for all bundles on the
P1C and for the trivial line bundle on
PnC, for isometries which have isolated fixed
points. The result can for all n be expressed with a special function,
which is very similar to the series defining the Gillet-Soulé
R-genus.
Torsion analytique complexe, thesis, Université de Paris-Sud
(Orsay), no. 1445, 2e trimestre 1993. Abstract: In this thesis
we are studying some aspects of the complex Ray-Singer torsion and of its
generalizations.
with J.-M. Bismut,
Higher analytic torsion forms for direct images and anomaly formulas, J.
Alg. Geom. 1 (1992), 647-684. Abstract: In this paper, we
construct analytic torsion forms associated to Kähler fibrations, and we
establish corresponding anomaly formulas.
Über den stochastischen Beweis des
Atiyah-Singer-Indextheorems,
Diplomarbeit, Schriftenreihe des SFB 256 no.
118 (1990), Universität Bonn. Abstract: We give a new
version of Bismut's proof of the Atiyah-Singer index theorem. Our method is close
to Leandres, but more intrinsic. We do not use local coordinates and the
computation of the derivation of the stochastic parallel transport is simplified.
The paper contains an elementary introduction to stochastic analysis.
Verantwortlich für den Inhalt:
Kai Köhler
♦
Impressum
♦
Datenschutz
♦
Kontakt